
Project Number: 604102 Project Title: Human Brain Project

Document Title: Neuromorphic Platform Specification — public version

Document Filename: HBP SP9 D9.7.1 NeuromorphicPlatformSpec fbf0f70 from
05 October 2022

Deliverable Number: D 9.7.1

Deliverable Type: Platform Specification

Sub Project: SP9

Planned Delivery Date: M6 - 31 March 2014

Actual Delivery Date: M7

Dissemination level: public

Authors: The deliverable has been written by the SP9 partners UHEI,
UMAN, CNRS-UNIC, TUD and KTH. The complete ver-
sion history with commit-info is available in the git reposi-
tory: git@gitviz.kip.uni-heidelberg.de:hbp-sp9-specification–
d9-7-1.git

Abstract: This document provides the technical specifications for the
Neuromorphic Computing Platform of the Human Brain
Project. For each of the two complementary large-scale hard-
ware implementations, detailed technical descriptions of the
architecture, the user view and the electronic components
are given. In addition, the support software required for the
execution of experiments on the Platform is described and
benchmark tasks for neuromorphic computing are proposed.
The document closes with a list of key performance indicators
and a timeframe for the Platform’s construction.

Keywords: neuromorphic, VLSI, analog, mixed-signal, many-core, brain-
inspired computing, PyNN

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 1

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 2

Neuromorphic Platform Specification — public
version

05 October 2022 (git fbf0f70 — public)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 1

Executive summary

The Human Brain Project will construct and operate a Neuromorphic Computing Platform
consisting of two complementary hardware systems and the software infrastructure necessary
for their operation. The size and the research opportunities of the HBP hardware systems will
be unrivaled. They offer the first and so far only generic and remotely accessible neuromorphic
computing facilities to perform research on this new computing paradigm.

This specification document is primarily written for regular consultation by researchers. It
provides hardware and software developers and the user community with a technically detailed,
comprehensive and quantitative description of the systems under construction. It also en-
ables administrators to monitor progress using a set of high-level “key-performance-indicators
(KPIs)”.

This document has an introduction and four main parts. It starts with an introduction to
neuromorphic computing and a description of the specific implementation and capabilities of
the HBP Neuromorphic Computing Platform. For consistency with the other HBP platform
specification deliverables, the software tools required to access, configure and operate the neu-
romorphic computing systems are described first (in part 1). Parts 2 and 3 contain detailed
specifications of the two complementary hardware systems. These systems are the “Physical-
Model (PM)” system to be installed in Heidelberg (Germany) and the “Many-Core (MC)”
system to be installed in Manchester (UK). Part 4 introduces the benchmarks for the systems,
and part 5 lists the scientific key performance indicators for monitoring the platform building
progress.

The ability to build such a large scale and unique facility on an extremely short timescale
during the 30 months ramp-up phase of the HBP builds on 10 years of preceding work, in
particular the research, design and development carried out in the SpiNNaker, FACETS and
BrainScaleS projects. The scale of the Human Brain Project allows for the aggregation of
existing components, and for their assemblage into a user facility. This specification document
therefore includes a precise, quantitative description of components developed prior to the HBP.

Please note: this document is the technical specification / documentation. For user-access to
the platform consult the HBP Neuromorphic Computing Platform Guidebook (also available
as downloadable .pdf version.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 2

http://electronicvisions.github.io/hbp-sp9-guidebook/
https://flagship.kip.uni-heidelberg.de/jss/SU/p/HBP_SP9_Guidebook

Contents

The Neuromorphic Computing Platform 11

What is Neuromorphic Computing? . 11

What are the key features of the HBP Neuromorphic Computing Platform? . 12

How will the NM Platform be used? . 16

Integration of the NM Platform into the HBP Platform Ecosystem 16

The purpose of this document . 17

1 User interface to the Neuromorphic Computing Platform 19

1.1 Overall goals 21

1.2 Use cases 23

1.2.1 A single run of a simple network model . 23

1.2.2 A scripted run of a complex network model with input data and parameter files 24

1.2.3 Using the Neuromorphic Computing Platform through the Unified Portal and
Brain Simulation Platform . 26

1.2.4 Parameter sweeps . 27

1.2.5 Closed-loop experiment involving a virtual environment 27

1.3 Functional requirements 29

1.3.1 Model and experiment descriptions . 29

1.3.2 Job control interface . 29

1.3.2.1 Batch mode . 30

1.3.3 Data handling . 30

1.3.4 Closed-loop experiments . 31

1.4 Non-functional requirements 33

1.4.1 Sharing . 33

1.4.2 Authentication and Authorization . 33

1.4.3 Security . 33

1.4.4 Accounting . 34

1.4.5 Efficiency and user volumes . 34

1.4.6 Reliability . 34

1.5 Architectural overview 35

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 3

1.5.1 Job submission API . 35

1.5.1.1 Overview . 35

1.5.1.2 Endpoints . 36

1.5.1.3 Resource descriptions . 36

1.5.1.4 Serializations and allowed document types 37

1.5.1.5 Physical architecture . 37

1.5.2 Python client for REST API . 37

1.5.3 Model/experiment verification . 37

1.5.4 Resource management software in Heidelberg and Manchester 38

1.5.5 Tools for exporting Brain Builder model descriptions as PyNN descriptions . 38

1.6 Interfaces to other platforms 39

1.6.1 Services required from other Platforms . 39

1.6.2 Services provided to other Platforms . 39

1.7 Key performance indicators and Function blocks 41

2 Neuromorphic Computing with Physical Emulation of Brain Models 47

2.1 Physical Model Platform: NM-PM (BrainScaleS-1) 49

2.1.1 Neuromorphic Physical Model . 49

2.1.2 Constitutent Parts of the Neuromorphic Physical Model version 1 (NM-PM1) 50

2.2 Users view of the NM-PM system 55

2.2.1 Usage of the NM-PM as a modeling back-end 55

2.2.2 Low-level user access . 56

2.2.3 Real-time interaction with the NM-PM . 57

2.2.4 Evaluation Workflow . 58

2.3 Physical Model Platform: BrainScaleS-2 61

2.3.1 Omnibus . 61

2.3.1.1 Bus if split . 61

2.3.1.2 Bus if arb . 61

2.3.1.3 Bus delay . 63

2.3.1.4 Bus reg target . 63

2.3.1.5 m4 macro . 63

2.3.2 Routing . 64

2.3.2.1 Crossbar (Layer-1) . 64

2.3.2.2 External events (Layer-2) . 64

2.3.2.3 PADI-Bus . 65

2.3.2.4 Synapse driver . 65

2.3.2.5 Synapse . 66

2.3.2.6 Neuron . 66

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 4

3 Neuromorphic Computing with Many-core Emulation of Brain Models 69

3.1 Multi-core Platform: NM-MC 71
3.1.1 Physical Architecture . 72
3.1.2 Software . 75

3.2 SpiNNaker Chip Datasheet 79
3.2.1 Chip Organization . 82

3.2.1.1 Block Diagram . 82
3.2.1.2 System-on-Chip hierarchy . 83
3.2.1.3 Register description convention . 84

3.2.2 System architecture . 85
3.2.2.1 Routing . 86
3.2.2.2 Time references . 87
3.2.2.3 System-level address spaces . 87

3.2.3 ARM968 processing subsystem . 88
3.2.3.1 Features . 88
3.2.3.2 ARM968 subsystem organisation . 89
3.2.3.3 Memory Map . 89

3.2.4 ARM 968 . 92
3.2.4.1 Features . 92
3.2.4.2 Organization . 92
3.2.4.3 Fault-tolerance . 92

3.2.5 Vectored interrupt controller . 93
3.2.5.1 Features . 93
3.2.5.2 Register summary . 93
3.2.5.3 Register details . 94
3.2.5.4 Interrupt sources . 97
3.2.5.5 Fault-tolerance . 98

3.2.6 Counter/timer . 100
3.2.6.1 Features . 100
3.2.6.2 Register summary . 100
3.2.6.3 Register details . 101
3.2.6.4 Fault-tolerance . 103

3.2.7 DMA controller . 104
3.2.7.1 Features . 104
3.2.7.2 Using the DMA controller . 104
3.2.7.3 Register summary . 105
3.2.7.4 Register details . 106
3.2.7.5 Fault-tolerance . 111

3.2.8 Communications controller . 113
3.2.8.1 Features . 113
3.2.8.2 Packet formats . 113
3.2.8.3 Control byte summary . 115
3.2.8.4 Debug access to neighbouring devices 116

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 5

3.2.8.5 Register summary . 117

3.2.8.6 Register details . 117

3.2.8.7 Fault-tolerance . 120

3.2.9 Communications NoC . 121

3.2.9.1 Features . 121

3.2.9.2 Input structure . 121

3.2.9.3 Output structure . 121

3.2.10 Router . 122

3.2.10.1 Features . 122

3.2.10.2 Description . 122

3.2.10.3 Internal organization . 124

3.2.10.4 Multicast (MC) router . 125

3.2.10.5 The point-to-point (P2P) router . 126

3.2.10.6 The nearest-neighbour (NN) router 127

3.2.10.7 Time phase handling . 127

3.2.10.8 Packet error handler . 128

3.2.10.9 Emergency routing . 128

3.2.10.10 Register summary . 128

3.2.10.11 Register details . 129

3.2.10.12 Fault-tolerance . 137

3.2.10.13 Test . 138

3.2.11 Inter-chip transmit and receive interfaces . 139

3.2.11.1 Features . 139

3.2.11.2 Programmer view . 139

3.2.11.3 Fault-tolerance . 139

3.2.12 System NoC . 141

3.2.12.1 Features . 141

3.2.12.2 Organisation . 142

3.2.13 SDRAM interface . 143

3.2.13.1 Features . 143

3.2.13.2 Register summary . 143

3.2.13.3 Register details . 145

3.2.13.4 The delay-locked loop (DLL) . 151

3.2.13.5 Fault-tolerance . 153

3.2.14 System Controller . 154

3.2.14.1 Features . 154

3.2.14.2 Register summary . 154

3.2.14.3 Register details . 155

3.2.15 Ethernet MII interface . 168

3.2.15.1 Features . 168

3.2.15.2 Using the Ethernet MII interface . 168

3.2.15.3 Register summary . 168

3.2.15.4 Register details . 169

3.2.15.5 Fault-tolerance . 173

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 6

3.2.16 Watchdog timer . 174
3.2.16.1 Features . 174
3.2.16.2 Register summary . 174
3.2.16.3 Register details . 175

3.2.17 System RAM . 177
3.2.17.1 Features . 177
3.2.17.2 Address location . 177
3.2.17.3 Fault-tolerance . 177
3.2.17.4 Test . 178

3.2.18 Boot ROM . 179
3.2.18.1 Features . 179
3.2.18.2 Address location . 179
3.2.18.3 Fault-tolerance . 179

3.2.19 JTAG . 180
3.2.19.1 Features . 180
3.2.19.2 Organisation . 180
3.2.19.3 Operation . 180

3.2.20 Input and Output signals . 181
3.2.20.1 Key . 181
3.2.20.2 SDRAM interface . 181
3.2.20.3 JTAG . 181
3.2.20.4 Ethernet MII . 182
3.2.20.5 Communication links . 182
3.2.20.6 Miscellaneous . 183
3.2.20.7 Internal SDRAM interface . 184
3.2.20.8 Internal SDRAM power & ground . 184

3.2.21 Packaging . 185
3.2.22 Application notes . 186

3.2.22.1 Firefly synchronization . 186
3.2.22.2 Neuron address space . 186

3.3 SpiNNaker Software Datasheet 187
3.3.1 Run-time software . 188

3.3.1.1 Run-time software stack . 189
3.3.1.2 Inter-processor communication . 189
3.3.1.3 Runtime memory map . 192

3.3.2 Application programming interface (API) . 193
3.3.2.1 Event-driven programming model . 193
3.3.2.2 Programming interface . 194

3.3.3 Neural net simulation frameworks . 215
3.3.3.1 Spiking Neural net simulation framework 215
3.3.3.2 MLP simulation framework . 218

3.3.4 Neural net simulation development route . 220
3.3.4.1 pyNN.spiNNaker . 221
3.3.4.2 PyNN API functions list . 224

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 7

3.3.4.3 Simulation setup and control . 225

3.3.4.4 Object-oriented interface for creating and recording networks 225

3.3.4.5 PopulationView . 225

3.3.4.6 Assembly . 225

3.3.4.7 Object-oriented interface for connecting populations of neurons . . . 226

3.3.4.8 Procedural interface for creating, connecting and recording networks 227

3.3.4.9 Neural Models . 227

3.3.4.10 Specification of synaptic plasticity . 227

3.3.4.11 Current Injection . 228

3.3.5 Damson development route . 232

3.3.5.1 Damson program compilation . 232

3.3.5.2 Damson code components . 232

3.3.5.3 Mapping code to SpiNNaker processors 233

3.3.5.4 Runtime system . 233

3.3.5.5 Damson development flow . 233

3.3.6 PACMAN: partition and configuration manager 233

3.3.6.1 Introduction . 233

3.3.6.2 Splitting . 236

3.3.6.3 Grouping . 240

3.3.6.4 Mapper . 241

3.3.6.5 Object File Generator . 243

3.3.6.6 Neural Data Structure generation . 245

3.3.6.7 Automatic Run Script generation . 246

3.3.6.8 MLP PACMAN . 247

3.3.7 Coding guidelines . 257

3.3.7.1 All languages . 257

3.3.7.2 C . 257

3.3.7.3 ARM assembly . 258

3.3.7.4 Python . 259

3.3.8 Documentation guidelines . 259

3.3.8.1 C / C++ . 259

3.3.8.2 Assembly language . 260

3.3.8.3 Robodoc configuration file . 262

4 Benchmarks 265

4.1 Overall goals 267

4.2 Quality criteria for neuromorphic benchmark tests 269

4.2.1 What units should be benchmarked? . 269

4.3 Use cases 271

4.3.1 Tracking the performance of a neuromorphic computing system over time . . 271

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 8

4.3.2 Determining whether the Neuromorphic Computing Platform is suitable for
a specific task . 271

4.4 Functional requirements 273

4.5 Architectural overview 275

4.6 Implementation 277
4.6.1 Defining models and tasks . 277
4.6.2 Returning numerical measures . 278
4.6.3 Registering benchmarks . 279
4.6.4 Running benchmarks . 279

5 Following the platformbuilding: KeyPerformance Indicators and timeplans
281

5.1 KPIs and time plans 283
5.1.1 KPIs of the NMPM . 283

5.1.1.1 Wafer Production . 283
5.1.1.2 Printed Circuit Board Production . 283
5.1.1.3 Wafer Module Production . 285
5.1.1.4 Software and Hardware Usage KPIs 285

5.1.2 KPIs of the NMMC . 286
5.1.2.1 Cabinet Assembly . 286
5.1.2.2 Sub-rack assembly . 286
5.1.2.3 Network . 287
5.1.2.4 Fan Tray Assembly . 288
5.1.2.5 Power Supply Assembly . 288

5.1.3 KPIs of the common software part . 288
5.1.4 KPIs of the benchmark part . 289

Bibliography 291

Glossary 293

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 9

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 10

The Neuromorphic Computing Platform

What is Neuromorphic Computing?

Neuromorphic computing represents a radically new paradigm for information processing. The
underlying concept is a direct mapping of brain architecture and functions on an array of
asynchronously communicating, massively parallel computing elements in custom electronic
hardware. An essential consequence is that the memory-holding structure and function of the
neural circuits and the computing elements themselves are not physically separated as they
are in traditional computing. Rather, they are intertwined on the same hardware substrate.
This approach offers several advantages of neuromorphic systems compared to the traditional
computing approach when simulating brain circuits.

Data and code describing brain activity are not shifted back and forth over large distances
during simulation. This leads to a large advantage in energy consumption per basic operation.
Such basic operations are the generation of an action potential or a synaptic transmission. On
a logarithmic scale, the energy gap between the biological brain and a detailed simulation on a
supercomputer is as large as 14 orders of magnitude. Using simplified models in supercomputer
simulations reduces this gap to 10 orders of magnitude. Existing operational neuromorphic
systems with comparable model complexity operate about 4 to 6 orders of magnitude above the
brains energy consumption [9] or with the same distance to traditional computing. There are
no known systems or even concepts to reach this performance with traditional supercomput-
ers. Conceptual studies for a future exascale machine may reduce the energy consumption per
fundamental operation only by a factor 2-5 [3] to reach a power consumption of 20-30 MW for
such system.

Massive parallelism also affects the speed of brain simulations on neuromorphic systems [9].
Traditional very large-scale supercomputer based simulations with cell-level precision execute
100 to 1000 times slower than biological real-time. This makes them unsuitable for interfacing
with physical robotic devices, and even more for the study of the dynamics that drives learning
and development. Neuromorphic systems simulate brain activity at least at biological real-time.
This is a considerable advantage when interfacing them with robotic systems. Specific imple-
mentations can even deliver considerable acceleration above real-time, up to a factor 10.000.
This provides the only known method to study the dynamics of learning and development, cov-
ering time scales from biological milliseconds to years, or to explore large network parameter
spaces.

The massive parallelism makes neuromorphic systems tolerant against failures of individual
components. Like the brain, which loses about one living cell per second, neuromorphic systems

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 11

can cope with failing components through graceful degradation rather than catastrophic failure.
This resilience will be a prerequisite for constructing future, very large neuromorphic systems
made from unreliable components like memristors.

In addition to the technical advantages described above, there are several fundamental open
research questions related to neuromorphic computing. The biological brain operates with noisy
and diverse components. It is not deterministic but inherently stochastic. Understanding these
features and exploiting them for a fundamentally new way of computing requires a large-scale
and fully configurable research platform like the one under construction in HBP. Here, it is
particularly important to grant access to scientists that have not contributed to the design and
construction, but rather use the platform as a user facility, very much like scientists already use
traditional generic computers. This service is arguably the most significant contribution of the
Neuromorphic Computing Platform in the HBP.

Finally, there may exist a formal theory of the brain based on fundamental insights from
mathematics or theoretical physics. Examples for such insights are analytical topology or topo-
logical field theories. Although still rather speculative, such a fundamental theory would need
to be validated by controlled experiments. Neuromorphic systems on artificial substrates may
well provide the only viable experimental access.

What are the key features of the HBP Neuromorphic Com-
puting Platform?

The HBP delivers neuromorphic computing with key features that are summarized in this
section.

Complementarity: The platform provides access to two different and complementary neu-
romorphic computing technologies.

The mixed-signal PM (physical model) system (figure .1) initially consists of 4 million analog
neurons and 1 billion synapses implemented on 20 8-inch silicon wafers. Biological and electronic
parameters of the cells, as well as the network topology, are user configurable. The biological
model for the neurons is the Adaptive-Exponential-Integrate-and-Fire Model (AdEx), synapses
have 4-bit precision weights and feature short-term and long-term plasticity. The system is
accelerated and runs at 10.000 times biological real-time.

The digital MC (many-core) system (figure .2) initially consists of 500.000 ARM968 processor
cores. A single chip contains 18 cores running integer arithmetics at 200 MHz, a shared system
RAM and a router for address and package based spike transmission. Each chip has 6 bi-
directional links capable of transmitting 6 million spikes per second. A 128 Mbyte DRAM is
stacked on the chip die. The system runs at biological real-time.

Configurability: In view of the exploratory phase of neuromorphic computing it is essential
that the systems under construction are as unconstrained as possible given the chosen techno-
logical approaches. Both HBP systems offer a very high degree of configurability with respect
to the network architecture and the local models used for neurons, synapses and plasticity.
The PM system uses cross-bar switches, analog floating gates and SRAM cells for this pur-
pose. The MC system is based on programmable ARM cores connected by bi-directional links.
Both systems are capable of performing a wide spectrum of experiments ranging from biological
reverse-engineered circuits to highly abstract networks, which may be as extreme as random

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 12

1

5

6
7

2

3

4

8

8

Figure .1: Rendered View of the NM-PM1 system (for explanations see page 51)

103	
 machine:	
 864	
 cores,	
 1	
 PCB,	
 75W	
 	
 104	
 machine:10,368	
 cores,	
 1	
 rack,	
 900W	

	

105	
 machine:	
 103,680	
 cores,	
 1	
 cabinet,	
 9kW	
 	

106	
 machine:	
 1M	
 cores,	
 10	
 cabinets,	
 90kW	
 	

Figure .2: Concept view of the NM-MC1 system

connectivity.

Low Energy and High Speed: Both HBP NM systems offer several orders of magnitude
advantages over traditional simulation computers in terms of their energy consumption and
simulations time. The energy gap in performing a single synaptic transmission between the

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 13

biological brain and a detailed computer simulation is as large as 14 orders of magnitude,
corresponding to 10 fJ in the former case and 1J in the latter. Simplified models executed
on traditional computers lead to a reduction to 0.1 mJ, which is still 10 orders of magnitude
worse than biology. The NM systems of HBP are consuming 10.000 pJ and 100 pJ for the MC
and the PM systems, respectively. It is essential to note, that these numbers are not obtained
from isolated lab samples but rather from fully functional systems including all overheads from
control systems, losses in power supplies and similar effects.

Simulations of large networks on traditional computers typically run 100 to 1000 times slower
than biological real-time. This renders a real-time link to physical robots or a study of slow
learning and developmental processes impossible. In this respect the complementarity of the
two HBP systems is very evident. The MC system operates at biological real-time, making
it an ideal candidate to connect to physical robots with vision and sound sensors as well as
mechanical moving parts and actuators. The PM system, with the large acceleration factor
of 10.000, can compress a day of development into 10 seconds. This provides the only known
access to slow learning and developmental processes with an effective biological timing precision
in the sub-millisecond regime, where processes like STDP drive the dynamics of synapses. The
large acceleration factor even allows to explore evolutionary time-scales in experiments lasting
several days or even months.

Scalability: The scale of both phase 1 systems is entirely determined by the financial funds
available for their construction. For growth of up to a factor 10 the cost for larger systems will
simply scale with the growth factor. No fundamentally new technological approaches would
have to be developed. This is an important feature of the massively parallel approach and it
should be exploited whenever extra funding becomes available. For even larger systems the
costs will start to grow faster than linear because of costs for more advanced infrastructure like
space, power and cooling. Also, new assembly technologies like 3D-integration and automated
manufacturing would drive the costs. At this point, upgradability will become an important
feature (see below).

Hybrid Operation: Although there are early experiments that need to be performed with
stand-alone neuromorphic systems, the important new insights will only arise once those systems
interact with data or the environment, and once learning and development is driven by those
interactions. In the case of the real-time MC system, closed external perception-action loops can
be implemented using physical robots. For the accelerated PM system this is not feasible. Here,
the external data will be provided by an nearby high performance computer operating in a closed
loop with the NM system (figure .3). This so-called hybrid operation of an NM system with
a traditional computer is also required for other purposes like functional simulations of larger
brain areas for a multi-scale approach, or for performing the mapping and routing of reverse
engineered biological networks to the hardware substrate. For this reason the PM system will
operate a 5 TFlop machine in close physical proximity to the NM system.

