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Motivation: This contribution reports on the results of a study conducted in the framework of the “Ad-
vanced Computing Architectures (ACA) - towards multi-scale natural-density Neuromorphic Computing” 
project at Forschungszentrum (FZJ) Juelich, Germany. The ACA project is a joint cooperation of several in-
stitutes at FZJ, RWTH Aachen University, Germany, The University of Manchester, Great Britain, and Hei-
delberg University, Germany. It is targeting the Neuroscience simulation application area as a pilot project 
preparing a long-term Neuromorphic Computing research initiative. Its main goal is the specification of a 
future Neuromorphic Computing architecture, including the definition of requirements and target perfor-
mances, the development of workflows for a systematic validation and benchmarking of neuromorphic ar-
chitectures, and the development of efficient Neuromorphic Computing concepts. 

Currently, full-scale, biologically plausible, spiking microcircuit models, containing about 100,000 neurons 
with roughly 10,000 synapses each (i.e., with natural density), can be simulated at approximately biological 
real time (BRT) [Knight, 18, Rhodes, Kurth]. Very-large-scale, so-called scaled multi-area models [Schmidt], 
consisting of 32 microcircuit equivalents, can be simulated approximately 30-times slower than BRT [v.Al-
bada, 20, Knight, 21]. This is sufficiently fast to study the interplay between local and global dynamics [v. 
Albada, 20]. But these are static networks, only, and adding plasticity enabling system-level learning – cru-
cial for understanding learning - , will slow down the simulation of future more advanced models even 
further. This is relevant as learning unfolds over long stretches of biological time [Stapmanns]. Conse-
quently, the goal of this study is to identify the simulation-speed bottlenecks of state-of-the art systems 
and architectures, to find remedies to it and to search for ways how to bring new architectures optimized 
for brain simulation far ahead of general purpose supercomputer technologies.  

Materials: The motivation for the creation of the IBM Neural Supercomputer (INC) family originated as part 
of the IBM Artificial General Intelligence (AGI) project at IBM Research in Almaden, California. Two INC-
3000 systems have been built so far, one for IBM Almaden and the other for Forschungszentrum Juelich, 
Germany. The IBM INC-3000 system consists of sixteen 14” x 22” INC cards, each hosting 27 software-pro-
grammable and field-reconfigurable Xilinx-SoC nodes ZYNQ XC7Z045 with 1-GB DDR SDRAM. Each SoC con-
sists of a programmable logic (PL, 218,600 reconfigurable look-up tables and 437,200 flip-flops) and a pro-
cessing system (PS, 2 ARM Cortex-A9 cores) as well as 16 serial transceivers with up to 12.5 Gb/s data rate 
in both directions and state-of-the-art node-to-node latency (1st-bit-to-1st-bit) of about 1 µs. Using these 
transceivers, on one INC card the 27 nodes are interconnected by a 3x3x3 mesh network topology and for 
the whole INC-3000 system the 432 nodes are interconnected by a 12x12x3 mesh network topology via a 
thick backplane.  

The cortical microcircuit model [Potjans] has become a benchmark network for the comparison of spiking 
neural network simulations [e.g., v. Albada, 18, Knight,18, Rhodes, Kurth] and represents approximately a 
1-mm2 patch of early sensory cortex. It consists of a balanced four-layer network of 8 populations with 
about 80,000 spiking leaky integrate-and-fire (LIF) neurons (80% excitatory and 20% inhibitory) in total. The 
four layers correspond to L2/3, L4, L5, and L6 in the biological neo-cortex. This is the smallest network which 
combines a realistic number of about 10,000 static synapses per neuron with a connectivity of 10%. The 
connectivity is cell-type specific but laterally uniformly random. 

Methods: Initially, the INC concept was designed to yield high performance for rate-coded artificial neural 
networks. But it turns out, that these machines are also an ideal playground for the elaboration of concepts 
towards future dedicated accelerators for biologically plausible neural networks in Computational Neuro-
science. The cortical microcircuit was implemented on the INC-3000 system for simulations on a 0.1-ms 
time grid as follows: 

The sole goal of these design experiments was to explore the ultimate performance limits of the INC-3000 
machine, regardless of any efficiency aspects. Consequently, only the programmable logic parts of the SoC 



   

nodes are used with maximum parallelism. Instead of the 1 GB SDRAM, only on-SoC low-latency block RAMs 
(BRAMs) are used as storage for the synapse data. All arithmetic is implemented with single-floating point 
precision and high-level synthesis with a target clock frequency of 150 MHz was applied in order to allow 
for quick design-space-exploration experiments. 