Non-Expert User Access: The application of NM systems has so far been restricted to
users with very detailed knowledge about the specific underlying hardware system and the ded-
icated software package provided to operate the system. This is very different from traditional
computers, where established software packages allow efficient use with very little training effort.
The HBP NM Platform systems will provide a unified software suite that enables access by non-
expert users. A typical example are neuroscientists running experiments implementing reverse

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 14

Bridging	

Scales	
 (x,t)	

€

cm
dV
dt

= −gleak V − E l()

Δt = tpost – tpre

Ac4on	

Percep4on	

Rewards	

Hybrid	

(Neuromorphic-­‐HPC)	

Mul4scale	
 Modelling	

Microscopic	
 –	
 macroscopic	

	

Milliseconds	
 –	
 years	

	

Rapid	
 cycling	
 of	
 experiments	

Output	
 of	

biologically	

equivalent	

data	

Input	
 of	

microscopic	

and	

macroscopic	

theory	

Virtual	
 environment	

Figure .3: Hybrid operation

engineered circuits. The software suite contains a description language for networks (PyNN),
the mapping and routing from biology or a theoretical model to the hardware substrate, a sim-
ulation and verification tool, and tools for the storage and the analysis of the produced data.
As a whole, the NM software suite will be integrated into the HBP Unified Portal, allowing for
an integration with the Neuroinformatics Platform, the brain simulations and the neurorobotics
simulation environment.

Upgradability: It is expected that data integration and simulation in HBP will deliver
a clearer idea of which aspects of neural circuits are essential for computation. This new
knowledge will most likely require the design of new and improved electronic circuits, including
the necessary new chip design. Also, device and VLSI technologies will develop and more
advanced process nodes are likely to become accessible to neuromorphic computing. The groups
in the NM Subproject are therefore already developing concrete plans to upgrade their systems.
In this context, “upgradability” is very important. Infrastructure elements like power supplies,
cooling, racks, control boards, readout- and monitoring systems, and the software tools will be
transferred to and reused by the new hardware generations in order to reduce the development
time.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 15

How will the NM Platform be used?

The high degree of configurability and the requirement to allow for the use by non-experts
require the set-up of an integrated user concept. It is planned to provide training session for
prospective users. In the training session the hardware architectures and software tools will
be described and hands-on exercises will be offered to gain experience with this new type of
computing. New users should initially work very closely with the experts in the NM subproject.
After gaining some initial experience, users will be able to access the NM systems remotely
from their home labs. The operation of the systems will be carried out through a web based
interface and a sharing of the system resources by a scheduling system. On-call experts will be
available to support remote and local users.

Integration of the NM Platform into the HBP Platform Ecosys-
tem

The NM platform is an integral part of the HBP platform ecosystem. It will be operated through
the HBP Unified Portal which offers access to all users of the HBP infrastructure.

Figure .4: Integration of the Neuromorphic Computing Platform into the HBP Platform Ecosys-
tem

The HBP integration of the NM platform is visualized in figure .4. Neuroscience data is
aggregated by the Neuroinformatics Platform and then used as a basis for circuit building
and simulation performed by the Brain Simulation Platform. The simulations run on high
performance computers, which offer a very high degree of flexibility but are not very energy
efficient and operate typically 100-1000 times slower than biological real-time. The simulations

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 16

do interact with the Neurorobotics Platform, which offers the possibility to run closed loop
simulations with virtual sensors, actuators and environments.

The detailed cell models used by the Brain Simulation Platform will then be reduced in
complexity. In a first approach, point neurons will be used as an extreme case of complexity
reduction. The reduced circuits can be transferred to and executed on the machines of the NM
Platform with a large energy and speed advantage. In particular the physical model machine
can execute emulations 10.000 times faster than biological real-time. In that system a day
of learning and development can be reduced to an effective wall clock time of 10 seconds.
Also, the accelerated operation allows to scan large parameter regimes for a systematic study of
model variations. The large exploratory power of the NM Platform should also guide theoretical
studies. The Platform is therefore closely integrated with the European Institute for Theoretical
Neuroscience (EITN) in Paris.

Finally, the NM Platform machines will be part of the overall computing infrastructure in
HBP. The high performance computers may be used to perform placing and routing for the
neuromorphic machines, and the experience with the construction of the neuromorphic machines
can also give guidance to the design of future, energy efficient high performance computers.

The purpose of this document

This specification document is primarily written for regular consultation by researchers. It
provides hardware and software developers and the user community with a technically detailed,
comprehensive and quantitative description of the systems under construction. It also allows
administrators to monitor the progress through a set of high-level “key-performance-indicators
(KPIs)”.

As construction of the first phase systems proceeds and upgrade concepts evolve, the docu-
ment will be continuously updated. It will be available in the HBP document repository as a
living document accessible to all developers and users.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 17

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 18

Part 1

User interface to the Neuromorphic
Computing Platform

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 19

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 20

1.1 Overall goals

The Neuromorphic Computing Platform will enable users to run simulation/emulation exper-
iments on the two neuromorphic computing systems, the Heidelberg system (“Neuromorphic
Computing with Physical Emulation of Brain Models”, part 2 and the Manchester system
(“Neuromorphic Computing with Digital Many-core implementation of Brain Models”, part 3).

This part of the specification addresses the user interface to the Platform, both direct access
by users and interactions with other HBP platforms.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 21

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 22

1.2 Use cases

We expect that a user may wish to interact with the Platform in one of three ways:

• direct interaction through a web page

• interaction via the HBP Portal

• scripted interaction

For the Heidelberg system, there may be three types of experiments:

1) single runs (potentially long-running, using plasticity);

2) parameter sweeps or other batch-mode experiments;

3) closed-loop experiments involving interaction with a virtual environment.

For the Manchester system, the same three types of experiment are possible, plus closed-loop
experiments with a real environment, through interaction with the Neurorobotics platform.

1.2.1 A single run of a simple network model

Primary actor Bill, a computational neuroscientist

Description Bill has created a network model with point neurons and short-term synaptic
plasticity using the PyNN API. He has simulated the model using the NEST and NEURON
simulators, and now wishes to check that the results from neuromorphic hardware are compa-
rable.

Preconditions The model and experiment description are in a single Python script on Bill’s
laptop.

Success scenario

1) In a web browser, Bill navigates to the home page for the Neuromorphic Computing
Platform and logs in to his user page.

2) Bill can see a list of previous jobs he has run on the Platform.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 23

3) Bill clicks a button to request a new job.

4) Bill copies the content of the Python script from his text editor and pastes it into the
appropriate text box.

5) Bill selects the Manchester system.

6) Bill submits the job request.

7) Bill is returned to his user page, where he can see that his new job has been added to the
list of jobs with the status ”in queue”.

8) When the job is complete, Bill receives an e-mail containing a link to the job detail page.

9) Bill clicks on the link, which opens the job detail page in his browser. This page shows
that the job has successfully completed, and contains links to download the log and output
data files generated by the experiment.

10) Bill downloads the data files and compares the results to his NEST simulations.

Alternate scenarios

1) There is a syntax error in Bill’s script.

a) when Bill submits the job request, he is taken back to the job submission page, where
a traceback of the error appears.

b) Bill corrects the error and resubmits the job.

2) There is an error in the output data-handling section of Bill’s script, after the simulation
section.

a) Bill receives an e-mail informing him that the job was unsuccessful, and containing
a link to the job detail page.

b) The job detail page shows the error traceback and contains a link to download the
log file, enabling Bill to debug his script.

1.2.2 A scripted run of a complex network model with input
data and parameter files

Primary actor Carol, a computational neuroscientist

Description Carol has developed a detailed model of a sensory system, which uses spike-timing-
dependent plasticity and receives naturalistic stimulation. Even on a traditional HPC computer,
the simulation takes several days to run. Carol wishes to take advantage of the large acceleration
factor of the Heidelberg system to bring the run time down to a few minutes, so that she can
study the effect of parameter variations. Since she expects to submit many jobs with different
parameters, she wishes to script the job submission process rather than click through a website.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 24

Preconditions The model and experiment descriptions are written using the PyNN API and
are in separate Python files in a public Git repository. The repository also contains parameter
files, a file containing data used to construct the sensory stimuli, and a main script which reads
all these files, launches the simulation and then handles the output data processing.

Success scenario

1) Carol downloads a Python client for the Neuromorphic Computing Platform job submis-
sion REST API.

2) Using the client library, she writes a short script to submit a job to the Neuromorphic
Computing Platform and retrieve the results.

3) The job request script includes the name of the system (the Heidelberg system in this
case), the URL of the Git repository, the path to the main script within the repository,
and the list of arguments (parameter file name, etc.) required by the script.

4) After submitting the job request, the script receives a URL that returns a document
indicating the job status.

5) The script polls the job status URL repeatedly until the job is complete, at which point
the job status document contains the URLs of the output data files and the log file.

6) the script downloads the output data files and saves them to the local disk.

Alternate scenarios

1) There is an error somewhere in Carol’s code

a) the job status document indicates there has been an error, and contains the error
traceback and the URL of the log file

2) The public Git repository is unavailable

a) the job status document indicates there has been an error, and indicates the cause
of the problem

3) Carol cancels the job submission script, or reboots her computer, after the job has been
submitted but before the job has completed.

a) the job remains in the queue

b) when the job completes Carol receives an e-mail containing a link to the job detail
page.

4) after submitting the job but before it has completed, Carol realizes she has made a mistake.

a) Carol uses the Python client for the Neuromorphic Computing Platform job submis-
sion REST API to cancel the job.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 25

1.2.3 Using the Neuromorphic Computing Platform through
the Unified Portal and Brain Simulation Platform

Primary actor Dennis, a neuroscientist.

Description Dennis has used the Brain Builder component of the Brain Simulation Platform
to create a network model of a brain region, using point neurons. He has successfully executed
a simulation of the model on the HPC Platform using the NEST simulator, and now wishes to
execute the model on the Manchester hardware preparatory to beginning a collaboration with
the Neurorobotics sub-project. Dennis is not comfortable with Python coding, and wishes to
use the Unified Portal to perform his simulations.

Preconditions Dennis’ model is available in the Unified Portal.

Success scenario Using the Unified Portal:

1) Dennis selects and executes a task that exports a Brain Builder model in a format suitable
for execution on the Neuromorphic Platform (PyNN).

2) He configures a Neuromorphic simulation job, selecting the Manchester hardware.

3) He launches the job, which is then queued and executed when time is available on the
hardware.

4) About an hour later, Dennis receives an e-mail telling him his job has completed success-
fully.

5) Dennis returns to the Unified Portal, from where he can access the data files generated by
his simulation, as well as provenance information about the execution, e.g. what version
of the hardware system was used.

Alternate scenarios

1) Dennis’ model contains features that are not supported by the Neuromorphic Computing
Platform.

a) The export task fails, with a clear error message indicating which features are not
supported.

b) Dennis consults the documentation for the Neuromorphic Computing Platform and
modifies his model so that it will run on Neuromorphic Hardware.

c) He runs simulations with the modified model on the HPC Platform, and finds that
the results are qualitatively unchanged.

d) He now submits a new job for the Neuromorphic Computing Platform, using the
modified model, which successfully runs to completion.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 26

1.2.4 Parameter sweeps

Primary actor Esin, a computational neuroscientist

Description Esin wishes to explore the parameter space of her network model. Due to its long
run time, she needs to make use of the large acceleration factor of the Heidelberg system.

Preconditions The model and experiment descriptions are written using the PyNN API in a
single Python file in a public Git repository.

Success scenario

1) Esin writes a batch configuration file. This provides values for those parameters that will
be varied across runs. She commits this to the Git repository.

2) Esin downloads a Python client for the Neuromorphic Computing Platform job submission
REST API.

3) Using the client library, she writes a short script to submit a job to the Neuromorphic
Computing Platform and retrieve the results.

4) The job request script includes the name of the system (the Heidelberg system in this
case), the URL of the Git repository, the path to the model script within the repository,
and the path to the batch configuration file.

5) After submitting the job request, the script receives a URL that returns a document
indicating the job status.

6) The script polls the job status URL repeatedly until the job is complete, at which point
the job status document contains the URLs of the output data files and the log files from
all of the runs in the batch.

7) the script downloads the output data files and saves them to the local disk.

Alternate scenarios

1) One of the parameter sets in the batch run contains values outside the valid range for the
Neuromorphic hardware.

a) The invalid run is skipped, and a warning is written to the log file.

1.2.5 Closed-loop experiment involving a virtual environment

Primary actor Fumiko, a roboticist.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 27

Description Fumiko has developed a robot simulation within a virtual environment. The
robot perceives its environment via a model retina, and acts upon its environment through
actuators. Communication from the retina to the robot brain model and from the brain to the
actuators is via spikes. The retina, actuators and virtual environment are implemented as a
C++ application.

Preconditions Working with the developers of the Neuromorphic Computing Platform, Fumiko
has successfully installed the virtual environment software on the Platform, working via remote
shell access. The Python code for the brain model is in a Git repository, which has been checked
out on the platform.

Success scenario

1) Fumiko writes a Python script which connects the brain model with the retina and actu-
ators, using a PyNN extension that connects spike-emitting and spike-receiving ports (for
example, using the MUSIC interface).

2) Using the REST API, Fumiko launches the job, which runs until the robot completes a
pre-defined task, or until a pre-defined time limit is reached.

3) When the job is complete, Fumiko receives an e-mail that contains a URL for the job
status.

4) Fumiko accesses this URL through the REST API and downloads the data and log files
generated by the job.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 28

1.3 Functional requirements

1.3.1 Model and experiment descriptions

1) Model descriptions must be written as Python scripts using the PyNN API.

2) To the extent supported by PyNN and the neuromorphic hardware, scripts may read all
or part of the model description from NineML or NeuroML files.

3) Model scripts may read parameter values from external files.

4) The name of the simulator or hardware platform to use must be provided as a command-
line argument, not within the script.

5) Up until the first internal release of the Platform, PyNN API versions 0.7 (http://
neuralensemble.org/trac/PyNN) and 0.8 (http://neuralensemble.org/docs/PyNN/)
shall be supported.

6) After the first internal release, older versions of the API will be deprecated as new versions
are released.

7) Experiment descriptions must be written as Python scripts using the PyNN API.

8) The model and experiment descriptions may be combined in the same script, or as sep-
arate Python scripts; in the latter case there must be a main script which launches the
experiment.

9) Scripts should avoid performing data analysis or visualization; rather the recorded data
should be saved to file for later analysis and visualization.

10) The Platform shall provide one or more Tasks for the Task Repository of the Unified Portal
which export a Network level model constructed using the Brain Builder as a PyNN script.

1.3.2 Job control interface

1) Users and other Platforms will access the Neuromorphic Computing Platform by submit-
ting jobs to a job queue server and retrieving results from the server.

2) The job queue server shall provide a REST API so that job submission, monitoring and
retrieval of results can be performed by scripts and by other Platforms.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 29

http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/docs/PyNN/

3) The REST API shall provide the following functionality:

a) submission of jobs to be run on the neuromorphic hardware systems.

b) the ability to select which neuromorphic hardware system (Heidelberg or Manchester)
to use.

c) the ability to provide model and experiment description scripts directly within the
submission or by specifying an external version control repository.

d) the ability to specify a project to which the job belongs.

e) the ability to monitor job status (e.g. queued, being processed, completed success-
fully, incomplete due to errors).

f) the ability to retrieve information about completed jobs or about errors. The infor-
mation will include URLs for all files produced by the simulation.

4) During development, the Platform shall provide a web portal for job submission and
monitoring. Use of the portal will be phased out once all of its functionality can be
provided by the Unified Portal.

5) The Platform shall provide a Python client library for the job queue server API.

1.3.2.1 Batch mode

1) Where single runs provide one model description and one experiment description, a batch
job provides a single model but multiple experiments.

2) Each batch-mode job shall receive a single identifier, and the results shall be transmitted
as a whole, rather than separately for each experiment within the batch.

3) Batch jobs shall be controlled by a configuration file, indicating the parameter set to use
for each run within the batch.

4) For the Heidelberg hardware, parameters to be varied during parameter sweeps may not
affect the network structure, since this would require re-mapping, and the benefit of the
time acceleration would be lost.

1.3.3 Data handling

1) The Neuromorphic Computing Platform will not provide long-term file storage, but shall
make use of resources provided by the Neuroinformatics Platform (Dataspace) and possi-
bly the HPC Platform.

2) All data files generated by the Neuromorphic Computing Platform shall have a unique
URI.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 30

1.3.4 Closed-loop experiments

1) By closed-loop experiments, we refer to experiments in which a neuronal network simula-
tion interacts with an environment, either real or virtual, using sensors and actuators.

2) Sensors must generate, and actuators be controlled by, spike events.

3) An interface shall be defined to connect spike producers/consumers to neuronal network
models (an example of such an interface that could be used is MUSIC [Djurfeldt, 2010])

4) This interface shall be accessible through Python, enabling the entire closed-loop experi-
ment to be defined in a single Python script.

5) Closed-loop experiments that use virtual environments, sensors and actuators shall be
submitted using the same job submission system as open-loop experiments.

6) Closed-loop experiments that use real robots and real environments shall require reser-
vation of a block of time on the relevant hardware platform, since a real-time, more
interactive mode of operation is required.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 31

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 32

1.4 Non-functional requirements

1.4.1 Sharing

Unless the results of a job are explicitly deleted, they will continue to be accessible by the user
on the server. A mechanism is needed to enable access by someone other than the person who
submitted the job. One possibility is to assign each job to a project, and then allow access by
any user who is a member of that project.

1.4.2 Authentication and Authorization

1) Only authenticated and authorized users may submit jobs to the Platform.

2) Only the user who submitted a job, or an administrator, may cancel.

3) Access control to in-process and completed jobs shall be based on projects: all users who
are members of the project associated with the job may access it.

4) Only an administrator may delete a job; other users with access may hide it.

5) No later than the first public release of the Platform, the Neuromorphic Platform shall
use the central HBP user directory and authentication workflow.

6) In the initial, development phase, a local database will be used for authentication and
authorization.

1.4.3 Security

Since the model and experiment definition format is Python code, there is an evident security
risk. To mitigate this risk:

1) only authenticated and authorized users will be able to submit jobs (see previous section)

2) use of certain Python modules and functions will not be allowed (e.g. detected through
static code analysis)

3) scripts will first be executed with a ”mock” hardware backend in a sandboxed Python
environment before being run on the neuromorphic hardware.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 33

1.4.4 Accounting

The Neuromorphic computing systems are a limited resource. Although it may not be necessary
in the initial development stage to ration access, a quota system shall be implemented by the
time of the first public release of the Platform.

1.4.5 Efficiency and user volumes

The job queue system shall not put any further constraints on the number of simultaneous
users and on job throughput beyond those imposed by the resource limitations of the hardware
backends, i.e. the neuromorphic hardware shall not be kept waiting by the user interface.

1.4.6 Reliability

The job queue server is expected to have regular (1 / month) scheduled maintenance windows.
Each maintenance window will be no more than 60 minutes long.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 34

1.5 Architectural overview

1.5.1 Job submission API

1.5.1.1 Overview

Whichever interaction method is used, the workflow for single runs will be as follows:

• the user provides a model and experiment description in the form of a Python script using
the PyNN API. The script could be provided by uploading, or by giving the reference to
a database entry or software repository (e.g. as a URI).

• the user provides any necessary parameter and/or data files. Again, these could be up-
loaded or references to databases given.

• the user selects the hardware platform and configuration to be used.

• the central server verifies that the model and experiment description are valid and suit-
able for the hardware. For a PyNN script, this could involve running the script with a
mock/dummy backend in a sandboxed environment.

• the job is placed on a queue. The user is provided with a URL that can be checked/polled
for job status.

• when available for new jobs, each individual hardware platform regularly polls the queue.
When a job for that platform is found, all files are transferred to the local system and
the experiment executed. This may consist of several stages (e.g. mapping followed by
execution), in which case the job status can be modified accordingly after each stage.

• all data and log files generated by the experiment are transferred from the local workspace,
either to the central server or to a database/distributed file system (e.g. the INCF Datas-
pace).

• the job status is set to ”complete” (or ”error”, as appropriate), an e-mail is sent to the
user.

• the user can retrieve the data/log files from the central server, together with any relevant
metadata (e.g. provenance information). The central server could also directly notify
other systems (e.g. in the case of the HBP Portal).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 35

1.5.1.2 Endpoints

This is an initial proposal, which will be modified as necessary during development to ensure
all functional and non-functional requirements are satisfied.

URI Action Description

/ GET return the URIs of the queues and
project list

/queue/{stage}/ POST place a job on the given queue
GET return the list of jobs on the queue

/queue/{stage}/{job-id} GET retrieve the specified job
DELETE remove the specified job from the

queue
/queue/{stage}/next GET take the job from the head of the

queue
/results GET show a list of jobs for the current

user
/results/{job-id} PUT used by the hardware platforms

when a job is taken off the queue
GET retrieve the specified job
DELETE hide the specified job
PATCH used for updating job status

/projects GET list projects of which the current
user is a member

POST create a new project
/projects/{project} GET return list of jobs for this project

DELETE hide a project

{stage} may be “submitted” or “validated”. This may not be needed if validation is suffi-
ciently quick. Other stages (e.g. “mapped”) could be used if needed. By “retrieve a job” we
mean obtain a representation of a Job resource (see below); the job is not removed, a separate
deletion step is necessary.

1.5.1.3 Resource descriptions

The API will return and accept the following resources, encoded as JSON. For each resource we
give its name and the names and types of its attributes. “[{type}]” indicates that the attribute
contains a list of items of the given type.

resource Job

experiment_description - text

input_data - [DataItem]

hardware_platform - HardwarePlatform

user - User

project - Project

timestamp_submission - timestamp

timestamp_completion - timestamp

status - ("submitted", "validated", "mapped", "finished", "error")

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 36

output_data - [DataItem]

logs - [DataItem]

resource User

username - text

full_name - text

e_mail - text

resource Project

short_name - text

full_name - text

members - [User]

resource DataItem

uri - text

mime-type - text

contents - text

resource HardwarePlatform

name - text

configuration - dictionary containing strings and numbers

1.5.1.4 Serializations and allowed document types

Resource serializations will use the JSON format with UTF-8. We plan to use vendor-specific
mimetypes to provide versioning.

1.5.1.5 Physical architecture

There are no particular requirements for the location of the central server. This could be in
Heidelberg, Manchester, Gif-sur-Yvette or run on a cloud service.

1.5.2 Python client for REST API

The Python client is intended to make the REST API easier to use, by providing utility functions
to simplify authentication, job monitoring, batch-job submission, data handling. The client will
contain two main sub-modules, one for Platform users, and one for use at the hardware sites in
Manchester and Heidelberg, to simplify the task of linking the central job queue server to local
resource management software such as SLURM (see below).

1.5.3 Model/experiment verification

For reasons of efficiency and responsiveness it is best to catch errors in submitted Python scripts
as early as possible. We therefore plan to introduce an initial verification step, performed on

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 37

the job queue server, before a job is accepted onto the queue. This verification may involve
static code analysis, and will almost certainly involve running the script with a ”mock” PyNN
back-end.

The requirement that Platform users be authenticated and authorized to submit jobs renders
the risk of users submitting malicious code minimal. Nevertheless, to minimise inadvertent side-
effects of running jobs, the verification step will be run in a sandboxed environment probably
based on Linux containers (e.g. using Docker).

1.5.4 Resource management software in Heidelberg and Manch-
ester

The central queue server is a front-end to the entire Neuromorphic Computing Platform. Each
of the hardware sites, Heidelberg and Manchester, will implement a system to take jobs from
the queue, execute the job, and perform error- and data-handling. Most of this work can be
done by the Python client for the REST API, possibly working with local resource management
software such as SLURM.

1.5.5 Tools for exporting Brain Builder model descriptions as
PyNN descriptions

Simplifying brain models produced by the Brain Simulation Platform so that they can run on
the Neuromorphic Hardware Platform is the job of Task 9.3.2. This is a research project, in
collaboration with the Theory sub-project, and so the tools cannot be specified at this time.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 38

1.6 Interfaces to other platforms

1.6.1 Services required from other Platforms

1) Data storage – Neuroinformatics and HPC Platforms

2) Authentication – Unified Portal

3) Provenance tracking – Unified Portal

4) Execution of complex mapping tasks - HPC Platform (?)

1.6.2 Services provided to other Platforms

1) Execution of network simulation/emulation experiments on neuromorphic hardware.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 39

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 40

1.7 Key performance indicators and
Function blocks

To enable monitoring the progress of the user interface to the Neuromorphic Computing Plat-
form, the following “Functions” have been defined. A numerical measure of the overall progress
may be obtained by counting the number of Functions that have been implemented.

Task No: 9.3.1 Partner: CNRS (P7)

Function No:
9.3.1.1

Leader: Andrew Davison

Function Name: Job queue server, minimal functionality

Description: A developer can submit a single job using a REST API, to
be executed on the development system by NEURON or
NEST, local authentication, local data storage, no prove-
nance tracking

Planned Start Date: Month 7 Planned Completion
Date:

Month 12

Requires Functions: none

Task No: 9.3.1 Partner: CNRS (P7)

Function No:
9.3.1.2

Leader: Andrew Davison

Function Name: Python client for job queue REST API

Description: A Python package is provided to simplify use of the job
queue REST API

Planned Start Date: Month 12 Planned Completion
Date:

Month 13

Requires Functions: 9.3.1.1

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 41

Task No: 9.3.1 Partner: CNRS (P7)

Function No:
9.3.1.3

Leader: Andrew Davison

Function Name: E-mail notifications

Description: The Platform will send e-mails to the user who submitted
a job (unless the user has opted out of such e-mails) upon
completion of the job or on encountering an unrecoverable
error.

Planned Start Date: Month 13 Planned Completion
Date:

Month 14

Requires Functions: 9.3.1.1

Task No: 9.3.1 Partner: CNRS (P7)

Function No:
9.3.1.4

Leader: Andrew Davison

Function Name: Verification/sandboxing

Description: When a job is submitted to the queue server it will first be
executed in a sandbox environment with a mock simula-
tor, before being made available to the hardware systems.

Planned Start Date: Month 15 Planned Completion
Date:

Month 18

Requires Functions: 9.3.1.1

Task No: 9.3.1 Partner: CNRS (P7)

Function No:
9.3.1.5

Leader: Andrew Davison

Function Name: Job queue server with central authentication

Description: Authentication for the job queue server is provided by
the HBP central authentication service

Planned Start Date: Month 18 Planned Completion
Date:

Month 23

Requires Functions: 9.3.1.1

Task No: 9.5.4 Partner: UHEI (P45)

Function No:
9.5.4.1

Leader: Eric Müller

Function Name: Job queue server usable by Heidelberg system

Description: Jobs submitted to the queue server can be executed by
the Heidelberg facility

Planned Start Date: Month 13 Planned Completion
Date:

Month 18

Requires Functions: 9.3.1.2

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 42

Task No: 9.5.4 Partner: UMAN (P73)

Function No:
9.5.4.2

Leader: David Lester

Function Name: Job queue server usable by Manchester system

Description: Jobs submitted to the queue server can be executed by
the Machester facility

Planned Start Date: Month 13 Planned Completion
Date:

Month 18

Requires Functions: 9.3.1.2

Task No: 9.3.1 Partner: CNRS (P7)

Function No:
9.3.1.6

Leader: Andrew Davison

Function Name: Data storage using resources provided by Neuroinformat-
ics or HPC Platforms

Description: Jobs executed on the Neuromorphic Computing Platform
can store output data using resources provided by the
Neuroinformatics or HPC Platforms

Planned Start Date: Month 24 Planned Completion
Date:

Month 25

Requires Functions: 9.3.1.1

Task No: 9.3.1 Partner: CNRS (P7)

Function No:
9.3.1.7

Leader: Andrew Davison

Function Name: Provenance-tracking of Neuromorphic jobs

Description: Full provenance information is stored for jobs executed
on the Neuromorphic Computing Platform

Planned Start Date: Month 18 Planned Completion
Date:

Month 23

Requires Functions: 9.3.1.6

Task No: 9.3.2 Partner: CNRS (P7)

Function No:
9.3.2.1

Leader: Andrew Davison

Function Name: Export of Network level model constructed using the
Brain Builder as a PyNN script

Description: A Task is provided for the Unified Portal Task Registry
that can export Network level models consisting of point
neurons as a PyNN script, which can be executed on the
Neuromorphic Platform.

Planned Start Date: Month 7 Planned Completion
Date:

Month 24

Requires Functions: none

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 43

Task No: 9.3.1 Partner: CNRS (P7)

Function No:
9.3.1.8

Leader: Andrew Davison

Function Name: Job submission and retrieval using Brain Simulation Plat-
form

Description: Jobs can be submitted from the Brain Simulation Plat-
form, executed on the Neuromorphic Computing Plat-
form, and the results retrieved on the Brain Simulation
Platform.

Planned Start Date: Month 26 Planned Completion
Date:

Month 30

Requires Functions: 9.3.2.1, 9.3.1.7

Task No: 9.5.4 Partner: CNRS (P7)

Function No:
9.5.4.3

Leader: Andrew Davison

Function Name: Batch jobs

Description: The Platform will support submission, monitoring and
execution of batch jobs, where a single network is exe-
cuted repeatedly with different neuron/synapse parame-
ters and/or inputs.

Planned Start Date: Month 19 Planned Completion
Date:

Month 24

Requires Functions: 9.5.4.1

Task No: 9.5.4 Partner: UHEI (P45)

Function No:
9.5.4.4

Leader: Eric Müller

Function Name: Quotas

Description: Each user will have a usage quota, to ensure equitable
use of the Platform

Planned Start Date: Month 24 Planned Completion
Date:

Month 30

Requires Functions: 9.5.4.1, 9.5.4.2

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 44

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Task 9.3.1

F 9.3.1.1

F 9.3.1.2

F 9.3.1.3

F 9.3.1.4

F 9.3.1.5

F 9.3.1.6

F 9.3.1.7

F 9.3.1.8

Task 9.3.2

F 9.3.2.1

Task 9.5.4

F 9.5.4.1

F 9.5.4.2

F 9.5.4.3

F 9.5.4.4

Figure 1.7.1: Scheduling of Functions to be implemented in building the user interface to the
Neuromorphic Computing Platform. The numbers in the top row refer to project
months. Month 7 is April 2014, Month 30 is March 2016.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 45

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 46

Part 2

Neuromorphic Computing with
Physical Emulation of Brain Models

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 47

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 48

2.1 Physical Model Platform: NM-
PM (BrainScaleS-1)

This part of the SP9 specification covers all hardware and software aspects related to the task
termed ”Neuromorphic Computing with Physical Emulation of Brain Models” in the HBP
project. The first chapter gives an introduction to the physical system as it will be constructed
as part of the SP9 platform. The second chapter introduces the individual components and how
they relate to each other. The remaining chapters of this documentation cover all components
in detail. (In this ’public’ version of the document these detailed chapters are not included).

Finally, chapter 2.2 presents a high-level view of the system as it will be seen by the scien-
tist who plans to use the system for her or his research.

2.1.1 Neuromorphic Physical Model

The part of the SP9 platform implementing “Neuromorphic Computing with Physical Emulation
of Brain Models” is based on a hardware system termed Neuromorphic Physical Model (NM-
PM). It consists basically of a custom hardware system which implements the physical emulation
of brain models and a conventional compute cluster to interface the custom part to the user
and to execute parts of the model in synchrony to the physical models. These hybrid models
are essential for all tasks involving motor feedback to the environment, since the physical model
is limited to modelling neurons and synapses.

Fig. 2.1.1 shows the main components of the NM-PM system. The core of the custom hard-
ware implementing the physical models is an electronic assembly called a Wafer Module (Wafer
Module). It consists of a 20cm silicon wafer mounted on top of a large printed circuit board. The
wafer is manufactured in 180nm Complementary Metal-Oxide-Semiconductor (CMOS) technol-
ogy from the Taiwanese micro electronics contract manufacturer UMC. It contains 384 identical
Application Specific Integrated Circuits (ASICs) named High-Input Count Analog Neuronal
Network Chip (HICANN), implementing the physical models of up to 512 neurons and 114688
synapses each. Therefore, a Wafer Module has a total modelling capacity of up to 44 million
synapses and 200k neurons. The first version of the SP9 platform will consist of 20 wafer
modules for a total capacity of up to 4 million neurons and 0.88 billion synapses.

The most important features of the physical model implemented in the HICANN chip are the
large number of inputs which can be connected to a single neuron, 14336, and the acceleration
factor of the emulation compared to wall time, which is typically 104.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 49

Figure 2.1.1: Simplified overview of the Neuromorphic Physical Model version 1 (NM-PM1)
system.

In addition to the HICANN Wafer, the Wafer Module hosts 48 FPGA Communication PCBs
(FCPs), as well as power supply and interface submodules. The Wafer Module needs only a
single -48V telecommunications supply. A separate single-board computer controls the operation
of a Wafer Module and communicates via a standard Ethernet link with the compute cluster.
Thus, the Wafer Module is completely software controlled, including power sequencing and
initialization.

The Wafer Modules are distributed across five industry-standard 19” racks. Fig.2.1.2 shows a
computer generated image of the planned arrangement. In addition to the Wafer Modules each
rack contains 12 Analog Readout Modules (AnaRMs) to digitize the analog membrane voltages
of the neurons located on the HICANN Wafer.

The communication between the Wafer Module and the compute cluster is mediated by the
FPGA Communication PCBs (FCPs), which are connected by 48 Gigabit-Ethernet links to one
standard Ethernet switch per Wafer Module. These Wafer Module switches provide a 10 Gigabit
uplink to a central 48 port Top-of-Rack (ToR) 10 Gigabit switch.

The compute cluster consists of 20 four-core diskless workstations, one per wafer module, each
equipped with a 10 Gigabit Remote Direct Memory Access (RDMA)-capable network interface.
Four additional cluster nodes serve as dedicated storage nodes, connected to the central switch
by 40 Gigabit Ethernet.

2.1.2 Constitutent Parts of the NM-PM1

This section contains a full list of all individual parts of the NM-PM1 hardware. It is provided
for reference. A detailed specification of all components is given in the respective chapters of
this document.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 50

1

5

6
7

2

3

4

8

8

Figure 2.1.2: Rendered View of the NM-PM1 system. 1○ Wafer Module, 2○ Wafer Module net-
work switch, 3○ analog readout subsystem, 4○ Top-of-Rack (ToR) 40Gbit network
switch, 5○ storage server node, 6○ computer server node, 7○ Wafer Module power
supply, 8○ top and bottom fan units for Wafer Module

Main components of the NM-PM:

Wafer Module 20 modules distributed across 5 industry standard 19” racks

Compute Cluster 20 1U compute server nodes and four 3U Input/Output (I/O) server nodes

Analog Readout Subsystem five rack mountable assemblies, one per wafer module rack, each
containing 12 Analog Readout Modules (AnaRMs).

Wafer Power Supply Industry standard -48V supplies. Three 2kW units capable of current
sharing are mounted together in one 1U case. Five of these 6kW assemblies are mounted
at the bottom of the central network rack. Each supplies one rack with four Wafer
Modules.

Wafer Module network switch One 48-port Gigabit Ethernet (GbE) aggregation switch per
Wafer Module incorporating two 10-Gigabit Ethernet (10GbE) uplink ports per switch.

Top-of-Rack network switch 48-port 10GbE switch with four additional 40-Gigabit Ethernet
(40GbE) ports. All ports use electrical interfaces based on Small Form-Factor Pluggable
(SFP+) or Quad SFP (QSFP) standards, respectively.

Components of the compute cluster:

Compute/Wafer Node 20 1U compute server nodes with one single-socket high-end Desktop
CPU (Intel® Core™ i7-4770), 16 GiB RAM, and one low-latency 10GbE network interface
card.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 51

Storage Node Configured as the Compute Node. Additional components are Solid-state Disks
(SSDs) connected via Peripheral Component Interconnect Express (PCIe) bus and con-
ventional Hard disk drives (HDDs).

Network Connectivity is provided by the ToR network switch and a GbE-based control network
(cf. wafer module components).

Components of the wafer module:

HICANN Wafer A 20cm silicon wafer containing the neuromophic circuits, distributed across
384 HICANN ASICs and connected to each other on the wafer surface.

Wafer Module Main PCB (MainPCB) The MainPCB connects to the wafer by 384 elastomeric
connectors. It contains Power Field-Effect Transistors (Power-FETs) to individually
switch all supplies to the wafer. Power can be controlled on a per-reticle basis (8 HI-
CANN chips).

FPGA Communication PCB (FCP) 48 FCP boards plug into the MainPCB and connect directly
to the communication links of the wafer.

Wafer I/O PCB (WIO) Four interface boards sit on top of the FCPs, housing the 48 Gigabit-
Ethernet connectors and Phy-circuits. They come in a horizontal and a vertical variant,
termed Horizontal Wafer I/O PCB (WIOH) and Vertical Wafer I/O PCB (WIOV), re-
spectively.

PowerIt Main Power Supply PCB (PowerIt) A 2kW main power supply board providing electri-
cal insulation and down-conversion of the -48V input to an intermediate 10V supply used
by the auxilliary power supplies and the Field-Programmable Gate Array (FPGA) boards.
It also contains the point-of-load converters for the main wafer supply voltages (two times
1.8V, 400A each). An on-board Microcontroller Unit (MCU) provides electronic switching
of all power supplies and on-board monitoring of all voltages and currents.

Auxiliary Power Supply PCB (AuxPwr) Two AuxPwrs provide miscellaneous supply voltages.

Analog Breakout PCB (AnaB) Two breakout boards to connect the analog readout channels
from the wafer to the respective cabeling.

Single-Board Control Computer One Raspberry-Pi [2] is used as a control computer allowing
full system control via one Ethernet link. It communicates by I2C with the power supplies
and the power control and monitoring boards.

Monitoring and Control PCB for Reticles (Cure) Six small boards which plug in directly into
the MainPCB. They provide monitoring of all wafer voltages and control the array of
Power-FETs on the main board.

Wafer Module Mechanical Assembly The mechanical assembly provides mechanical mounting
for the main pcb and the main power supply boards. It fixates and protects the wafer
and generates the mechanical pressure for the elastomeric connectors.

Components of the analog readout subsystem:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 52

Flyspi FPGA PCB (Flyspi) 12 small data aquisition Printed Circuit Boards (PCBs) containing a
fast Analog-to-Digital Converter (ADC), an FPGA and 512MiB Dynamic Random Access
Memory (DRAM) memory.

Analog Frontend PCB (AnaFP) Each Flyspi carries one AnaFP containing multiplexers and one
pre-amplifier to connect the analog readout channels from the Wafer Module to Flyspi.

Flyspi Breakout PCB (FsBo) 12 small mechanical adapter boards for mounting the Flyspis.

Control Computer Intel Next Unit of Computing (NUC)[1] based Linux system provides the
Universal Serial Bus version 2.0 (USB 2.0) resources for connecting the Analog Readout
Modules (AnaRMs) to the Compute Cluster.

Analog Readout Mechanical Assembly 3U rack-mount for the 12 Flyspis, the Control Com-
puter and four USB 2.0 hubs.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 53

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 54

2.2 Users view of the NM-PM sys-
tem

This chapter describes the user’s view of the NM-PM. Each section characterizes a class of
tasks that can be accomplished with the NM-PM, as well as the required tools and, where
appropriate, a recommended workflow to accomplish the task. These tasks encompass the use
of the hardware system as a neuroscientific modeling tool as well as the evaluation of hardware
performance.

Here, neuroscientific modeling stands for the creation and investigation of mathematical mod-
els of spiking neural networks. The NM-PM allows the user to emulate such a model on a large-
scale, parallel hardware device with a high acceleration (section 2.1.1), provided the model is
compatible with the provided feature set. This type of usage is outlined in sections 2.2.1 to 2.2.3.

The evaluation whether the model is compatible with the provided feature set is detailed in
section 2.2.4.

2.2.1 Usage of the NM-PM as a modeling back-end

The central part of the user interface of the NM-PM is the PyNN (PyNN) Application Pro-
gramming Interface (API) , ([5, 7]). It provides an abstraction layer for the Physical Model
alongside conventional software simulators for spiking neural networks such as NEST and NEU-
RON. This abstraction layer exposes the configuration of spiking neural networks at a level
of individual, configurable neurons and synaptic connections between them. In the case of
the NM-PM it hides the complexity of hardware configuration (fig. 2.2.1). This includes the
mapping, which computes a hardware configuration which represents the network topology
given by the user, and the calibration , which translates the user-defined neuron and synapse
parameters to hardware-specific settings for the analog components. The mapping uses the
Hardware Abstraction Layeras the interface to the hardware system as well as to the hardware
Executable System Specification (ESS).

The most basic use case for the NM-PM consists in the creation of a Python script which
defines a spiking neural network using PyNN . The utilized neuron and synapse models have
to be compatible with those implemented on the NM-PM, i.e. a leaky integrate-and-fire neuron
and conductance based synapses with an exponential kernel (IF cond exp in PyNN notation)
or an adaptive exponential leaky integrate-and-fire neurons and conductance based synapses
with an exponential kernel ([4], EIF cond exp isfa ista in PyNN notation). The ranges for
neuron, synapse and connectivity parameters are limited by the hardware implementation.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 55

PyNN

Calibration
Data Hardware Abstraction Layer

Hardware
Simulation

NM-PM

Mapping
(place, route & translate)

Figure 2.2.1: PyNN is the main user interface for the NM-PM. It hides the mapping and calibra-
tion steps from the end-user. Expert users can still access the hardware abstraction
layers directly.

The results of the simulation can be obtained using the PyNN API with limitations only
due to bandwidth constraints and, for analog voltage recording, the limitations of concurrent
voltage recording given by the hardware system .

2.2.2 Low-level user access

The PyNN interface to the NM-PM provides the user with a view of the neuromorphic device
which limits the configuration capabilities to a level of abstraction that is shared between
neuromorphic and conventional simulators for spiking neural networks. In the case of the
NM-PM, the most important features that are not accessible from the level of PyNN are the
translation of topology and parameters between the biological model and its representation on
the hardware device. For instance, PyNN provides no way to specify which analog circuit on
the Physical Model will represent a given logical neuron. The software components that are
responsible for this abstraction are the Mapping, which handles the topological translation, and
the Calibration that performs the transformation of analog parameters.

There are several scenarios in which the user wants to query information from the mapping
or control its behavior:

1) The neural network topology can not be fully realized and the user wants to know the
number or exact location of unrealized synapses.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 56

2) The placement algorithm provides a suboptimal solution, and a better solution is known.

3) Some components should not be used, e.g., because the tolerance for analog deviations
required by the user is lower than the deviation of a specific component.

Equivalently, the calibration output may need to be examined or controlled:

1) The calibration results for a given component need to be assessed.

2) A different calibration method needs to be used for a given use case. Example: synap-
tic time constants are calibrated by measuring the decay time course of the membrane
potential in one voltage range, while the user requires to tune the firing rate for a given
stimulus protocol.

Finally, a direct access to the neuromorphic chip is occasionally required. One example
would be an evaluation of the influence of a technical parameter on an emulated network, or
low-level debugging which still utilizes the mapping and calibration software to create a quick
starting point. These tasks can be accomplished using the low level interfaces HALbe (Hardware
Abstraction Layer Backend) and StHAL (Stateful Hardware Abstraction Layer), giving the user
access to the same level of control that is utilized by the mapping and calibration software.

2.2.3 Real-time interaction with the NM-PM

The NM-PM allows for an operation mode in which the accelerated emulation on the neuro-
morphic hardware platform interacts with a concurrent, real-time simulation that runs on a
conventional computing platform. Thus, the simulation of the full model is distributed between
neuromorphic and conventional devices. This operation mode differs from the one outlined in
2.2.1: there, experiment results are queried by the software after experiment completion. The
need for a separate operation mode arises, because the high acceleration factor in the NM-
PM is necessarily shared with the software part of the simulation. This requires an efficient
implementation of this software part with as few indirection layers between computation and
communication with the hardware device as possible.

fig. 2.2.2 shows the use case for a simulation that requires real-time interaction. A model
of a system is defined which contains a spiking neural network and (in general) a non-spiking
component, for example a neural system that interacts with a physical environment. The
interaction is specified in terms of spikes. This means that, e.g., the computation of firing rates
is part of the non-spiking component.

The NM-PM is used to simulate the model as follows: The user provides a description of the
emulated neural network in the form of a hardware configuration, e.g., using a PyNN script,
and implements the conventional part of the simulation as a software program. The latter uses
the real-time API provided by Hardware Abstraction Layer Backend (HALbe).

On the hardware side, external spikes are configured to be sent to the Compute Node skipping
the large spike recording buffers. On the Compute Node, spikes are delivered to the software
implementation, which handles a potentially required translation between hardware and local
neuron addresses. Similarly, the custom executable emits spikes that are sent to the hardware
device using a low-latency communication channel. Due to the strong latency requirements

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 57

Spiking Neural
Network

Non-Spiking Part

Model definition

Age

compute node(s)

Simulation on
the NM-PM

neuromorphic part

communication
bidirectional,
spike-based comm.

Hardware configuration
e.g. mapping

custom implementation

real-time communication,
address translation

F

Figure 2.2.2: Hybrid simulation on the NM-PM. A system that consists of a neural network and
a non-spiking part (left) is being simulated on the hybrid neuromorphic-classical
device (right). The neural network is emulated on the neuromorphic part while
the remaining part of the system is simulated in real-time, synchronously and with
the same speed-up on a conventional compute node. The communication, which
is defined on a spike level in the simulated model, is accomplished via real-time
communication between the computational devices. The address translation is
taken care of in the software part of the simulation.

this operation mode requires exclusive access to all hardware components taking part in the
simulation, i.e., no other experiments should run utilize the Compute Nodes, Wafer Modules or
network devices partaking in the simulation.