AER (Adress Event Representation) spike packets are communicated by deterministic routing via a central 
master node and broadcasting. The processes on the nodes are synchronized by barrier messages, also 
using this communication infrastructure. In addition to the LIF neurons and exponential-decay shaped 
CUBA-synapse models of the original Potjans-Diesmann model, also Izhikevich and AdEx models and alpha- 
and beta-shaped COBA-synapses were implemented. For advancing the state of the neuron models on the 
time grid, Forward-Euler-, Exact-Exponential-, Runge-Kutta-, and Parker-Sochacki-ODE-solver methods, are 
applied. As BRAMs are quite limited resources on the SoCs, for the sake of a minimal memory footprint and 
in order to shorten simulation-set-up time as much as possible, procedural network generation, as already 
proposed in [Roth], is used. Thereby, synaptic connections are drawn in a deterministic fashion using 
pseudo-random number generators again and again during simulation. Variants of Walker’s alias methods 
[Walker] are applied as highly-optimized PRNGs. 

Correctness of the simulation results was successfully verified as described in [v.Albada, 18], i.e. by com-
paring the probability distributions of average firing rates, coefficients of variation, and Pearson’s correla-
tion coefficients with that derived from reference simulations using NEST [Gewaltig]. 

Results: Under these constraints, it is optimal to have each INC-3000 node to host about 256 neuron mod-
els, resulting in the use of 305 nodes, equivalent to 70.6 % of the INC-3000 machine. The maximum Man-
hattan distance in the 12x12x3 mesh network is 24 hops and placing the master node in the center of the 
305-node cluster results in a round-trip latency of about 18 µs. So, for a 0.1-ms time grid, the maximum 
speed-up over BRT is 100 µs / 18 µs = 5.56 X. The measured simulation time for 1 second of BRT is 246.3 
ms for the original Potjans-Diesmann microcircuit, i.e. a speed-up of 4.06 X, is to the best of our knowledge, 
the fastest simulation of the microcircuit reported so far. From this, it is evident that in this machine the 
performance of the communication system establishes a brick wall to any further simulation-time improve-
ment. This is also underlined by the fact that applying more sophisticated neuron and synapse models as 
well as ODE-solver methods increases the simulation time only marginally. 

Discussion: For future very-large Neuroscience networks with sophisticated plasticity models a significant 
improvement of simulation times will be required. At a first glance, there are three mayor challenges in 
this: First at all, to “bring the spikes to the FLOPS” and to synchronize the massively parallel processes, i.e., 
ultra-low latency communications. Secondly, to access the synapse states (including plasticity information) 
in huge data structures, i.e., ultra-low latency memory accesses. And, last but not least, to allow for quick 
network generation in the preparation of the simulation itself, avoiding hours-long set-up times. Neither 
today’s HPC systems nor dedicated neuromorphic computing systems are well suited to these requirements 
and new, network centric system concepts and architectures are needed to overcome the current limita-
tions. At least the simulation of cortical intra-area spike communication via electrical interconnects sets 
stringent limits to the spatial distance between the compute nodes. Multi-area models will enforce the use 
of improved hierarchical communication and synchronization infrastructures. Very-large on-chip or at least 
on-package memories will become a must. The simulation of ultra-large unscaled cortical areas may require 
new concepts and hardware support for spatial mapping. Moreover, sophisticated plasticity models with 
compartmental dendrite models may also challenge arithmetic performance and make the use of efficient 
accelerators a must. Although, initially area and energy efficiency do not appear as a mayor goal for such 
systems, like in biology, the stringent communication-latency constraints do enforce a high integration den-
sity at least at the level of cortical areas and consequently the need for low power consumption. It appears 
not to be reasonable to expect that future development of general-purpose HPC systems will follow these 
directions.   
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