2.2.4 Evaluation Workflow

The gains in emulation speed that arise from the use of an accelerated-time, analog neuro-
morphic network emulator come at the cost of limitations with respect to neuron parameters,
parameter variation, connectivity and communication bandwidths. While the system has been
specified to accommodate typical parameter ranges that are employed in models of cortical
neural systems [8, 3.12.1], a given model can exceed at least one of those ranges. For instance, a
model can require a neuron parameter outside of the supported range or specify the recording of
more neurons with a high firing rate than can be accommodated by the allotted communication
channels. Thus, a user usually needs to evaluate her model before running it on the NM-PM,
e.g., in a large-scale sweep over a parameter range. Simple parameter limits can be checked and
enforced at the time of the model definition. Several of the limitation types – e.g., bandwidth
limitations of an individual component – depend on the dynamics of a given network model
together with the case-specific mapping assignment. For these limitations, a validation on a
system simulation level is required instead, which is accomplished with the ESS.

Hardware developers profit from the ESS as well, because it can be used as a software system
validation tool. Because it uses the output of the mapping, it can detect several classes of logic
and configuration errors, such as faulty routing or incorrect settings for switches, repeaters,
synapse drivers, synapse addresses, mergers etc.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 58

The possible distortions that can occur when the specified operation range of the hardware
device is exceeded, can be classified as follows:

Parameter Limitation A neuron or synapse parameter is required by the model, which lies
outside of the supported range on the hardware device. Example: The axonal delay does
not correspond to the transmission delay on the hardware device.

Parameter Variation The variation of a parameter is larger than required by the model. Ex-
ample: the membrane time constant of all neurons is required to be precisely equal, while
it differs in the analog circuit due to fixed pattern noise.

Topological Limitation The topology of the model network can not (in principle, or practically)
be mapped to the available hardware system. This leads to a network in which a number
of synapses has not been realized. Example: An all-to-all connectivity is required for a
network that uses all neurons on a single wafer

Bandwidth Limitation The bandwidth of a component that transmits spikes to, from or within
an emulated network, is exceeded. Example: Each neuron in a large network receives
background stimulus with a high firing rate.

Model Mismatch The neuron or synapse model that is provided by the hardware device, does
not correspond to the one required by the network model. Example: The network is
defined as a network of leaky integrate-and-fire neurons with current-based synapses,
while the hardware device provides conductance based synapses.

An elaborate workflow exists that allows to approach these distortions in the context of a
given network model, which is shown in Figure 2.2.3.

The user starts with his network model, or, in the case of the hardware maintainer, with
a benchmark library. In addition to each model, a set of performance evaluation measures
is defined, which allows to discriminate between successful and unsuccessful execution of the
model.

This allows to investigate the distortions listed above individually as well as simultaneously.
Individually, distortions are modeled by approximating the distortion mechanism in the PyNN
description directly and using a conventional software simulator. A view of the system dynamics
is obtained using the ESS to model the dynamic behavior of the hardware system.

A demonstration of this approach with descriptions of possible countermeasures can be found
in [6].

...

(Info: the rest of the NM-PM1 description is ‘consortium internal’ and therefore not included
in this ‘public’ version of the document.)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 59

Difference ?
Analysis

- Model Distortion
Compensation Methods

B
io
G
ra
p
h

Description of
Network Distortions
caused by Translation

A
cc

u
ra

te

D
is

to
rt

ed

Benchmark Library

Performance Evaluation Measures

Target Output
Descriptors for

Model A

Target Output
Descriptors for

Model B

Target Output
Descriptors for

Model C

Model A Model B Model C

PyNN Descriptions of Benchmark Models

Modeling Language PyNN

Automated Translation

Hardware Configuration, Calibration + Control

ESS
Other neuromorphic

systems

7

2

2 00

Backplane

6 5 4

SD-R
AM

FPGA

NN

Chip

NM-PM System
Reference

Software Simulators
(NEURON, NEST, ...)

Translation Software
Improvements

Hardware Design
Improvements

Figure 2.2.3: Hardware and Model evaluation workflow. Description in section 2.2.4. This figure
has been adapted from [6].

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 60

2.3 Physical Model Platform: BrainScaleS-
2

2.3.1 Omnibus

The omnibus implements a minimal subset of the Open Core Protocol (OCP) bus standard.
The basis is a request and response path with each its own handshake as illustrated in 2.3.1.

A notable supported simple extension is the request phase byte enables (MByteEn). Some of
the implemented modules are detailed below.

! A large part of the implemented omnibus modules only support master commands IDLE,
WR and RD, as well as slave responses NULL and DVA.

2.3.1.1 Bus if split

The module Bus if split implements a simple one-hot encoded bus splitter from a single slave
interface to two master interfaces. The address bit that determines the routing is set via
SELECT BIT. If MAddr[SELECT BIT] is set, the incoming command is forwarded to the out 1

interface, else to out 0.

An internal buffer can store the target of the master commands in flight to allow proper
arbitration of the slave response accept handshakes. Thus, the depth of this buffer limits the
maximum number of transactions in flight and can be set via the NUM IN FLIGHT parameter.

This module supports request phase byte enables.

2.3.1.2 Bus if arb

The module Bus if arb implements a priority arbiter between two omnibus slave interfaces and
one master interface. The first slave interface in 0 always wins on simultaneous commands.
The reset signal source can be selected which helps to prevent circular dependencies in more
complex tree structures. If either RESET BY 0 or RESET BY 1 is set only the respective bus slave
interface can reset the master interface. With both of the other parameter combinations the
master interface is reset when either slave interface reset is pulled. The reset signal can be
selected to be synchronous or asynchronous via the RESET SYNCHRONOUSLY parameter.

An internal buffer can store the source of the master commands in flight to allow proper
arbitration on the slave response return path. Thus, the depth of this buffer limits the maximum

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 61

Figure 2.3.1: OCP protocol handshakes from the Open Core Protocol Specification. The com-
mand phase does not have to wait for the completion of the response phase to
allow transactions in flight.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 62

number of transactions in flight and can be set via the NUM IN FLIGHT parameter.

This module supports request phase byte enables.

! Due to the priority arbiter implementation the first slave interface in 0 can block the second
interface for arbitrarily long times if it continuously provides back-to-back transactions.

2.3.1.3 Bus delay

The module Bus delay implements a register stage. It allows to split the combinatorial paths
to relax timing constraints in a larger and more complex bus, but increases the latency in
both the command and response path. The reset signal can be selected to be synchronous or
asynchronous via the RESET SYNCHRONOUSLY parameter.

This module supports request phase byte enables.

2.3.1.4 Bus reg target

The module Bus reg target implements an omnibus slave for simple register read and write
accesses. Its omnibus interface port is called bus. It provides NUM REGS registers of type
logic[REG WIDTH]. For each of these registers, it also provides a signal reading and a signal
called writing, indicating whether a register is currently read from or written to, respectively.

The module implements a state machine on the registers regs i, bus.SResp and bus.SData.
These internal registers are only modified if the base address matches, i.e., if bus.MAddr &

(BASE MASK & ~OFFSET MASK) == BASE ADDR and if a read or write request arrives. In case of
a write access, the internal register regs i[bus.MAddr] is set to bus.MData. In case of a read
access, bus.SData is set to regs in[bus.MAddr].

Access to the registers is determined based on the following parameters:

ADDR WIDTH determines the total width of the field MAddr of the omnibus slave interface.

OFFSET MASK determines the address space used for accessing the individual registers. The
register number is selected based on MAddr & OFFSET MASK.

BASE MASK determines the bits for comparison with the BASE ADDR together with the
OFFSET MASK.

BASE ADDR gates all updates to the internal state as stated above.

WRITEABLE is of type logic [0:NUM REGS-1] and contains one bit for each register that de-
termines whether a register is writeable.

This module supports request phase byte enables.

2.3.1.5 m4 macro

The omnibus m4 macro defined in hicann-dls/units/omnibus/m4/bus.m4 allows for simple
and easily readable construction of bus trees. All implicit connections within the tree are
handled by the macro and do not clutter the source code.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 63

The bus description is contained between bus begin and bus end within systemverilog code.
Any master port has to be matched by name to an existing systemverilog Bus if.slave inter-
face. For each slave port a systemverilog Bus connect module has to be instantiated with the
in port matching by name to <M4 BUS PREFIX> slave <M4 SLAVE NAME>.slave. While pro-
cessing the bus description from top to bottom all internal output connections of modules are
generated with a linear increasing index suffix. Input connections of bus modules are connected
to the lowest available indices at each individual level. To understand the functionality in detail
it is advised to take a look at the macro processed versions of existing bus top level files.

2.3.2 Routing

This document is supposed to serve as an introduction to the event routing facilities on the
HICANN-X neuromorphic ASIC. It shall serve as an entry point for users wishing to develop
their own routing. Therefore its aim is to be logically correct while not concerning with imple-
mentation details. At the current stage congestion effects of multiple events sharing a resource
at the same time are disregarded.

2.3.2.1 Crossbar (Layer-1)

The crossbar is the central logic for distribution of events on the HICANN-X. It’s also called
layer-1 in contrast to layer-2 for chip-external events. It has a set of inputs and a set of outputs
of the same event type. The event type in the crossbar is 14-bit wide. All bits in an event are
treated equally within the crossbar. Its values are never altered within the crossbar. Figure 2.3.2
shows the crossbar. Inputs from the left are broadcasted horizontally, outputs on the top merge
incoming events vertically. Crossbar nodes connect a horizontal input line with a vertical output
line and are described in detail in section 2.3.2.1.

Node

A crossbar node connects a horizontal input line to a vertical output line. It conditionally
forwards events based on the rule

event & mask
!

= target, (2.3.1)

where event is the event value and the mask and the target are configurable 14-bit wide values.
Therefore it allows selection of forwarded events based on their content.

2.3.2.2 External events (Layer-2)

Chip-external events are used for communication with the outside world, e.g. for feeding-in
external spike sources or recording a neuron’s spikes. External events are also called layer-2
(L2) events in contrast to the layer-1 events within the routing crossbar. The chip has one
external event input and one external event output channel. The external event type is 16-bit
wide. The external events are connected exclusively to the four input and output channels of
the crossbar from and to the L2 via value-based split of the one channel to four channels, cf.
section 2.3.2.2.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 64

Connection to the crossbar

The crossbar has four input and four output channels for external events. The single external
event input channel is forwarded to the crossbar by the following rule:

crossbar input channel = (event & (0x3� 14))� 14, (2.3.2)

where the crossbar input channel to be selected is calculated by taking the value of the highest
two bits in the external event’s value. The crossbar event forwarded consists of the lower 14
bits of the external event’s value:

crossbar input event = event & 0x3fff. (2.3.3)

Connection from the crossbar

The four crossbar external event output channels are merged to the single external event output
channel by the following rule:

event = crossbar output event | (crossbar output channel� 14), (2.3.4)

where the external event is calculated by taking the crossbar output event and extending its 14
bit value by the crossbar output channel index placed in the two highmost bits of the 16 bit
external event’s value.

2.3.2.3 PADI-Bus

The PADI-Bus connects the synapse driver crossbar output channels to the synapse drivers.
There are four PADI-buses per hemisphere of the chip. There is a one-to-one relation between
synapse driver crossbar output channels and PADI-buses. Its event type is 11-bit wide. A
PADI-event is formed from a crossbar event by discarding the highmost three bits:

PADI event = crossbar output event & 0x7ff. (2.3.5)

2.3.2.4 Synapse driver

Each hemisphere of the chip features a block of 128 synapse drivers. Synapse driver input
events are PADI-events. Each synapse driver is connected to one of the four PADI-buses of its
hemisphere. Figure 2.3.3 shows the synapse drivers’ static connection to their PADI-buses. The
synapse driver is connected to one PADI-bus by the following rule:

PADI-bus = synapse driver on block % 4. (2.3.6)

Each PADI-bus therefore is connected to 32 synapse drivers.

PADI-event filtering

A synapse driver filters incoming events based on a static and a configurable entity. The static
entity is the index of the synapse driver on its PADI-bus (right in fig. 2.3.3). The configurable

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 65

entity is a 5-bit mask. The highmost five bits of incoming PADI-events are processed by the
following rule:

event high-bits & mask
!

= index on PADI-bus & mask. (2.3.7)

For all bits enabled in the mask the event’s high-bits have to match the synapse driver’s
static index on the PADI-bus. Receiving of PADI-events can be enabled/disabled by the
enable receiver switch.

Forwarding to synapse rows

If the incoming PADI-event filter forwards the event, the lower six bits may be forwarded as
synaptic event to the two synapse rows connecting to one driver. Forwarding of the lower five
bits of these six bits can be enabled/disabled via the enable address out switch, the highmost
bit is always sent. For each row driving the excitatory and the inhibitory line can be enabled
via enable excitatory and enable inhibitory. Events are broadcasted to all synapses of the
synapse driver’s two synapse rows.

2.3.2.5 Synapse

A synapse is located within one synapse row, of which there are 256 per chip hemisphere (and
two per synapse driver). A synapse is vertically connected to exactly one neuron. Each synapse
locally compares its configurable 6-bit label value to the incoming event’s value and elicits an
event on match:

event
!

= local label (2.3.8)

For each synapse column (equivalent to a neuron index), connectivity of the excitatory and
inhibitory lines can be enabled in the ColumnCurrentSwitch object.

2.3.2.6 Neuron

The neurons are located in one row per hemisphere with 256 neurons per row. Each neuron is
connected statically to exactly one neuron output channel into the routing crossbar. Figure 2.3.4
shows the mapping of neurons to neuron output channels. Upon eliciting a spike, the neuron
generates a crossbar event (14-bit wide), where the lower eight bits are configurable per neuron
and the highmost six bits are unconnected (clamped to 0).

...

(Info: the rest of the NM-PM1 description is ‘consortium internal’ and therefore not included
in this ‘public’ version of the document.)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 66

0 1 2 3 0 1 2 3 0 1 2 3

0 X X X

1 X X X

2 X X X

3 X X X

0 X X X

1 X X X

2 X X X

3 X X X

0 X X X X X X X X X

1 X X X X X X X X X

2 X X X X X X X X X

3 X X X X X X X X X

0 X X

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

L1 L2
syndrv

top
syndrv
bottom

neuron
output channels
left of anncore

neuron
output channels
right of anncore

L2 L1

background
generators

Figure 2.3.2: Schematic of the routing crossbar (taken from J. Schemmel). Inputs coming from
the left are broadcasted horizontally, outputs merge incoming events vertically.
Each X describes a location of a crossbar node, which connects a horizontal input
line with a vertical output line. Their location is static, intersections without an X
can’t be connected. The input channels can be divided into neuron output channels
in groups of four for the left and the right half of the analog neural network core,
cf. section 2.3.2.6, four external input channels (from the L2) into the crossbar,
cf. section 2.3.2.2 and eight on-chip background event generators. The output
channels can be divided into four synapse driver input channels per hemisphere,
cf. section 2.3.2.3, and four external output channels from the crossbar (to the
L2), cf. section 2.3.2.2.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 67

...

PADI-bus

0 1 2 3

synapse
driver

index
on

block

index
on

PADI-bus
0 0

1

2

3

4

5

6

7

0

0

0

1

1

1

1

Figure 2.3.3: Schematic of the synapse driver to PADI-bus connectivity. Each synapse driver is
connected to one PADI-bus. Adjacent synapse drivers are connected to different
buses.

128 159160 191 192 223 2552240 31 32 63 64 95 12796column

row top

row bottom

left of anncore right of anncore

0 1 2 3 4 5 6 7
crossbar

input
channel

Figure 2.3.4: Schematic of the connectivity of the neurons. Neurons in horizontal blocks of 32
per row are connected to one neuron output channel into the crossbar. Vertically
adjacent neurons are connected to the same output channel.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 68

Part 3

Neuromorphic Computing with
Many-core Emulation of Brain

Models

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 69

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 70

3.1 Multi-core Platform: NM-MC

The Neuromorphic Multi-Core Platforms (NM-MC1, NM-MC2) provide cheap, reliable, and
readily available platforms on which to perform experiments for the Human Brain Project.

Currently it is envisaged that these experiments fall into two broad areas: those supporting the
neuromorphic approach to brain modelling, i.e. reduced cortical circuits using point neurons,
and neurorobotics experiment; and those exploring features used in the Simulation Platform,
i.e. virtual environments, whose performance can be explored before the Simulation Platform
is ready. The flexibilty of the digital approach to neuromorphics means that if other suitable
experiments are required, then this is just a matter of re-programming stock microprocessors.

The Neuromorphic Multi-Core Platform will leverage prior investment by the UK Engineering
and Physical Science Research Council (EPSRC) in SpiNNaker technology to provide a half
million core machine suitable for brain simulation. The basis of the system is a novel 18 core
chip. This component can be incorporated into larger systems because it has built-in inter-chip
communications.

The full 500,000 core machine has a total memory capacity of 4Tbytes, and at most six
hundred 100Mbit ethernet connections. It is envisaged that this data will not be directly loaded
or written back to backing store. Instead, a description of the data will be loaded, which is then
expanded on the NM-MC1 system using the full 500,000 cores to perform this expansion.

For check-pointing purposes we currently envisage writing back deltas on the original data-
sets. This approach is subject to change, should alternatives present themselves.

The SpiNNaker Group at Manchester have been holding successful SpiNNaker Workshops,
and this task will now continue in part funded by the HBP grant. So far there have been three
Workshops with twenty attendees per workshop, and a fourth is to be held in April 2014.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 71

3.1.1 Physical Architecture

Physical machines used to deploy Platform, locations, etc.

The NM-MC1 system uses the SpiNNaker chip, which is now in production.

Various configurations are possible:

Single node board

Although this has not been developed in Manchester, it is an interesting Neurorobotics platform,
developed by Jörg Conradt at TU Munchen:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 72

Four node board

This consists of a four SpiNNaker chips and has been developed by in Manchester for use in
collaboration with the Robotics group at Plymouth University. It can be used in an iCUB
robot.

Over thirty of these boards are on loan to various groups around the world including many
partners within the Human Brain Project.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 73

Forty-eight node board

This is the basis of all large systems. It consumes a maximum of 90W and has FPGA links for
connection to other boards. It is configured as an assymetric hexagon, and can thus be tiled
easily in groups of three with full toroidal connectivity.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 74

3.1.2 Software

The main part of the software stack consists of two parts:

Host Machine Software There are two main components required here:

PACMAN: Placing and Routing Management This consists of the software which
takes a PyNN program and splits the overall task into up to 500,000 small sub-tasks
each of which is to run on an individual core of the platform. The precise limit of
the splitting is determined by the physical hardware available.

Data Extraction When the simulation has completed, this component is responsible for
polling the target machine to find the computed data which the user has indicated
is of interest.

This part of the software is written in python.

Target Machine Software This consists of a set of libraries and other components which
support the simulation task.

It is split into three parts:

Loading This part of the software is conccerned with loading the model and its param-
eters.

Simulating This part of the task is concerned with the execution of the simulation.
There is some possible overlap with the next part.

Data Extraction This component is concerned with taking the computed data off of
the machine and passing it back to the Host Machine Software.

This part of the software is written in ‘C’.

In addition there is a requirement for debugging, and system monitoring and management;
both for the system admintrators and the end-users.

It is envisaged that virtual environment software will be produced by the Simulation sub-
project, and that job-control software will be provided by SP9, Task 3.

Progress with the support software for NM-MC1 is not best described by features, but instead
on the scale of the systems supported. This is because as the size of the system increases we
expect algorithms and data structures which have proved perfectly satisfactory thus far will
prove to require re-working as the system size increases.

We therefore envisage the following scales and the months on which they will be delivered.

SpiNNware-103 A system which supports any single board system. The largest board has
48 nodes or chips, and can therefore accept a system with up to 864 processor cores
(∼ 1000 = 103).

Expected Delivery: 2nd quarter 2014.

SpiNNware-104 A system which supports any single subrack system. A subrack can hold
up to 24 boards, and can therefore accept a system with up to 20736 processor cores
(∼ 10000 = 104).

Expected Delivery: 4th quarter 2014.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 75

SpiNNware-105 A system which supports any single cabinet system. A cabinet can hold
up to 5 subracks, and can therefore accept a system with up to 103680 processor cores
(∼ 100000 = 105).

Expected Delivery: 2nd quarter 2015.

SpiNNware-106 A system which supports any multi-cabinet system. In theory there might
be up to ten cabinets, and can therefore accept a system with up to 1036800 processor
cores (∼ 1000000 = 106).

Expected Delivery: 4th quarter 2015.

In conjunction with the software development, and indeed a prequisite to proper performance
testing will be the existence of a hardware test bed.

We therefore envisage the following scales and the months on which they will be delivered:

SpiNNaker-103 A system consisting of a single 48 node board.

Delivered: 2nd quarter 2013.

SpiNNaker-104 A system consisting of a single subrack.

Expected Delivery: 2nd quarter 2014.

SpiNNaker-105 A system consisting of a single cabinet.

Expected Delivery: 1st quarter 2015.

SpiNNaker-106 A system consisting of up to ten cabinets.

Expected Delivery: 3rd quarter 2015.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 76

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 77

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 78

3.2 SpiNNaker Chip Datasheet

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 79

SpiNNaker - a chip multiprocessor for neural network simulation.
Datasheet

Features

• 18 ARM968 processors, each with:

– 64 Kbytes of tightly-coupled data memory;

– 32 Kbytes of tightly-coupled instruction memory;

– DMA controller;

– communications controller;

– vectored interrupt controller;

– low-power ‘wait for interrupt’ mode.

• Multicast communications router

– 6 self-timed inter-chip bidirectional links;

– 1,024 associative routing entries.

• Interface to 128Mbyte (nominal) Mobile DDR SDRAM

– over 1 Gbyte/s sustained block transfer rate;

– optionally incorporated within the same multi-chip package.

• Ethernet interface for host connection

• Fault-tolerant architecture

– defect detection, isolation, and function migration.

• Boot, test and debug interfaces.

Introduction

SpiNNaker is a chip multiprocessor designed specifically for the real-time simulation of large-
scale spiking neural networks. Each chip (along with its associated SDRAM chip) forms one
node in a scalable parallel system, connected to the other nodes through self-timed links.

The processing power is provided through the multiple ARM cores on each chip. In the
standard model, each ARM models multiple neurons, with each neuron being a coupled pair of
differential equations modelled in continuous ‘real’ time. Neurons communicate through atomic
‘spike’ events, and these are communicated as discrete packets through the on- and inter-chip
communications fabric. The packet contains a routing key that is defined at its source and is
used to implement multicast routing through an associative router in each chip.

One processor on each SpiNNaker chip will perform system management functions; the com-
munications fabric supports point-to-point packets to enable co-ordinated system management
across local regions and across the entire system, and nearest-neighbour packets are used for
system flood-fill boot operations and for chip debug. In addition, fixed-route packets carry 64
bits of debug information back to particular nodes for transmission to the host computer.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 80

Background

SpiNNaker was designed at the University of Manchester within an EPSRC-funded project in
collaboration with the University of Southampton, ARM Limited and Silistix Limited. Subse-
quent development took place within a second EPSRC-funded project which added the univer-
sities of Cambridge and Sheffield to the collaboration. The work would not have been possible
without EPSRC funding, and the support of the EPSRC and the industrial partners is gratefully
acknowledged.

Intellectual Property rights

All rights to the SpiNNaker design are the property of the University of Manchester with the
exception of those rights that accrue to the project partners in accordance with the contract
terms.

Disclaimer

The details in this datasheet are presented in good faith but no liability can be accepted for
errors or inaccuracies. The design of a complex chip multiprocessor is a research activity where
there are many uncertainties to be faced, and there is no guarantee that a SpiNNaker system
will perform in accordance with the specifications presented here. The APT group in the School
of Computer Science at the University of Manchester was responsible for all of the architectural
and logic design of the SpiNNaker chip, with the exception of synthesizable components sup-
plied by ARM Limited and interconnect components supplied by Silistix Limited. All design
verification was also carried out by the APT group. As such the industrial project partners
bear no responsibility for the correct functioning of the device.

Error notification and feedback

Please email details of any errors, omissions, or suggestions for improvement to:
steve.furber@manchester.ac.uk.

Change history

version date changes

2.00 21/4/10 Full SpiNNaker chip initial version
2.01 19/10/10 Change CPU clocks, add package details, minor corrections.
2.02 8/12/10 Detail corrections and enhancements

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 81

3.2.1 Chip Organization

3.2.1.1 Block Diagram

The primary functional components of SpiNNaker are illustrated in the figure below.

(Input) (Output)Comms NoCComms NoC

Proc3...

2of7

Enc

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

EvenClk EvenClk OddClk EvenClk OddClk

Proc0 Proc1 Proc2 Proc16Proc15

System NoC

MemClk

JTAG

Debug

10MHz

Router

control

Decode

Packet Routing Output

Engine Select

OddClk

PL340 SDRAM I/F
Ctlr

SystemWatch−

dogRAM

System

ROM

System
Ethernet

Ether MII

1Gbit DDR SDRAM

I/O Port
Reset Test

Proc17

POR

APB Slave

AHB Master

EvenClk

AHB Slave

OddClk

RtrClk
SysClk

AHB Slave

AXI MasterAXI Master

Packet Router

AHB Slave

Clock

PLL

AHB SlaveAHB Slave

System AHB

AXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlrCommCtlr

Input

Links

Output

Links

RtrClk

MemClk
AXI Slave

AHB Slave

Each chip contains 18 identical processing subsystems. At start-up, following self-test, one of
the processors is nominated as the Monitor Processor and thereafter performs system manage-
ment tasks. The other processors are responsible for modelling one or more neuron fascicles - a
fascicle being a group of neurons with associated inputs and outputs (although some processors
may be reserved as spares for fault-tolerance purposes).

The Router is responsible for routing neural event packets both between the on-chip processors
and from and to other SpiNNaker chips. The Tx and Rx interface components are used to extend
the on- chip communications NoC to other SpiNNaker chips. Inputs from the various on- and
off-chip sources are assembled into a single serial stream which is then passed to the Router.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 82

Various resources are accessible from the processor systems via the System NoC. Each of
the processors has access to the shared off-chip (but possibly in the same package) SDRAM,
and various system components also connect through the System NoC in order that, whichever
processor is Monitor Processor, it will have access to these components.

The sharing of the SDRAM is an implementation convenience rather than a functional re-
quirement, although it may facilitate function migration in support of fault-tolerant operation.

3.2.1.2 System-on-Chip hierarchy

The SpiNNaker chip is viewed as having the following structural hierarchy, which is reflected
throughout the organisation of this datasheet:

• ARM968 processor subsystem

– the ARM968, with its tightly-coupled instruction and data memories

– Timer/counter and interrupt controller

– DMA controller, including System NoC interface

– Communications controller, including Communications NoC interface

• Communications NoC

– Router, including multicast, point-to-point, nearest-neighbour, fixed-route, default
and emer- gency routing functions

– 6 bidirectional inter-chip links

– communications NoC arbiter and fabric

• System NoC

– SDRAM interface

– System Controller

– Router configuration registers

– Ethernet MII interface

– Boot ROM

– System RAM

• Boot, test and debug

– central controller for ARM968 JTAG functions

– an off-chip serial boot ROM can be used if required

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 83

3.2.1.3 Register description convention

Registers are 32-bits (1 word) and are usually displayed in this datasheet as shown below:

012345678910111213141516171819202122232425262728293031

E M I Pre S O

reset: 0 0 1 0 0 0 0

• The grey-shaded areas of the register are unused. They will generally read as 0, and should
be written as 0 for maximum compatibility with any future functionality extensions.

• Reset values, where defined, are shown against a red shaded background.

Certain registers in the System Controller have protection against corruption by errant code:

012345678910111213141516171819202122232425262728293031

A 0x5EC R A MPID

reset: 0 1 1 1 1 1 1

• Here any attempt to write the register must include the security code 0x5EC in the top
12 bits of the data word. If the security code is not present the write will have no effect.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 84

3.2.2 System architecture

SpiNNaker is designed to form (with its associated SDRAM chip) a node of a massively parallel
system. The system architecture is illustrated below:

1,2 2,2

2,1

2,0

1,10,1

0,0 1,0

0,2

Chip
SpiNNaker

SDRAM

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 85

3.2.2.1 Routing

The nodes are arranged in a triangular mesh with bidirectional links to 6 neighbours. The
system supports multicast packets (to carry neural event information, routed by the associative
Multicast Router), point-to-point packets (to carry system management and control informa-
tion, routed by table look-up), nearest-neighbour packets (to support boot-time flood-fill and
chip debug) and fixed-route packets (to convey application debug data back to the host com-
puter).

Emergency routing

In the event of a link failing or congesting, traffic that would normally use that link is redirected
in hardware around two adjacent links that form a triangle with the failed link. This “emergency
routing” is intended to be temporary, and the operating system will identify a more permanent
resolution of the problem. The local Monitor Processor is informed of uses of emergency routing.

Deadlock avoidance

The communications system has potential deadlock scenarios because of the possibility of cir-
cular dependencies between links. The policy used here to prevent deadlocks occurring is:

• no Router can ever be prevented from issuing its output.

The mechanisms used to ensure this are:

• outputs have sufficient buffering and capacity detection so that the Router knows whether
or not an output has the capacity to accept a packet;

• emergency routing is used, where possible, to avoid overloading a blocked output;

• where emergency routing fails (because, for example, the alternative output is also blocked)
the packet is ‘dropped’ to a Router register, and the Monitor Processor informed;

The expectation is that the communications fabric will be lightly-loaded so that blocked links
are very rare. Where the operating system detects that this is not the case it will take measures
to correct the problem by modifying routing tables or migrating functionality.

Errant packet trap

Packets that get mis-routed could continue in the system for ever, following cyclic paths. To
prevent this all (apart from nearest-neighbour) packets are time stamped and a coarse global
time phase signal is used to trap old packets. To minimize overhead the time stamp is 2 bits,
cycling 00→ 01→ 11→ 10, and when the packet is two time phases old (time sent XOR time
now = 0b11) it is dropped and an error flagged to the local Monitor Processor. The length of a
time phase can be adapted dynamically to the state of the system; normally, timed-out packets
should be very rare so the time phase can be conservatively long to minimise the risk of packets
being dropped due to congestion.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 86

3.2.2.2 Time references

A slow (nominally 32kHz) global reference clock is distributed throughout the system and
is available to each processor via its DMA controller (which performs clock edge detection)
and vectored interrupt controller. Software may use this to generate the local time phase
information. Each processor also has a timer/counter driven from the local processor clock
which can be used to support time reference signals, for example a 1ms interrupt could be used
to generate the time input to the real-time neural models.

3.2.2.3 System-level address spaces

The system incorporates different levels of component that must be enumerated:

• Each Node (where a Node is a SpiNNaker chip plus SDRAM) must have a unique, fixed
address which is used as the destination ID for a point-to-point packet, and the addresses
must be organised logically for algorithmic routing to function efficiently.

• Processors will be addressed relative to their host Node address, but this mapping will
not be fixed as an individual Processor’s role can change over time. Point-to-point packets
addressed to a Node will be delivered to the local Monitor Processor, whichever Processor
is serving that function. Internal to a Node there is hard-wired addressing of each Pro-
cessor for system diagnosis purposes, but this mapping will generally be hidden outside
the Node.

• The neuron address space is purely a software issue and is discussed in ‘Application notes’
on page 95.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 87

3.2.3 ARM968 processing subsystem

SpiNNaker incorporates 18 ARM968 processing subsystems which provide the computational
capability of the device. Each of these subsystems is capable of generating and processing neural
events communicated via the Communications NoC and, alternatively, of fulfilling the role of
Monitor Processor.

3.2.3.1 Features

• a synthesized ARM968 module with:

• an ARM9TDMI processor;

• 32 Kbyte tightly-coupled instruction memory;

• 64 Kbyte tightly-coupled data memory;

• JTAG debug access.

• a local AHB with:

• communications controller connected to Communications NoC;

• DMA controller and interface to the System NoC;

• timer/counter and interrupt controller.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 88

3.2.3.2 ARM968 subsystem organisation

3.2.3.3 Memory Map

The memory map of the ARM968 spans a number of devices and buses. The tightly-coupled
memories are directly connected to the processor and accessible at the processor clock speed.
All other parts of the memory map are visible via the AHB master interface, which runs at
the full processor clock rate. This gives direct access to the registers of the DMA controller,
communications controller and the timer/interrupt controller. In addition, a path is available
through the DMA controller onto the System NoC which provides processor access to all memory
resources on the System NoC. The memory map is defined as follows:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 89

// ARM968 local memories

#define ITCM START ADDRESS 0x00000000 // instruction memory

#define DTCM START ADDRESS 0x00400000 // data memory

// Local peripherals - unbuffered write

#define COMM CTL START ADDRESS U 0x10000000 // Communications Controller

#define CTR TIM START ADDRESS U 0x11000000 // Counter-Timer

#define VIC START ADDRESS U 0x1f000000 // vectored interrupt controller

// Local peripherals - buffered write

#define COMM CTL START ADDRESS B 0x20000000 // Communications Controller

#define CTR TIM START ADDRESS B 0x21000000 // Counter-Timer

#define VIC START ADDRESS B 0x2f000000 // vectored interrupt controller

// DMA controller

#define DMA CTL START ADDRESS U 0x30000000 // DMA controller - unbuffered

#define DMA CTL START ADDRESS B 0x40000000 // DMA controller - buffered

// Unallocated; causes bus error 0x50000000 - 0x5fffffff

// SDRAM

#define SDRAM START ADDRESS U 0x60000000 // SDRAM - buffered

#define SDRAM START ADDRESS B 0x70000000 // SDRAM - unbuffered

// Unallocated; causes bus error 0x80000000 - 0xdfffffff

// System NoC peripherals - buffered write

#define PL340 APB START ADDRESS B 0xe0000000 // PL340 APB port

#define RTR CONFIG START ADDRESS B 0xe1000000 // Router configuration

#define SYS CTL START ADDRESS B 0xe2000000 // System Controller

#define WATCHDOG START ADDRESS B 0xe3000000 // Watchdog Timer

#define ETH CTL START ADDRESS B 0xe4000000 // Ethernet Controller

#define SYS RAM START ADDRESS B 0xe5000000 // System RAM

#define SYS ROM START ADDRESS B 0xe6000000 // System ROM

// Unallocated; causes bus error 0xe7000000 - 0xefffffff

// System NoC peripherals - unbuffered write

#define PL340 APB START ADDRESS U 0xf0000000 // PL340 APB port

#define RTR CONFIG START ADDRESS U 0xf1000000 // Router configuration

#define SYS CTL START ADDRESS U 0xf2000000 // System Controller

#define WATCHDOG START ADDRESS U 0xf3000000 // Watchdog Timer

#define ETH CTL START ADDRESS U 0xf4000000 // Ethernet Controller

#define SYS RAM START ADDRESS U 0xf5000000 // System RAM

#define SYS ROM START ADDRESS U 0xf6000000 // System ROM

// Unallocated; causes bus error 0xf7000000 - 0xfeffffff

// Boot area and VIC

#define BOOT START ADDRESS 0xff000000 // Boot area

#define HI VECTORS 0xffff0000 // high vectors (for boot)

#define VIC START ADDRESS H 0xfffff000 // vectored interrupt controller

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 90

The areas shown against a yellow background are accessible only by their local ARM968
processor, not by a DMA controller nor by Nearest Neighbour packets via the Router (though
of course the DMA controller can see the ITCM and DTCM areas through its second port,
as these are the source/destination for DMA transfers). The DMA controller and Nearest
Neighbour packets see the System RAM repeated across the bottom 16Mbytes of the address
space from 0x00000000 to 0x00ffffff; the remainder of the yellow areas give undefined results
and should not be addressed.

The ARM968 is configured to use high vectors after reset (to use the vectors in the Boot
area), but then switched to low vectors once the ITCM is enabled and initialised.

The vectored interrupt controller (VIC) has to be at 0xfffff000 to enable efficient access to its
vector registers.

All other peripherals start at a base address that can be formed with a single MOV immediate
instruction.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 91

3.2.4 ARM 968

The ARM968 (with its associated tightly-coupled instruction and data memories) forms the
core processing resource in SpiNNaker.

3.2.4.1 Features

• ARM9TDMI processor supporting the ARMv5TE architecture.

• 32 Kbyte tightly-coupled instruction memory (I-RAM).

• 64 Kbyte tightly-coupled data memory (D-RAM).

• AHB interface to external system.

• JTAG-controlled debug access.

• support for Thumb and signal processing instructions.

• low-power halt and wait for interrupt function.

3.2.4.2 Organization

See ARM DDI 0311C – the ARM968E-S datasheet.

3.2.4.3 Fault-tolerance

Fault insertion

• ARM9TDMI can be disabled.

• Software can corrupt I-RAM and D-RAM to model soft errors. Fault detection

• A chip-wide watchdog timer catches runaway software.

• Self-test routines, run at start-up and during normal operation, can detect faults. Fault
isolation

• The ARM968 unit can be disabled from the System Controller.

• Defective locations in the I-RAM and D-RAM can be mapped out of use by software.
Reconfiguration

• Software will avoid using defective I-RAM and D-RAM locations.

• Functionality will migrate to an alternative Processor in the case of permanent faults that
go beyond the failure of one or two memory locations.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 92

3.2.5 Vectored interrupt controller

Each processor node on an SpiNNaker chip has a vectored interrupt controller (VIC) that is
used to enable and disable interrupts from various sources, and to wake the processor from sleep
mode when required. The interrupt controller provides centralised management of IRQ and FIQ
sources, and offers an efficient indication of the active sources for IRQ vectoring purposes.

The VIC is the ARM PL190, described in ARM DDI 0181E.

3.2.5.1 Features

• manages the various interrupt sources to each local processor.

• individual interrupt enables.

• routing to FIQ and/or IRQ,

• there will normally be only one FIQ source: e.g. CC Rx ready, or a specific packet-type
received.

• a central interrupt status view.

• a vector to the respective IRQ handler.

• programmable IRQ priority.

• interrupt sources:

• Communication Controller flow-control interrupts;

• DMA complete/error/timeout;

• Timer 1 and 2 interrupts;

• interrupt from another processor on the chip (usually the Monitor processor), set via a
register in the System Controller;

• packet-error interrupt from the Router;

• system fault interrupt;

• Ethernet controller;

• off-chip signals;

• 32kHz slow system clock;

• software interrupt, for downgrading FIQ to IRQ.

3.2.5.2 Register summary

Base address: 0x2f000000 (buffered write), 0x1f000000 (unbuffered write), 0xfffff000
(high).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 93

User registers

The following registers allow normal user programming of the VIC:

Name Offset R/W Function

r0: VICirqStatus 0x00 R IRQ status register

r1: VICfiqStatus 0x04 R FIQ status register

r2: VICrawInt 0x08 R raw interrupt status register

r3: VICintSel 0x0C R/W interrupt select register

r4: VICintEnable 0x10 R/W interrupt enable register

r5: VICintEnClear 0x14 W interrupt enable clear register

r6: VICsoftInt 0x18 R/W soft interrupt register

r7: VICsoftIntClear 0x1C W soft interrupt clear register

r8: VICprotection 0x20 R/W protection register

r9: VICvectAddr 0x30 R/W vector address register

r10: VICdefVectAddr 0x34 R/W default vector address register

VICvectAddr[15:0] 0x100-13c R/W vector address registers

VICvectCtrl[15:0] 0x200-23c R/W vector control registers

ID registers

In addition, there are test ID registers that will not normally be of interest to the programmer:

Name Offset R/W Function

VICPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers

VICPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

See the VIC Technical Reference Manual ARM DDI 0181E, for further details of the ID
registers.

3.2.5.3 Register details

r0: IRQ status

012345678910111213141516171819202122232425262728293031

IRQ status

0 0

This read-only register yields the set of active IRQ requests (after masking).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 94

r1: FIQ status

012345678910111213141516171819202122232425262728293031

FIQ status

0 0

This read-only register yields the set of active FIQ requests (after masking).

r2: raw interrupt status

012345678910111213141516171819202122232425262728293031

interrupt request status

This read-only register yields the set of active input interrupt requests (before any masking).

r3: interrupt select

012345678910111213141516171819202122232425262728293031

interrupt select

0 0

This register selects for each of the 32 interrupt inputs whether it gets sent to IRQ (0) or
FIQ (1). The reset state is not specified (though is probably ‘0’?); all interrupts are disabled
by r4 at reset.

r4: interrupt enable register

012345678910111213141516171819202122232425262728293031

interrupt enables

0 0

This register disables (0) or enables (1) each of the 32 interrupt inputs. Writing a ‘1’ sets the
corresponding bit in r4; writing a ‘0’ has no effect. Interrupts are all disabled at reset.

r5: interrupt enable clear

012345678910111213141516171819202122232425262728293031

interrupt enable clear

This write-only register selectively clears interrupt enable bits in r4. A ‘1’ clears the corre-
sponding bit in r4; a ‘0’ has no effect.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 95

r6: soft interrupt register

012345678910111213141516171819202122232425262728293031

soft interrupt register

0 0

This register enables software to force interrupt inputs to appear high (before masking). A
‘1’ written to any bit location will force the corresponding interrupt input to be active; writing
a ‘0’ has no effect. The reset state for these bits is unspecified, though probably ‘0’?

r7: soft interrupt register clear

012345678910111213141516171819202122232425262728293031

soft interrupt enable clear

This write-only register selectively clears soft interrupt bits in r6. A ‘1’ clears the correspond-
ing bit in r6; a ‘0’ has no effect.

r8: protection

012345678910111213141516171819202122232425262728293031

P

reset: 0

If the P bit is set VIC registers can only be accessed in a privileged mode; if it is clear then
User- mode code can access the registers.

r9: vector address

012345678910111213141516171819202122232425262728293031

vector address

This register contains the address of the currently active interrupt service routine (ISR). It
must be read at the start of the ISR, and written at the end of the ISR to signal that the
priority logic should update to the next priority interrupt. Its state following reset is undefined.

r10: default vector address

012345678910111213141516171819202122232425262728293031

default vector address

The default vector address is used by the 16 interrupts that are not vectored. Its state
following reset is undefined.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 96

vector address [15:0]

012345678910111213141516171819202122232425262728293031

vector address

The vector address is the address of the ISR of the selected interrupt source. Their state
following reset is undefined.

vector control [15:0]

012345678910111213141516171819202122232425262728293031

E Source

reset: 0 0 0 0 0 0

The interrupt source is selected by bits[4:0], which choose one of the 32 interrupt inputs.
The interrupt can be enabled (E = 1) or disabled (E = 0). It is disabled following reset. The
highest priority interrupt uses vector address [0] at offset 0x100 and vector control [0] at offset
0x200, and then successively reduced priority is given to vector addresses [1], [2], . . . and vector
controls [1], [2], . . . at successively higher offset addresses.

3.2.5.4 Interrupt sources

19 of the 32 interrupt sources are local to the processor (and are coloured yellow in the table
below) and 13 are from chip-wide sources (which will normally be enabled only in the Monitor
Processor).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 97

Name Function

0 Watchdog Watchdog timer interrupt
1 Software int used only for local software interrupt generation
2 Comms Rx the debug communications receiver interrupt
3 Comms Tx the debug communications transmitter interrupt
4 Timer 1 Local counter/timer interrupt 1
5 Timer 2 Local counter/timer interrupt 2
6 CC Rx ready Local comms controller packet received
7 CC Rx parity error Local comms controller received packet parity error
8 CC Rx framing error Local comms controller received packet framing error
9 CC Tx full Local comms controller transmit buffer full
10 CC Tx overflow Local comms controller transmit buffer overflow
11 CC Tx empty Local comms controller transmit buffer empty
12 DMA done Local DMA controller transfer complete
13 DMA error Local DMA controller error
14 DMA timeout Local DMA controller transfer timed out
15 Router diagnostics Router diagnostic counter event has occurred
16 Router dump Router packet dumped - indicates failed delivery
17 Router error Router error - packet parity, framing, or time stamp error
18 Sys Ctl int System Controller interrupt bit set for this processor
19 Ethernet Tx Ethernet transmit frame interrupt
20 Ethernet Rx Ethernet receive frame interrupt
21 Ethernet PHY Ethernet PHY/external interrupt
22 Slow Timer System-wide slow (nominally 32 KHz) timer interrupt
23 CC Tx not full Local comms controller can accept new Tx packet
24 CC MC Rx int Local comms controller multicast packet received
25 CC P2P Rx int Local comms controller point-to-point packet received
26 CC NN Rx int Local comms controller nearest neighbour packet received
27 CC FR Rx int Local comms controller fixed route packet received
28 Int[0] External interrupt request 0
29 Int[1] External interrupt request 1
30 GPIO[8] Signal on GPIO[8]
31 GPIO[9] Signal on GPIO[9]

3.2.5.5 Fault-tolerance

Fault insertion

It is fairly easy to mess up vector locations, and to fake interrupt sources.

Fault detection

A failed vector location effectively causes a jump to a random location; this would be messy!

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 98

Fault isolation

Failed vector locations can be removed from service.

Reconfiguration

A failed vector location can be removed from service (provided there are enough vector locations
available without it). Alternatively, the entire vector system could be shut down and interrupts
run by software inspection of the IRQ and FIQ status registers.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 99

3.2.6 Counter/timer

Each processor node on a SpiNNaker chip has a counter/timer.
The counter/timers use the standard AMBA peripheral device described on page 4-24 of

the AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003. The
peripheral has been modified only in that the APB interface of the original has been replaced
by an AHB interface for direct connection to the ARM968 AHB bus.

3.2.6.1 Features

• the counter/timer unit provides two independent counters, for example for:

– millisecond interrupts for real-time dynamics.

• free-running and periodic counting modes:

– automatic reload for precise periodic timing;

– one-shot and wrapping count modes.

• the counter clock (which runs at the processor clock frequency) may be pre-scaled by
dividing by 1, 16 or 256.

3.2.6.2 Register summary

Base address: 0x21000000 (buffered write), 0x11000000 (unbuffered write).

User registers

The following registers allow normal user programming of the counter/timers:

Name Offset R/W Function

r0: Timer1load 0x00 R/W Load value for Timer 1

r1: Timer1value 0x04 R Current value of Timer 1

r2: Timer1Ctl 0x08 R/W Timer 1 control

r3: Timer1IntClr 0x0C W Timer 1 interrupt clear

r4: Timer1RIS 0x10 R Timer 1 raw interrupt status

r5: Timer1MIS 0x14 R Timer 1 masked interrupt status

r6: Timer1BGload 0x18 R/W Background load value for Timer 1

r8: Timer2load 0x20 R/W Load value for Timer 2

r9: Timer2value 0x24 R Current value of Timer 2

r10: Timer2Ctl 0x28 R/W Timer 2control

r11: Timer2IntClr 0x2C W Timer 2interrupt clear

r12: Timer2RIS 0x30 R Timer 2raw interrupt status

r13: Timer2MIS 0x34 R Timer 2masked interrupt status

r14: Timer2BGload 0x38 R/W Background load value for Timer 2

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 100

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the program-
mer:

Name Offset R/W Function

TimerITCR 0xF00 R/W Timer integration test control register

TimerITOP 0xF04 W Timer integration test output set register

TimerPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers

TimerPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for
further details of the test and ID registers.

3.2.6.3 Register details

As both timers have the same register layout they can both be described as follows (X = 1 or 2):

r0/8: Timer X load value

012345678910111213141516171819202122232425262728293031

Load value for TimerX

0 0

When written, the 32-bit value is loaded immediately into the counter, which then counts
down from the loaded value. The background load value (r6/14) is an alternative view of this
register which is loaded into the counter only when the counter next reaches zero.

r1/9: Current value of Timer X

012345678910111213141516171819202122232425262728293031

TimerX current count

1 1

This read-only register yields the current count value for Timer X.

r2/10: Timer X control

012345678910111213141516171819202122232425262728293031

E M I Pre S O

reset: 0 0 1 0 0 0 0

The shaded fields should be written as zero and are undefined on read. The functions of the
remaining fields are described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 101

Name bits R/W Function

E: Enable 7 R/W enable counter/timer (1 = enabled)

M: Mode 6 R/W 0 = free-running; 1 = periodic

I: Int enable 5 R/W enable interrupt (1 = enabled)

Pre: TimerPre 3:2 R/W divide input clock by 1 (00), 16 (01), 256 (10)

S: Timer size 1 R/W 0 = 16 bit, 1 = 32 bit

O: One shot 0 R/W 0 = wrapping mode; 1 = one shot

r3/11: Timer X interrupt clear

012345678910111213141516171819202122232425262728293031

Any write to this address will clear the interrupt request.

rr4/12: Timer X raw interrupt status

012345678910111213141516171819202122232425262728293031

R

reset: 0

Bit zero yields the raw (unmasked) interrupt request status of this counter/timer.

r5/13: Timer X masked interrupt status

012345678910111213141516171819202122232425262728293031

M

reset: 0

Bit zero yields the masked interrupt status of this counter/timer.

r6/14: Timer X background load value

012345678910111213141516171819202122232425262728293031

Background load value for TimerX

0 0

The 32-bit value written to this register will be loaded into the counter when it next counts
down to zero. Reading this register will yield the same value as reading register 0/8.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 102

3.2.6.4 Fault-tolerance

Fault insertion

Disabling a counter (by clearing the E bit in its control register) will cause it to fail in its
function.

Fault detection

Use the second counter/timer with a longer period to check the calibration of the first?

Fault isolation

Disable the counter/timer with the E bit in the control register; disable its interrupt output;
disable the interrupt in the interrupt controller.

Reconfiguration

If one counter fails then a system that requires only one counter can use the other one.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 103

3.2.7 DMA controller

Each ARM968 processing subsystem includes a DMA controller. The DMA controller is pri-
marily used for transferring inter-neural connection data from the SDRAM in large blocks in
response to an input event arriving at a fascicle processor, and for returning updated connection
data during learning. In addition, the DMA controller can transfer data to/from other targets
on the System NoC such as the System RAM and Boot ROM.

As a secondary function the DMA controller incorporates a ‘Bridge’ across which its host
ARM968 has direct read and write access to System NoC devices, including the SDRAM. The
ARM968 can use the Bridge whether or not DMA transfers are active.

3.2.7.1 Features

• DMA engine supporting parallel operations:

– DMA transfers;

– direct pass-through requests from the ARM968;

– dual buffers supporting simultaneous direct and DMA transfers.

• Support for CRC error control in transferred blocks.

• Interrupt-driven or polled DMA completion notification:

– DMA complete interrupt signal;

– various DMA error interrupt signals;

– DMA time-out interrupt signal.

• Parameterisable buffer sizes.

• Direct and DMA request queueing.

3.2.7.2 Using the DMA controller

There are 2 types of requests for DMA controller services. DMA transfers are initiated by writing
to control registers in the controller, executed in the background, and signal an interrupt when
complete. Bridge transfers occur when the ARM initiates a request directly to the needed
device or service. The DMA controller fulfills these requests transparently, the host processor
retaining full control of the transfer. Invisible to the user, the controller may buffer the data
from write requests for more efficient bus management. If an error occurs on such a buffered
write the DMA controller can signal an error interrupt.

The controller acts as a Bridge between the AHB bus on the ARM AHB slave interface and
the AXI interface on the system NoC, performing the required address and control resequenc-
ing (stripping addresses from non-first beats of a burst), data flow management and request
arbitration. The arbiter prioritises requests in the following order:

1) Bridge reads,

2) Bridge writes,

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 104

3) DMA burst requests.

No request can gain access to the AXI interface until any active burst transaction on the
interface has completed. Read requests while a DMA transfer is in progress require special
handling. The read must wait until any active request has completed, and therefore a Bridge
read could stall the processor and AHB slave bus for many cycles. In addition, if buffered
writes exist, potential data coherency conflicts exist. The recommended procedure is for the
ARM processor to interrogate the WB active (A) bit in the DMA Status register (STAT) before
requesting a Bridge read.

To initiate a DMA transfer, the ARM must write to the following registers in the DMA
controller: System Address (ADRS), TCM Address (ADRT), and Description (DESC). The
order of writing of the first two register operations is not important, but the Description write
must be the last as it commits the DMA transfer. The processor may also optionally write
the CRC and Global Control (GCTL) registers to set up additional parameters. The expected
model, however, is that these registers are updated infrequently, perhaps only once after power-
up. The processor may read from any register at any time. The processor may have a maximum
of 2 submitted DMA requests of which only one will be active. When the transfer queue is empty
(as indicated by the Q bit in the Status (STAT) register), the processor may queue another
request.

Accesses to DMA Controller registers are restricted to programs running on the ARM968 in
privileged (i.e. non-user) modes. Attempts to access these registers in user mode will result in
a bus error.

An attempt to write register r1 to r3 when the queue is full will result in a bus error.

Any access (read or write) to a non-existent register will result in a bus error.

Non-word-aligned addresses and byte and half-word accesses will result in a bus error.

3.2.7.3 Register summary

Base address: 0x40000000 (buffered write), 0x30000000 (unbuffered write).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 105

Name bits R/W Function

r0: unused 0x00
r1: ADRS 0x04 R/W DMA address on the system interface
r2: ADRT 0x08 R/W DMA address on the TCM interface
r3: DESC 0x0C R/W DMA transfer description
r4: CTRL 0x10 R/W Control DMA transfer
r5: STAT 0x14 R Status of DMA and other transfers
r6: GCTL 0x18 R/W Control of the DMA device
r7: CRCC 0x1C R CRC value calculated by CRC block
r8: CRCR 0x20 R CRC value in received block
r9: TMTV 0x24 R/W Timeout value
r10: StatsCtl 0x28 R/W Statistics counters control
r16-23: Stats0-7 0x40-5C R Statistics counters
r64: unused 0x100
r65: AD2S 0x104 R Active system address
r66: AD2T 0x108 R Active TCM address
r67: DES2 0x10C R Active transfer description
r96-r127 0x180-1FC R/W CRC polynomial matrix

3.2.7.4 Register details

r0: unused

r1: ADRS - System Address.

012345678910111213141516171819202122232425262728293031

System Address 00

0 0

The 32-bit start byte address on the system interface. Note that a read is considered a data
movement from a source on the system bus to a destination on the TCM bus. DMA transfers
are word-aligned, so bits[1:0] are fixed at zero.

r2: ADRT - TCM Address.

012345678910111213141516171819202122232425262728293031

TCM Address 00

0 0

The 32-bit start address on the TCM interface.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 106

r3: DESC - DMA transfer description.

012345678910111213141516171819202122232425262728293031

Transfer ID P W burst C D Length 00

0 0

The function of these fields is described in the table below:

Name bits R/W Function

Transfer ID 31:26 R/W software defined transfer ID

P: Privilege 25 R/W DMA transfer mode is user (0) or privileged (1)

W: Width 24 R/W transfer width is word (0) or double-word (1)

Burst 23:21 R/W burst length = 2B ×Width, B = 0 . . . 4 (i.e max
16)

C: CRC 20 R/W check (read) or generate (write) CRC

D: Direction 19 R/W read from (0) or write to (1) system bus

Length 16:2 R/W length of the DMA transfer, in words

The TCM as currently implemented has a size of 64Kbytes (for the data TCM). A DMA
transfer must of necessity either take as a source or a destination the TCM, justifying this
restriction. DMA transfers are word-aligned, so bits[1:0] are fixed at zero.

The Burst length defines the unit of transfer (in words or double-words, depending on W)
across the System NoC. Longer bursts will in general make more efficient use of the available
SDRAM bandwidth.

Note that the Length excludes the 32-bit CRC word, if CRC is used.

Writing to this register automatically commits a transfer as defined by the values in r1-r3.

r4: CTRL - Control Register

012345678910111213141516171819202122232425262728293031

W T D R A U

reset: 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

W: clear WB Int 5 R/W clear Write Buffer interrupt request

T: clear Timeout Int 4 R/W clear Timeout interrupt request

D: clear Done Int 3 R/W clear Done interrupt request

R: Restart 2 R/W resume transfer (clears DMA errors)

A: Abort 1 R/W end current transfer and discard data

U: Uncommit 0 R/W setting this bit uncommits a queued transfer

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 107

These bits can only be set to 1 by the user, they cannot be reset. Writing a 0 has no
effect. They will clear automatically once they have taken effect, which will be at the next safe
opportunity, typically between transfer bursts.

r5: STAT - Status Register.

012345678910111213141516171819202122232425262728293031

processorID Condition Codes A F Q P T

hardwired proc ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

processor ID 31:24 R hardwired processor ID identifies CPU on chip

Condition Codes 20:10 R DMA condition codes

A: WB active 4 R write buffer is not empty

F: WB full 3 R write buffer is full

Q: Queue full 2 R DMA transfer is queued - registers are full

P: Paused 1 R DMA transfer is PAUSED

T: Transferring 0 R DMA transfer in progress

The condition codes are defined as follows:

Name bits R/W Function

Write buff error 20 R a buffered write transfer has failed

TBD 19:18 R not yet allocated

Soft reset 17 R a soft reset of the DMA controller has happened

User abort 16 R the user has aborted the transfer (via r4)

AXI error 15 R the AXI interface has signalled a transfer error

TCM error 14 R the TCM AHB interface has signalled an error

CRC error 13 R the calculated and received CRCs differ

Timeout 12 R a burst transfer has not completed in time

2nd transfer done 11 R 2nd DMA transfer has completed without error

Transfer done 10 R a DMA transfer has completed without error

When a DMA error occurs the corresponding condition code flag is set, the DMA engine
is PAUSED (bit[1]) and the current transfer is terminated. A queued transfer remains in the
queue but is not started. A new transfer can be committed if the queue is empty, but it will
not start until the DMA controller is brought out of PAUSE. AD2S, AD2T and DES2 (r65-67)
contain information about the failed transfer and can be used to diagnose the problem. A
restart command (r4 bit[2]) is required to bring the DMA controller out of PAUSE. This will

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 108

clear the error codes [16:13] and restart DMA operation. The terminated transfer must be
restarted explicitly by software if this is required.

A soft reset will set bit[17], clear the transfer queue and take the DMA controller into the
IDLE state. The DMA controller is not PAUSED, and new transfers can be committed and
start immediately. A restart command (r4 bit[2]) is required to clear the soft reset flag [17] -
starting a new transfer does NOT clear it.

Timeout [12] and Write Buffer error [20] have explicit clears in CTRL.

The two transfer done bits [11:10] count up through the sequence 00 → 01 → 11 as DMA
transfers complete, and count down through the reverse sequence when a 1 is written to
CTRL[3]. As a result of this coding, Transfer Done [10] can be read as indicating that at
least one DMA transfer has completed, and a second completed transfer can be handled by
inspecting bit[11] in software or left to be handled by a subsequent Transfer Done interrupt.

r6: GCTL - Global Control

012345678910111213141516171819202122232425262728293031

T Interrupt enables B

0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

T: Timer 31 R/W system-wide slow timer status and clear

Interrupt enables 20:10 R/W respective interrupt enables for the r5 conditions

B: Bridge buffer 0 R/W enable Bridge write buffer

The DMA controller passes four interrupt request lines to the VIC:

• dmac done: the logical OR of GCTL[11:10] and STAT[11:10]

• dmac timeout: GCTL[12] and STAT[12]

• dmac error: the logical OR of GCTL[20:13] and STAT[20:13]

• system-wide slow (nominally 32 KHz) timer interrupt

Note that write buffer errors and timeout errors do NOT stop the DMA engine nor the transfer
in progress.

The system-wide slow timer is a clock signal that sets bit[31] on every rising edge, thereby
raising an interrupt request to the VIC, and is cleared by writing a 0 to bit[31]. Writing a 1 to
bit[31] has no effect.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 109

r7: CRCC - Calculated CRC

012345678910111213141516171819202122232425262728293031

CRC value (calculated)

0 0

This is the 32-bit CRC value calculated by the DMA CRC unit.

r8: CRCC - Received CRC

012345678910111213141516171819202122232425262728293031

CRC value (received)

0 0

This is the 32-bit CRC value read in the block of data loaded by a DMA transfer.

r9: TMTV - Timeout value

012345678910111213141516171819202122232425262728293031

V 00000

reset: 0 0 0 0 0 0 0 0 0 0

This is a 10-bit counter value used to determine when the DMA controller should timeout on
an attempted transfer burst. The count units are clock cycles. When TMTV = 0 the timeout
counter is disabled. Note that a timeout will not stop the transfer.

r10: StatsCtl - Statistics counters control

012345678910111213141516171819202122232425262728293031

C E

reset: 0 0

E, bit[0], enables the statistics counters (r16-23).

Writing ‘1’ to C, bit[1], zeroes the statistics counters. Writing a ‘0’ has no effect. Bit[1]
always reads ‘0’.

r16-23: Stats0-7 - Statistics counters

012345678910111213141516171819202122232425262728293031

Count0-7

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 110

These eight 16-bit counter registers record statistics relating to the latency of DMA transa-
tions across the System NoC. Count0 records the number of transactions that complete in 0-127
clock cycles, Count1 128-255 clock cycles, and so on up to Count7 which counts transactions
that complete in 896+ clock cycles.

The counters are enabled and cleared via r10.

r65-67: Active DMA transfer registers

These registers are not directly written. They reflect the state of the active DMA transfer,
with AD2S and AD2T holding the respective System and TCM addresses to be used in the
next burst of the transfer, and DES2 holding the description of the transfer in progress (the
remaining length, ID, burst size, and direction).

r96-127: CRC polynomial matrix

012345678910111213141516171819202122232425262728293031

CRC polynomial row[31:0]

The CRC hardware is highly programmable and can be used in a number of ways to detect,
and possibly correct, errors in blocks of data transferred by the DMA controller between the
ARM968 DTCM and the off-chip SDRAM.

For example, to use the Ethernet 32-bit CRC with polynomial 0x04C11DB7, the following
32 hexadecimal values should be programmed into r96-127:

FB808B20, 7DC04590, BEE022C8, 5F701164, 2FB808B2, 97DC0459, B06E890C, 58374486,

AC1BA243, AD8D5A01, AD462620, 56A31310, 2B518988, 95A8C4C4, CAD46262, 656A3131,

493593B8, 249AC9DC, 924D64EE, C926B277, 9F13D21B, B409622D, 21843A36, 90C21D1B,

33E185AD, 627049F6, 313824FB, E31C995D, 8A0EC78E, C50763C7, 19033AC3, F7011641.

The CRC unit is configurable to use a different 32-bit polynomial, a different polynomial
length, and a different data word length. For example, it can be configured to compute CRC16
separately for each half-word of the data stream. A Matlab program can be used to determine
the appropriate polynomial matrix values.

3.2.7.5 Fault-tolerance

Fault insertion

Software can introduce errors in data blocks in SDRAM which should be trapped by the CRC
hardware.

Fault detection

The CRC unit can detect errors in the data transferred by the DMA controller. The DMA
controller will time-out if a transaction takes too long.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 111

Fault isolation

The DMA Controller is mission-critical to the local processing subsystem, so if it fails the
subsystem should be disabled and isolated.

Reconfiguration

The local processing subsystem is shut down and its functions migrated to another subsystem
on this or another chip. It should be possible to recover all of the subsystem state and to
migrate it, via the SDRAM, to a functional alternative.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 112

3.2.8 Communications controller

Each processor node on SpiNNaker includes a communications controller which is responsible
for generating and receiving packets to and from the communications network.

3.2.8.1 Features

• Support for 4 packet types:

– multicast (MC) neural event packets routed by a key provided at the source;

– point-to-point (P2P) packets routed by destination address;

– nearest-neighbour (NN) packets routed by arrival port;

– fixed-route (FR) packets routed by the contents of a register.

• Packets are either 40 or 72 bits long. The longer packets carry a 32-bit payload.

• 2-bit time stamp (used by Routers to trap errant packets).

• Parity (to detect some corrupt packets).

3.2.8.2 Packet formats

Neural event multicast (MC) packets (type 0)

Neural event packets include a control byte and a 32-bit routing key inserted by the source. In
addition they may include an optional 32-bit payload:

8 bits 32 bits 32 bits

control routing key optional payload

The 8-bit control field includes packet type (bits[7:6] = 00 for multicast packets), emergency
routing and time stamp information, a payload indicator, and error detection (parity) informa-
tion:

7 6 5 4 3 2 1 0

0 0 seq code time stamp payload parity

Point-to-point (P2P) packets (type 1)

Point-to-point packets include 16-bit source and destination chip IDs, plus a control byte and
an optional 32-bit payload:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 113

8 bits 16 bits 16 bits 32 bits

control source ID destination ID optional payload

Here the 8-bit control field includes packet type (bits[7 : 6] = 01 for P2P packets), a sequence
code, time stamp, a payload indicator and error detection (parity) information:

7 6 5 4 3 2 1 0

0 1 seq code time stamp payload parity

Nearest-neighbour (NN) packets (type 2)

Nearest-neighbour packets include a 32-bit address or operation field, plus a control byte and
an optional 32-bit payload:

8 bits 32 bits 32 bits

control address/operation optional payload

Here the 8-bit control field includes packet type (bits[7 : 6] = 10 for NN packets), a ‘peek/poke’
or ‘normal’ type indicator (T), routing information, a payload indicator and error detection
(parity) information:

7 6 5 4 3 2 1 0

1 0 T route payload parity

Fixed-Route (FR) packets (type 3)

Fixed-route packets include a 32-bit payload field, plus a control byte and an optional 32-bit
payload extension:

8 bits 32 bits 32 bits

control payload optional payload extension

Here the 8-bit control field includes packet type (bits[7 : 6] = 11 for FR packets), emer-
gency routing and time stamp information, a payload indicator, and error detection (parity)
information:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 114

7 6 5 4 3 2 1 0

1 1
emergency

routing
time stamp payload parity

3.2.8.3 Control byte summary

The various fields in the control bytes of the different packet types are summarised below:

Field Name bits Function

parity 0 parity of complete packet (including payload when used)

payload 1 data payload (1) or no data payload (0)

time stamp 3:2 phase marker indicating time packet was launched

seq code 5:4 P2P only: sequence code, software defined

emergency routing 5:4 MC & FR: used to control routing around a failed link

route 4:2 NN only: information for the Router

T: NN packet type 5 NN only: packet type - normal (0) or peek/poke (1)

packet type 7:6 = 00 for MC; = 01 for P2P; = 10 for NN; = 11 for FR

Parity

The complete packet (including the data payload where used) will have odd parity.

data

Indicates whether the packet has a 32-bit data payload (= 1) or not (= 0).

time stamp

The system has a global time phase that cycles through 00→ 01→ 11→ 10→ 00. Global syn-
chronisation must be accurate to within one time phase (the duration of which is programmable
and may be dynamically variable). A packet is launched with a time stamp equal to the current
time phase, and if a Router finds a packet that is two time phases old (time now XOR time
launched = 11) it will drop it to the local Monitor Processor. The time stamp is inserted by
the local Router if the route field in SAR (see ‘Register details’ on page 33) is 111, which is the
normal case, so the Communication Controller need do nothing here. If SAR holds a different
value in the route field the time stamp from TCR is used.

seq code

P2P packets may use these bits (under software control) to indicate the sequence of data pay-
loads, or for other purposes.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 115

emergency routing

MC & FR packets use these bits to control emergency routing around a failed or congested link:

• 00→ normal packet;

• 01→ the packet has been redirected by the previous Router through an emergency route
along with a normal copy of the packet. The receiving Router should treat this as a
combined normal plus emergency packet.

• 10→ the packet has been redirected by the previous Router through an emergency route
which would not be used for a normal packet.

• 11→ this emergency packet is reverting to its normal route.

route

These bits are set at packet launch to the values defined in the control register. They enable a
packet to be directed to a particular neighbour (0 - 5), broadcast to all or a subset (as defined
in the Router r33 ‘NN broadcast’ bits - see ‘r33: fixed-route packet routing’ on page 49) of
neighbours (6), or to the local Monitor Processor (7).

T (NN packet type)

This bit specifies whether an NN packet is ‘normal’, so that it is delivered to the Monitor
Processor on the neighbouring chip(s), or ‘peek/poke’, so that performs a read or write access
to the neighbouring chip’s System NoC resource.

packet type

These bits indicate whether the packet is a multicast (00), point-to-point (01), nearest-neighbour
(10) or fixed-route (11) packet.

3.2.8.4 Debug access to neighbouring devices

The ‘peek’ and ‘poke’ mechanism gives access to the System NoC address space on any neigh-
bouring device without processor intervention on that chip. To read a word, include its address
in a ‘peek/poke’ nearest neighbour packet output (i.e. with the T bit set). Only word addresses
are permitted. The absence of a payload indicates that a read (‘peek’) is required. This would
normally be done by a Monitor Processor although, in principle, any processor can output his
packet.

The target device performs the appropriate access and returns a response on the corresponding
link input. This is delivered to the processor designated as Monitor Processor in the local router.
The response is a ‘normal’ NN packet which carries the requested word as payload. The address
field is also returned for identification purposes with the least significant bit set to indicate a
response. Bit 1 of the address will also be set if the access caused a bus error. Writing (‘poke’) is
similar; including a payload in the outgoing packet causes that word to be written. A payload-
less response packet is returned which will indicate the error status.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 116

3.2.8.5 Register summary

Base address: 0x20000000 (buffered write), 0x10000000 (unbuffered write).

Name Offset R/W Function

r0: TCR (Tx control) 0x00 R/W Controls packet transmission
r1: TDR (Tx data) 0x04 W 32-bit data for transmission
r2: TKR (Tx key) 0x08 W Send MC key/P2P dest ID & seq code
r3: RSR (Rx status) 0x0C R/W Indicates packet reception status
r4: RDR (Rx data) 0x10 R 32-bit received data
r5: RKR (Rx key) 0x14 R Received MC key/P2P source ID & seq code
r6: SAR (Source addr) 0x18 R/W P2P source address
r7: TSTR (test) 0x1C R/W Used for test purposes

A packet will contain a data payload if r1 is written before r2; this can be performed using
an ARM STM instruction.

3.2.8.6 Register details

r0: TCR - transmit control

012345678910111213141516171819202122232425262728293031

E F O N control byte

1 0 0 1 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

E: empty 31 R Tx buffer empty
F: full 30 R/W Tx buffer full (sticky)
O: overrun 29 R/W Tx buffer overrun (sticky)
N: not full 28 R Tx buffer not full, so it is safe to send a packet
control byte 23:16 W control byte of next sent packet

The parity field in the control byte will be replaced by an automatically-generated value when
the packet is launched, and the sequence field will be replaced by the value in TKR. The time
stamp (where applicable) will be inserted by the local Router if the route field in SAR is 111,
otherwise the value here will be used.

The transmit buffer full and not full controls are expected to be used, by polling or interrupt,
to prevent buffer overrun. Tx buffer full is sticky and, once set, will remain set until 0 is written
to bit 30. Transmit buffer overrun indicates packet loss and will remain set until explicitly
cleared by writing 0 to bit 29.

E, F, O and N reflect the levels on the Tx interrupt signals sent to the interrupt controller.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 117

r1: TDR - transmit data payload

012345678910111213141516171819202122232425262728293031

32-bit data payload for sending with next packet

If data is written into TDR before a send key or dest ID is written into TKR, the packet
initiated by writing to TKR will include the contents of TDR as its data payload. If no data
is written into TDR before a send key or dest ID is written into TKR the packet will carry no
data payload.

r2: TKR - send MC key or P2P dest ID & sequence code

Writing to TKR causes a packet to be issued (with a data payload if TDR was written pre-
viously). If bits[23:22] of the control register in TCR are 00 the Communication Controller is
set to send multicast packets and a 32-bit routing key should be written into TKR. The 32-bit
routing key is used by the associative multicast Routers to deliver the packet to the appropriate
destination(s).

012345678910111213141516171819202122232425262728293031

32-bit multicast routing key

If bits[23:22] of the control register are 01 the Communication Controller is set to send point-
to- point packets and the value written into TKR should include the 16-bit address of the
destination chip in bits[15:0] and a sequence code in bits[17:16]. (See ‘seq code’ on page 32.)

012345678910111213141516171819202122232425262728293031

sq 16-bit destination ID

If bits[23:22] of the control register are 10 the Communication Controller is set to send nearest
neighbour packets and the 32-bit NN address/operation field should be written in TKR.

If bits[23:22] of the control register are 11 the Communications Controller is set to send fixed-
route packets and the value written into TKR is a 32-bit payload, possibly augmented by a
further 32 bits in TDR if this was written previously.

r3: RSR - receive status

012345678910111213141516171819202122232425262728293031

R T A E Route control byte F N P M

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 118

Name bits R/W Function

R: received 31 R Rx packet received
T: parity 30 R/W Rx packet parity error (sticky)
A: framing error 29 R/W Rx packet framing error (sticky)
E: error-free 28 R Rx packet received without error
Route 26:24 R Rx route field from packet
Control byte 23:16 R Control byte of last Rx packet
F: FR packet 3 R error-free fixed-route packet received
N: NN packet 2 R error-free nearest-neighbour packet received
P: P2P packet 1 R error-free point-to-point packet received
M: MC packet 0 R error-free multicast packet received

Any packet that is received will set R, which will remain set until RKR has been read. A
packet that is received with a parity and/or framing error also sets T and/or A. These bits
remain set until explicitly reset by writing 0 to bit 30 or bit 29 respectively.

R, T, A, M, P, N & F reflect the levels on the Rx interrupt signals sent to the interrupt
controller.

Note that these status bits will have a one-cycle latency before becoming valid so, for example,
checking R one cycle after reading RKR will return 1, the old value.

r4: RDR - received data

012345678910111213141516171819202122232425262728293031

32-bit received data payload

If a received packet carries a data payload the payload will be delivered here and will remain
valid until r5 is read.

r5: RKR - received MC key or P2P source ID & sequence code

A received packet will deliver its MC routing key, NN address or P2P source ID and sequence
code to RKR. For an MC or NN packet this will be the exact value that the sender placed into
its TKR for transmission; for a P2P packet the sequence number will be that placed by the
sender into its TKR, and the 16-bit source ID will be that in the sender’s SAR. The register is
read sensitive - once read it will change as soon as the next packet arrives.

r6: SAR - source address and route

012345678910111213141516171819202122232425262728293031

Route p2p source ID

reset: 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 119

Name bits R/W Function

Route 26:24 W Set ‘fake’ route in packet
P2P source ID 15:0 W 16-bit chip source ID for P2P packets

The P2P source ID is expected to be configured once at start-up.
The route field allows a packet to be sent by a processor to the router which appears to have

come from one of the external links. Normally this field will be set to 7 (0b111) but can be set
to a link number in the range 0 to 5 to achieve this.

r7: TSTR - test

Setting bit 0 of this register makes all registers read/write for test purposes. Clearing bit 0
restricts write access to those register bits marked as read-only in this datasheet. All register
bits may be read at any time. Bit 0 is cleared by reset.

3.2.8.7 Fault-tolerance

Fault insertion

Software can cause the Communications Controller to misbehave in several ways including
inserting dodgy routing keys, source IDs, destination IDs.

Fault detection

Parity of received packet; received packet framing error; transmit buffer overrun.

Fault isolation

The Communications Controller is mission-critical to the local processing subsystem, so if it
fails the subsystem should be disabled and isolated.

Reconfiguration

The local processing subsystem is shut down and its functions migrated to another subsystem
on this or another chip. It should be possible to recover all of the subsystem state and to
migrate it, via the SDRAM, to a functional alternative.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 120

3.2.9 Communications NoC

The Communications NoC carries packets between the processors on the same or different chips.
It plays a central role in the system architecture. Its connectivity to the other components is
shown the the chip block diagram in ‘Chip organization’ on page 5.

3.2.9.1 Features

• On- and inter-chip links

• Router which handles multicast, point-to-point, nearest neighbour and fixed-route packets.

• Arbiter to merge all sources into a sequential packet stream into the Router.

• Individual links can be reset to clear blockages and deadlocks.

3.2.9.2 Input structure

The input structure is a tree Arbiter which merges the various sources of packets into a single
stream. Its structure is illustrated below. The numbers indicate source tagging of the packets.

3.2.9.3 Output structure

The Router produces separate outputs to all on-chip processor nodes and to the off-chip links,
so the output connectivity is a set of individual self-timed links.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 121

3.2.10 Router

The Router is responsible for routing all packets that arrive at its input to one or more of its
outputs. It is responsible for routing multicast neural event packets, which it does through
an associative multicast router subsystem, point-to-point packets (for which it uses a look-
up table), nearest- neighbour packets (using a simple algorithmic process), fixed-route packet
routing (defined in a register), default routing (when a multicast packet does not match any
entry in the multicast router) and emergency routing (when an output link is blocked due to
congestion or hardware failure).

Various error conditions are identified and handled by the Router, for example packet parity
errors, time-out, and output link failure.

3.2.10.1 Features

• 1,024 programmable associative multicast (MC) routing entries.

– associative routing based on source ‘key’;

– with flexible ‘don’t care’ masking;

• look-up table routing of point-to-point (P2P) packets.

• routing of nearest-neighbour (NN) and fixed-route (FR) packets.

• support for 40- and 72-bit packets.

• default routing of unmatched multicast packets.

• automatic ‘emergency’ re-routing around failed links.

– programmable wait time before emergency routing and before dropping packet.

• pipelined implementation to route 1 packet per cycle (peak).

– back-pressure flow control;

– power-saving pipeline control.

• failure detection and handling:

– packet parity error;

– time-expired packet;

– output link failure;

– packet framing (wrong length) error.

3.2.10.2 Description

Packets arrive from other nodes via the link receiver interfaces and from internal processor
nodes and are presented to the router one-at-a-time. The Arbiter is responsible for determining
the order of presentation of the packets, but as each packet is handled independently the order
is unimportant (though it is desirable for packets following the same route to stay in order).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 122

Each multicast packet contains an identifier that is used by the Router to determine which
of the outputs the packet is sent to. These outputs may include any subset of the output links,
where the packet may be sent via the respective link transmitter interface, and/or any subset
of the internal processor nodes, where the packet is sent to the respective Communications
Controller.

For the neural network application the identifier can be simply a number that uniquely
identifies the source of the packet – the neuron that generated the packet by firing. This is
‘source address routing’. In this case the packet need contain only this identifier, as a neural
spike is an ‘event’ where the only information is that the neuron has fired. The Router then
functions simply as a look- up table where for each identifier it looks up a routing word, where
each routing word contains 1 bit for each destination (each link transmitter interface and each
local processor) to indicate whether or not the packet should be passed to that destination.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 123

3.2.10.3 Internal organization

The internal organization of the Router is illustrated in the figure below.

Packets are passed as complete 40- or 72-bit units from the Arbiter, together with the identity
of the Rx interface that the packet arrived through (for nearest-neighbour, emergency and
default routing). The first stage of processing here is to identify errors. The second stage
passes the packet to the appropriate routing engines – the multicast (MC) router is activated
only if the packet is error-free and of multicast or fixed-route type, the point-to-point (P2P)
handles point-to-point packets while the NN router handles nearest-neighbour packets and also
deals with default and error routing. The output of the router stage is a vector of destinations
to which the packet should be relayed. The third stage is the emergency routing mechanism
for handling failed or congested links, which it detects using ‘full’ signals fed back from the

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 124

individual destination output buffers.

3.2.10.4 Multicast (MC) router

The MC router uses the routing key in the MC packet to determine how to route the packet.
The router has 1,024 look-up entries, each of which has a mask, a key value, and an output
vector. The packet’s routing key is compared with each entry in the MC router. For each
entry it is first ANDed with the mask, then compared with the entry’s key. If it matches, the
entry’s output vector is used to determine where the packet is sent; it can be sent to any subset
(including all) of the local processors and the output links.

Thus, to programme an MC entry three writes are required: to the key, its mask and the
corresponding vector. A mask of FFFFFFFF ensures all the key bits are used; if any mask bits
are ’0’ the corresponding key bits should also be ’0’, otherwise the entry will not match. This
can be exploited to ensure that unused entries are invalid. The effect of the various combinations
of bit values in the mask[] and key[] regions is summarized in the table below:

key[] mask[] Function

0 0 don’t care - bit matches
1 0 bit misses - entry invalidated
0 1 match 0
1 1 match 1

Thus a particular entry [i] will match only if:

• wherever a bit in the mask[i] word is 1, the corresponding bit in the MC packet routing
word is the same as the corresponding bit in the key[i] word, AND

• wherever a bit in the mask[i] word is 0, the corresponding bit in the key[i] word is also 0.

Note that the MC Router CAM is not initialised at reset. Before the Router is enabled all CAM
entries must be initialised by software. Unused mask[] entries should be initialised to 0000000,
and unused key[] entries should be initialised to FFFFFFFF. This invalidates every bit in the
word, ensuring that the word will miss even in the presence of minor component failures.

The matching is perfomed in a parallel ternary associative memory, with a RAM used to store
the output vectors. The associative memory can be set up so that more than one entry matches
an incoming routing key; in this case the matching entry at the lowest address determines the
output vector to be used. Multiple simultaneous matches can also be used to improve test
efficiency.

If no entry matches an MC packet’s routing key then default routing is employed - the packet
is sent to the output link opposite the input link through which it arrived. Packets from local
processors cannot be default-routed; the router table must have a valid entry for every locally-
sourced packet.

The MC output vector assignment is detailed in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 125

MC vector entry Output port Direction

bit[0] Tx0 East
bit[1] Tx1 North-East
bit[2] Tx2 North
bit[3] Tx3 West
bit[4] Tx4 South-West
bit[5] Tx5 South
bit[6] Processor 0 Local
bit[7] Processor 1 Local
.

bit[23] Processor 17 Local

If any of the multicast packet’s output links are blocked the packet is stalled for a time ‘wait1’
(see ‘r0: Router control register’ on page 44). When that time expires any blocked external
outputs (i.e. links 0-5) will attempt to divert to the next lower number link, modulo 6 (see
section 10.9 on page 42) and retry for a further period, ‘wait2’. If two potential outputs become
unblocked at the same time the original choice is preferred.

A packet which is diverted is typed as specified in ‘emergency routing’ on page 32. If a packet
of such a type is received the router will attempt to output it as a ‘reverting’ packet to the
output with the next lower number to the input on which it was received. If this should also
be a normal packet then conventional multicast routing also takes place.

The routing tables should not be set up so that a packet paths cross each other. If the packet
is programmed to do this then it is not possible to differentiate between an intended and a
reverting packet; the ‘reverting’ designation takes priority.

A received reverting packet is routed normally if it is recognised by the router, otherwise it
is ‘default’ routed to the link numbered two greater (mod 6) than the input link.

fixed-route (FR) packets

The FR router uses the same mechanism as the MC router although the packets do not have a
key field. Instead, all packets of this type are routed to the same output vector, as specified in
r33. Emergency routing is handled identically to MC packets.

This mechanism is intended to facilitate monitoring and debugging by routing data towards
a point which connects with a host system.

3.2.10.5 The point-to-point (P2P) router

The P2P router uses the 16-bit destination ID in a point-to-point packet to determine which
output the packet should be routed to. There is a 3-bit entry for each of the 64K destination
IDs. Each 3-bit entry is decoded to determine whether the packet is delivered to the local
Monitor Processor or one of the six output links, or dropped, as detailed in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 126

P2P table entry Output port Direction

000 Tx0 East
001 Tx1 North-East
010 Tx2 North
011 Tx3 West
100 Tx4 South-West
101 Tx5 South
110 none (drop packet) none
111 Monitor Processor Local

The 3-bit entries are packed into an 8K entry x 24-bit SRAM lookup table. The 24-bit words
hold entries 0, 8, 16, ... in bits [2:0], 1, 9, 17, . . . in bits [5:3], etc.

3.2.10.6 The nearest-neighbour (NN) router

Nearest-neighbour packets are used to initialise the system and to perform run-time flood-fill
and debug functions. The routing function here is to send ‘normal’ NN packets that arrive from
outside the node (i.e. via an Rx link) to the monitor processor and to send NN packets that
are generated internally to the appropriate output (Tx) link(s). This is to support a flood-fill
load process.

In addition, the ‘peek/poke’ form of NN packet can be used by neighbouring systems to
access System NoC resources. Here an NN poke ‘write’ packet (which is a peek/poke type with
a 32-bit payload) is used to write the 32-bit data defined in the payload to a 32-bit address
defined in the address/operation field. An NN peek ‘read’ packet (which is a peek/poke type
without a 32-bit payload) uses the 32-bit address defined in the address/operation field to read
from the System NoC and returns the result (as a ‘normal’ NN packet) to the neighbour that
issued the original packet using the Rx link ID to identify that source. This ‘peek/poke’ access
to a neighbouring chip’s principal resources can be used to investigate a non-functional chip, to
re-assign the Monitor Processor from outside, and generally to get good visibility into a chip
for test and debug purposes.

As the peek/poke NN packets convey only 32-bit data payloads the bottom 2 bits of the
address should always be zero. All peek/poke NN packets return a response to the sender, with
bit 0 of the address set to 1. Bit 1 will also be set to 1 if there was a bus error at the target.
Peeks return a 32-bit data payload; pokes return without a payload. default and error routing
In addition, the NN router performs default and error routing functions.

3.2.10.7 Time phase handling

The Router maintains a 2-bit time phase signal that is used to delete packets that are out-of
date. The time phase logic operates as follows:

• locally-generated packets will have the current time phase inserted (where appropriate);

• a packet arriving from off-chip will have its time phase checked, and if it is two phases old
it will be deleted (dropped, and copied to the Error registers).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 127

3.2.10.8 Packet error handler

The packet error handler is a routing engine that simply flags the packet for dropping to the
Error registers if it detects any of the following:

• a packet parity error;

• a packet that is two time phases old;

• a packet that is the wrong length.

The Monitor Processor can be interrupted to deal with packets dropped with errors.

3.2.10.9 Emergency routing

If a link fails (temporarily, due to congestion, or permanently, due to component failure) action
will be taken at two levels:

• The blocked link will be detected in hardware and subsequent packets rerouted via the
other two sides of a triangle of which the suspect link was an edge, being initially re-routed
via the link which is rotated one link clockwise from the blocked link (so if link Tx0 fails,
link Tx5 is used, etc).

• The Monitor Processor will be informed. It can track the problem using a diagnostic
counter:

– if the problem was due to transient congestion, it will note the congestion but do
nothing further;

– if the problem was due to recurring congestion, it will negotiate and establish a new
route for some of the traffic using this link;

– if the problem appears permanent, it will establish new routes for all of the traffic
using this link.

The hardware support for these processes include:

– default routing processes in adjacent nodes that are invoked by flagging the packet
as an emergency type;

– mechanisms to inform the Monitor Processor of the problem;

– means of inducing the various types of fault for testing purposes.

Emergency rerouting around the triangle requires additional emergency packet types
for MC and FR packets. P2P packets will find their own way to their destination
following emergency routing.

3.2.10.10 Register summary

Base address: 0xe1000000 (buffered write), 0xf1000000 (unbuffered write).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 128

Name Offset R/W Function

r0: control 0x00 R/W Router control register
r1: status 0x04 R Router status
r2: error header 0x08 R error packet control byte and flags
r3: error routing 0x0C R error packet routing word
r4: error payload 0x10 R error packet data payload
r5: error status 0x14 R error packet status
r6: dump header 0x18 R dumped packet control byte and flags
r7: dump routing 0x1C R dumped packet routing word
r8: dump payload 0x20 R dumped packet data payload
r9: dump outputs 0x24 R dumped packet intended destinations
r10: dump status 0x28 R dumped packet status
r11: diag enables 0x2C R/W diagnostic counter enables
r12: timing ctr ctl 0x30 R/W timing counter controls
r13: cycle ctr 0x34 R counts Router clock cycles
r14: busy cyc ctr 0x38 R counts emergency router active cycles
r15: no wt pkt ctr 0x3C R counts packets that do not wait to be issued
r16-31: dly hist 0x40-7C R packet delay histogram counters
r32: diversion 0x80 R/W divert default packets
r33: FR route 0x84 R/W fixed-route packet routing vector
rFN: diag filter 0x200-23C R/W diagnostic count filters (N = 0-15)
rCN: diag count 0x300-33C R/W diagnostic counters (N = 0-15)
rT1: test register 0xF00 R hardware test register 1
rT2: test key 0xF04 R/W hardware test register 2 - CAM input test key
route[1023:0] 0x4000 R/W MC Router routing word values
key[1023:0] 0x8000 W MC Router key values
mask[1023:0] 0xC000 W MC Router mask values
P2P[8191:0] 0x10000 R/W P2P Router routing entries (8 3-bit entries/word)

3.2.10.11 Register details

r0: Router control register

012345678910111213141516171819202122232425262728293031

wait2[7:0] wait1[7:0] W MP[4:0] TP P F T D E R

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The functions of these fields are described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 129

Name bits R/W Function

wait2[7:0] 31:24 R/W wait time before dropping packet
wait1[7:0] 23:16 R/W wait time before emergency routing
W 15 W re-initialise wait counters
MP[4:0] 12:8 R/W Monitor Processor ID number
TP 7:6 R/W time phase (c.f. packet time stamps)
P 5 R/W enable count of packet parity errors
F 4 R/W enable count of packet framing errors
T 3 R/W enable count of packet time stamp errors
D 2 R/W enable dump packet interrupt
E 1 R/W enable error packet interrupt
R 0 R/W enable packet routing

The wait times (defined by wait1[] and wait2[]) are stored in a floating point format to give
a wide range of values with high accuracy at low values combined with simple implementation
using a binary pre-scaler and a loadable counter. Each 8-bit field is divided into a 4-bit mantissa
M[3:0] = wait[3:0] and a 4-bit exponent E[3:0] = wait[7:4]. The wait time in clock cycles is then
given by:

wait = (M + 16− 24−E).2E for E ≤ 4;
wait = (M + 16).2E for E > 4;

Note that wait[7:0] = 0x00 gives a wait time of zero, and the wait time increases monotonically
with wait[7:0]; wait[7:0] = 0xFF is a special case and gives an infinite wait time - wait forever.

There is a small semantic difference between wait1[7:0] and wait2[7:0]:

• wait1[7:0] defines the number of cycles the Router will re-try after the first failed cycle
before attempting emergency routing; wait1[] = 0 will attempt normal routing once and
then try emer- gency routing.

• wait2[7:0] is the number of cycles during which emergency routing will be attempted before
the packet is dumped; wait2[] = 0 therefore effectively disables emergency routing.

If r0 is written when one of the wait counters is running, writing a 1 to W (bit[15]) will
cause the active counter to restart from the new value written to it. This enables the Monitor
Processor to clear a deadlocked ‘wait forever’ condition. If 0 is written to W the active counter
will not restart but will use the new wait time value the next time it is invoked.

Note that the Router is enabled after reset. This is so that a neighbouring chip can peek and
poke a chip that fails after reset using NN packets, to diagnose and possibly fix the cause of
failure.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 130

r1: Router status

All Router interrupt request sources are visible here, as is the current status of the emergency
routing system.

012345678910111213141516171819202122232425262728293031

I E D ER B ctr[15:0]

The functions of these fields are described in the table below:

Name bits R/W Function

I: interrupt active 31 R combined Router interrupt request
E: error int 30 R error packet interrupt active
D: dump int 29 R dump packet interrupt active
ER[1:0] 25:24 R Router output stage status (empty, full but unblocked,

blocked in wait1, blocked in wait2)
B 16 R busy - active packet(s) in Router pipeline
ctr[15:0] 15:0 R diagnostic counter interrupt active

The Router generates three interrupt request outputs that are handled by the VIC on each
processor: diagnostic counter event interrupt, dump interrupt and error interrupt. These cor-
respond to the OR of ctr[15:0], D and E respectively. The interrupt requests are cleared by
reading their respective status registers: r5, r10 and r2N.

r2: error header

A packet which contains an error is copied to r2-5. Once a packet has been copied (indicated by
bit[31] of r5 being set) any further error packet is ignored, except that it can update the sticky
bits in r5 (and errors of the types specified in r0 are counted in r5).

012345678910111213141516171819202122232425262728293031

P F T Route control byte TP

0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

P: parity 29 R packet parity error
F: framing error 28 R packet framing error
T: TP error 27 R packet time stamp error
Route 26:24 R Rx route field of error packet
Control byte 23:16 R control byte of error packet
TP: time phase 7:6 R time phase when packet received

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 131

r3: error routing word

012345678910111213141516171819202122232425262728293031

32-bit routing word

r4: error data payload

012345678910111213141516171819202122232425262728293031

32-bit data payload

r5: error status

This register counts error packets, including time stamp, framing and parity errors as enabled
by r0[5:3]. The Monitor Processor resets r5[31:27] and the error count by reading its contents.

012345678910111213141516171819202122232425262728293031

E V P F T error count

0 0

The functions of these fields are described in the table below:

Name bits R/W Function

E: error 31 R error packet detected
V: overflow 30 R more than one error packet detected
P: parity 29 R packet parity error (sticky)
F: framing error 28 R packet framing error (sticky)
T: TP error 27 R packet time stamp error (sticky)
error count 15:0 R 16-bit saturating error count

r6: dump header

A packet which is dumped because it cannot be routed to its destination is copied to r6-10.
Once a packet has been dumped (indicated by bit[31] of r10 being set) any further packet that
is dumped is ignored, except that it can update the sticky bits in r10 (and can be counted by
a diagnostic counter).

012345678910111213141516171819202122232425262728293031

Route control byte TP

reset: 1 1 1 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 132

Name bits R/W Function

Route 26:24 R Rx route field of dumped packet
Control byte 23:16 R control byte of dumped packet
TP: time phase 7:6 R time phase when packet dumped

r7: dump routing word

012345678910111213141516171819202122232425262728293031

32-bit routing word

r8: dump data payload

012345678910111213141516171819202122232425262728293031

32-bit data payload

r9: dump outputs

012345678910111213141516171819202122232425262728293031

FPE[17:0] LE[5:0]

The functions of these fields are described in the table below:

Name bits R/W Function

FPE[17:0] 23:6 R Fascicle Processor link error caused dump
LE[5:0] 5:0 R Tx link transmit error caused packet dump

r10: dump status

The Monitor Processor resets r10 by reading its contents.

012345678910111213141516171819202122232425262728293031

D V FPE[17:0] LE[5:0]

0 0

The functions of these fields are described in the table below:

Name bits R/W Function

D: dumped 31 R packet dumped
V: overflow 30 R more than one packet dumped
FPE[17:0] 23:6 R Fascicle Proc link error caused dump (sticky)
LE[5:0] 5:0 R Tx link error caused dump (sticky)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 133

r11: diagnostic counter enable/reset

This register provides a single control point for the 16 diagnostic counters, enabling them to
count events over a precisely controlled time period.

012345678910111213141516171819202122232425262728293031

reset[15:0] enable[15:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

reset[31:16] 31:16 R write a 1 to reset diagnostic counter15. . . 0
enable[15:0] 15:0 R enable diagnostic counter 15. . . 0

Writing a 0 to reset[15:0] has no effect. Writing a 1 clears the respective counter.

r12: timing counter controls

This register controls the cycle counters in registers r13, r14 & r15, and in the delay histogram
registers r16-r31.

012345678910111213141516171819202122232425262728293031

T S R H E C

reset: 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

T 18 W reset histogram
S 17 W reset emergency router active cycle counter
R 16 W reset cycle counter
H 2 R/W enable histogram
E 1 R/W enable emergency router active cycle counter
C 0 R/W enable cycle counter

Writing a 0 to R, S or T has no effect. Writing a 1 clears the respective counter.

r13: cycle count

012345678910111213141516171819202122232425262728293031

32-bit non-saturating cycle counter

0 0

r13, when enabled by r12, simply counts the number of Router clock cycles.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 134

r14: emergency router active cycle count

012345678910111213141516171819202122232425262728293031

32-bit non-saturating emergency router active cycle counter

0 0

r14, when enabled by r12, counts the number of cycles for which the emergency router is
actively seeking a route for a packet. This equals the number of packets plus the number of
stall cycles.

r15: unblocked packet count

012345678910111213141516171819202122232425262728293031

32-bit non-saturating unblocked packet counter

0 0

r15, when enabled by r12, counts the number of packets which pass through undelayed by
congested output links.

r16-31: packet delay histogram

012345678910111213141516171819202122232425262728293031

32-bit non-saturating packet delay counter

0 0

r16-r31, when enabled by r12, count the number of times a packet is delayed due to link
congestion, each register counting delays within a range of clock cycles. r15 counts the zero
delay component of the histogram. These counters use the same pre-scaling as wait1 in r0,
so the histogram effectively records the value in the wait mantissa at the time the congestion
resolves.

r32: diversion

This register allows default-routed MC packets to be redirected in the case when their default
path is unavailable, for example as a result of a complete node failure.

012345678910111213141516171819202122232425262728293031

L5 L4 L4 L2 L1 L0

reset: 0 0 0 0 0 0 0 0 0 0 0 0

The 2-bit L0 field can be set to 00 for normal behaviour of packets default routed from link
0, to x1 to divert those packets to the local Monitor Processor, or to 10 to destroy the packets.
L1 likewise controls default routed packets that arrive through link 1, etc.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 135

r33: fixed-route packet routing

012345678910111213141516171819202122232425262728293031

NN broadcast FR output vector

1 1 1 1 1 1 0

r33 routes fixed-route (type 3) packets to off-chip links and local processors in exactly the
same way, with the same bit allocation, as an MC output vector as described in section 10.4 on
page 39.

In addition, the ‘NN broadcast’ bits[31:26] define which links an NN broadcast packet is sent
through. A 1 indicates an active link, and bit[26] is for link 0, bit[27] link 1, etc.

rFN: diagnostic filter control

The Router has 16 diagnostic counters (N = 0..F) each of which counts packets passing through
the Router filtered on packet characteristics defined here. A packet is counted if it has char-
acteristics that match with a ‘1’ in each of the 6 fields. Setting all bits [24:10, 7:0] to ‘1’ will
count all packets.

A diagnostic counter may (optionally) generate an interrupt on each count. The C bit[29] is
a sticky bit set when a counter event occurs and is cleared whenever this register is read.

012345678910111213141516171819202122232425262728293031

I E C Dest Loc PL Def M ER Type

0 0

The functions of these fields are described in the table below:

Name bits R/W Function

I 31 R counter interrupt active: I = E AND C
E 30 R/W enable interrupt on counter event
C 29 R counter event has occurred (sticky)
Dest 24:16 R/W packet dest (Tx link[5:0], MP, local ¬MP, dump)
Loc 15:14 R/W local [x1]/non-local[1x] packet source
PL 13:12 R/W packets with [x1]/without [1x] payload
Def 11:10 R/W default [x1]/non-default [1x] routed packets
M 8 R/W Emergency Routing mode
ER 7:4 R/W Emergency Routing field = 3, 2, 1 or 0
Type 3:0 R/W packet type: fr, nn, p2p, mc

If M (bit[8]) = 0 the Emergency Routing field matches that of the incoming packet, before
any local Emergency Routing, so this can be used to count packets that have been Emergency
Routed by a previous Router but not those that are Emergency Routed here.

If M = 1 the Emergency Routing field is matched against outgoing packets to destinations
selected in the Dest field. If any outgoing packet to a selected destination matches the ER field
the diagnostic count will be incremented. (Note that packets to internal destinations cannot be
emergency routed and so have ER = 0.)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 136

rCN: diagnostic counters

012345678910111213141516171819202122232425262728293031

32-bit count value

0 0

Each of these counters can be used to count selected types of packets under the control of
the corresponding rFN. The counter can have any value written to it, and will increment from
that value when respective events occur. If an event occurs as the counter is being written it
will not be counted. To avoid missing an event it is better to avoid writing the counter; instead,
read it at the start of a time period and subtract this value from the value read at the end of
the period to get a count of the number of events during the period.

rT1: hardware test register 1

This register is used only for hardware test purposes, and has no useful functions for the
application programmer.

012345678910111213141516171819202122232425262728293031

entry M

The functions of these fields are described in the table below:

Name bits R/W Function

M 0 R MC router associative look-up ‘miss’ output
entry 10:1 R MC router associative look-up entry address

The input key used for the associative look-up whenever this register is read is in register T2.

rT2: hardware test register 2

012345678910111213141516171819202122232425262728293031

32-bit key

0 0

This register holds the key presented to the association input of the multicast router when
register T1 is read.

3.2.10.12 Fault-tolerance

The Communications Router has some internal fault-tolerance capacity, in particular it is pos-
sible to map out a failed multicast router entry. This is a useful mechanism as the multicast
router dominates the silicon area of the Communications Router.

There is also capacity to cope with external failures. Emergency routing will attempt to
bypass a faulty or blocked link. In the event of a node (or larger) failure this will not be
sufficient. In order to tolerate a chip failure several expedients can be employed on a local basis:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 137

• P2P packets can be routed around the obstruction;

• MC packets with a router entry can be redirected appropriately.

In most cases, default MC packets cannot sensibly be trapped by adding table entries due to
their (almost) infinite variety. To allow rerouting, these packets can be dropped to the Monitor
Processor on a link-by-link basis using the diversion register. In principle they can then be
routed around the obstruction as P2P payloads before being resurrected at the opposite side.

Should the Monitor Processor become overwhelmed, it is also possible to use the diversion
register to eliminate these packets in the Router; this prevents them blocking the Router pipeline
whilst waiting for a timeout and thus delaying viable traffic.

Fault detection

• packet parity errors.

• packet time-phase errors.

• packet unroutable errors (e.g. a locally-sourced multicast packet which doesn’t match any
entry in the multicast router).

• wrong packet length.

Fault isolation

• a multicast router entry can be disabled if it fails - see initialisation guidance above.

Reconfiguration

• since all multicast router entries are identical the function of any entry can be relocated
to a spare entry.

• if a router becomes full a global reallocation of resources can move functionality to a
different router.

3.2.10.13 Test

Production test

The ternary CAM used in the multicast router has access for parallel testing, so a processor
can write a value to all locations and see if an input with 1 bit flipped results in a hit or a
miss. The CAM is not directly readable - attempts to read this space will result in bus errors
- and must be tested by association. To do this a key must first be written into register rT2.
A subsequent read of register rT1 will then indicate if that key has associated with any CAM
entries. If it has not then rT1〈0〉 will be set and the other bits of this register will be undefined;
if one or more of the entries are matched then the one at the lowest address in the CAM will
be indicated in the ’entry’ field.

All RAMs have read-write access for test purposes.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 138

3.2.11 Inter-chip transmit and receive interfaces

Inter-chip communication is implemented by extending the Communications NoC from chip to
chip. In order to sustain throughput, there is a protocol conversion at each chip boundary from
standard CHAIN 3-of-6 return-to-zero to 2-of-7 non-return-to-zero. The interfaces include logic
to minimise the risk of a protocol deadlock caused by glitches on the inter-chip wires.

3.2.11.1 Features

• transmit (Tx) interface:

– converts on-chip 3-of-6 RTZ symbol into off-chip 2-of-7 NRZ symbol;

– disable control input;

– reset input.

• receive (Rx) interface:

– converts off-chip 2-of-7 NRZ symbol into on-chip 3-of-6 RTZ symbol;

– disable control input;

– reset input.

3.2.11.2 Programmer view

The only programmer-accessible features implemented in these interfaces are software reset and
a disable control, both accessed via the System Controller. In normal operation these interfaces
provide transparent connectivity between the routing network on one chip and those on its
neighbours.

3.2.11.3 Fault-tolerance

The fault inducing, detecting and resetting functions are controlled from the System Controller
(see ‘System Controller’ on page 66). The interfaces are ‘glitch hardened’ to greatly reduce the
probability of a link deadlock arising as a result of a glitch on one of the inter-chip wires. Such
a glitch may introduce packet errors, which will be detected and handled elsewhere, but it is
very unlikely to cause deadlock. It is expected that the link reset function will not be required
often.

Fault insertion

• an input controlled by the System Controller causes the interface to deadlock (by disabling
it).

Fault detection

• Monitor Processors should regularly test link functionality.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 139

Fault isolation

• the interface can be disabled to isolate the chip-to-chip link. This input from the System
Controller is also used to create a fault.

Reconfiguration

• the link interface can be reset by the System Controller to attempt recovery from a fault.

• the link interface can be isolated and an alternative route used.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 140

3.2.12 System NoC

The System NoC has a primary function of connecting the ARM968 processors to the SDRAM
interface. It is also used to connect the processors to system control and test functions, and for
a variety of other purposes.

3.2.12.1 Features

• supports full bandwidth block transfers between the SDRAM and the ARM968 processors.

• the Router is an additional initiator for system debug purposes.

• can be reset (in subsections) to clear deadlocks.

• multiple targets:

– SDRAM interface - ARM PL340

– System RAM

– System ROM

– Ethernet interface

– System Controller

– Watchdog Timer.

– Router configuration registers

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 141

3.2.12.2 Organisation

CPU0 CPU1

AXI M AXI M

AXI S APB3 S AHB S

AHB S−>M

AHB M

AHB

SysCtl Watchdog

AXI M

APB3AXI 64

32

SM

Router

PL340

SS

AHB S

EthernetSysROMSysRAM

AHB

AHB

CPU2−17

router_clkeven_node_clk odd_node_clk

memory_clk

System NoC

AHB 32

32

32

32

64AXIAXI 64 AXI 64

system_clk

even_node_clk odd_node_clk

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 142

3.2.13 SDRAM interface

The SDRAM interface connects the System NoC to an off-chip SDRAM device. It is the ARM
PL340, described in ARM document DDI 0331D.

3.2.13.1 Features

• control for external Mobile DDR SDRAM memory device

• memory request queue

• out of order request sequencing to maximise memory throughput

• AXI interface to System NoC

• delay-locked loop (DLL) to realign SDRAM data strobes with the input data streams

3.2.13.2 Register summary

Base address: 0xe0000000 (buffered write), 0xf0000000 (unbuffered write).

User registers

The following registers allow normal user programming of the PL340 SDRAM interface:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 143

Name Offset R/W Function

r0: status 0x00 R memory controller status
r1: command 0x04 W PL340 command
r2: direct 0x08 W direct command
r3: mem cfg 0x0C R/W memory configuration
r4: refresh prd 0x10 R/W refresh period
r5: CAS latency 0x14 R/W CAS latency
r6: t dqss 0x18 R/W write to DQS time
r7: t mrd 0x1C R/W mode register command time
r8: t ras 0x20 R/W RAS to precharge delay
r9: t rc 0x24 R/W active bank x to active bank x delay
r10: t rcd 0x28 R/W RAS to CAS minimum delay
r11: t rfc 0x2C R/W auto-refresh command time
r12: t rp 0x30 R/W precharge to RAS delay
r13: t rrd 0x34 R/W active bank x to active bank y delay
r14: t wr 0x38 R/W write to precharge delay
r15: t wtr 0x3C R/W write to read delay
r16: t xp 0x40 R/W exit power-down command time
r17: t xsr 0x44 R/W exit self-refresh command time
r18: t esr 0x48 R/W self-refresh command time
id n cfg 0x100 R/W QoS settings
chip n cfg 0x200 R/W external memory device configuration
user status 0x300 R DLL test and status inputs
user config0 0x304 W DLL test and control outputs
user config1 0x308 W DLL fine-tune control

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the program-
mer:

Name Offset R/W Function

int cfg 0xE00 R/W integration configuration register
int inputs 0xE04 R integration inputs register
int outputs 0xE08 W integration outputs register
periph id n 0xFE0-C R PL340 peripheral ID byte registers
pcell id n 0xFF0-C R PL340 Prime Cell ID byte registers

See ARM document DDI 0331D for further details of the test registers.

Restrictions on when registers may be modified

Normally the PL340 registers will be initialised during system start-up and then left alone.
Restrictions on when the registers may be safely modified are detailed in the PL340 datasheet,
ARM doccument DDI 0331D.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 144

The DLL test and control outputs and the DLL fine-tune control registers should only be
written to when the PL340 is quiescent and no processor is issuing an SDRAM access or has
one pending.

3.2.13.3 Register details

r0: memory controller status

012345678910111213141516171819202122232425262728293031

M B C D W S

The functions of these fields are described in the table below:

Name bits R/W Function

M: monitors 11:10 R Number of exclusive access monitors (0, 1, 2, 4)
B: banks 9 R Fixed at 1’b01 = 4 banks on a chip
C: chips 8:7 R Number of different chip selects (1, 2, 3, 4)
D: DDR 6:4 R DDR type: 3b’011 = Mobile DDR
W: width 3:2 R Width of external memory: 2’b01 = 32 bits
S: status 1:0 R Config, ready, paused, low-power

r1: memory controller command

012345678910111213141516171819202122232425262728293031

cmd

The function of this field is described in the table below:

Name bits R/W Function

cmd: command 2:0 W Go, sleep, wake-up, pause, config, active pause

r2: direct command

012345678910111213141516171819202122232425262728293031

chip cmd bank addr

This register is used to pass a command directly to a memory device attached to the PL340.
The functions of these fields are described in the table below:

Name bits R/W Function

chip 21:20 W chip number
cmd 19:18 W command passed to memory device
bank 17:16 W bank passed to memory device
addr[13:0] 13:0 W address passed to memory device

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 145

r3: memory configuration

012345678910111213141516171819202122232425262728293031

act QoS burst C P pwr down A row col

reset: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

The function of this field is described in the table below:

Name bits R/W Function

act 22:21 R/W active chips: number for refresh generation
QoS 20:18 R/W selects the 4-bit QoS field from the AXI ARID
burst 17:15 R/W burst length (1, 2, 4, 8, 16)
C 14 R/W stop memory clock when no access
P 13 R/W auto-power-down memory when inactive
pwr down 12:7 R/W # memory cycles before auto-power-down
A 6 R/W position of auto-pre-charge bit (10/8)
row 5:3 R/W number of row address bits (11-16)
col 2:0 R/W number of column address bits (8-12)

r4: refresh period

012345678910111213141516171819202122232425262728293031

refresh period

reset: 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0

The function of this field is described in the table below:

Name bits R/W Function

refresh period 14:0 R/W memory refresh period in memory clock cycles

r5: CAS latency

012345678910111213141516171819202122232425262728293031

cas lat H

reset: 0 1 1 0

The functions of these fields are described in the table below:

Name bits R/W Function

cas lat 3:1 R/W CAS latency in memory clock cycles
H 0 R/W CAS half cycle - must be set to 1’b0

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 146

r6: t dqss

012345678910111213141516171819202122232425262728293031

tdqss

reset: 0 1

The function of this field is described in the table below:

Name bits R/W Function

tdqss 1:0 R/W write to DQS in memory clock cycles

r7: t mrd

012345678910111213141516171819202122232425262728293031

t mrd

reset: 0 0 0 0 0 1 0

The function of this field is described in the table below:

Name bits R/W Function

t mrd 6:0 R/W mode reg cmnd time in memory clock cycles

r8: t ras

012345678910111213141516171819202122232425262728293031

t ras

reset: 0 1 1 1

The function of this field is described in the table below:

Name bits R/W Function

t ras 3:0 R/W RAS to precharge time in memory clock cycles

r9: t rc

012345678910111213141516171819202122232425262728293031

t rc

reset: 0 1 1 1

The function of this field is described in the table below:

Name bits R/W Function

t rc 3:0 R/W Bank x to bank x delay in memory clock cycles

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 147

r10: t rcd

012345678910111213141516171819202122232425262728293031

sched t rcd

reset: 0 1 1 1 0 1

The functions of these fields are described in the table below:

Name bits R/W Function

t rcd 2:0 R/W RAS to CAS min delay in memory clock cycles
sched 5:3 R/W RAS to CAS min delay in aclk cycles −3

r11: t rfc

012345678910111213141516171819202122232425262728293031

sched t rfc

reset: 1 0 0 0 0 1 0 0 1 0

The functions of these fields are described in the table below:

Name bits R/W Function

sched 9:5 R/W Auto-refresh cmnd time in aclk cycles −3
t rfc 4:0 R/W Auto-refresh cmnd time in memory clock cycles

r12: t rp

012345678910111213141516171819202122232425262728293031

sched t rp

reset: 0 1 1 1 0 1

The functions of these fields are described in the table below:

Name bits R/W Function

sched 5:3 R/W Precharge to RAS delay in aclk cycles −3
t rp 2:0 R/W Precharge to RAS delay in memory clock cycles

r13: t rrd

012345678910111213141516171819202122232425262728293031

t rrd

reset: 0 0 1 0

The function of this field is described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 148

Name bits R/W Function

t rrd 3:0 R/W Bank x to bank y delay in memory clock cycles

r14: t wr

012345678910111213141516171819202122232425262728293031

t wr

reset: 0 1 1

The function of this field is described in the table below:

Name bits R/W Function

t wr 2:0 R/W Write to precharge dly in memory clock cycles

r15: t wtr

012345678910111213141516171819202122232425262728293031

t wtr

reset: 0 1 0

The function of this field is described in the table below:

Name bits R/W Function

t wtr 2:0 R/W Write to read delay in memory clock cycles

r16: t xp

012345678910111213141516171819202122232425262728293031

t xp

reset: 0 0 0 0 0 0 0 1

The function of this field is described in the table below:

Name bits R/W Function

t xp 7:0 R/W Exit pwr-dn cmnd time in memory clock cycles

r17: t xsr

012345678910111213141516171819202122232425262728293031

t xsr

reset: 0 0 0 0 0 1 0 1

The function of this field is described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 149

Name bits R/W Function

t xsr 7:0 R/W Exit self-rfsh cmnd time in mem clock cycles

r18: t esr

012345678910111213141516171819202122232425262728293031

t esr

reset: 0 0 0 1 0 1 0 0

The function of this field is described in the table below:

Name bits R/W Function

t esr 7:0 R/W Self-refresh cmnd time in memory clock cycles

id n cfg

012345678910111213141516171819202122232425262728293031

QoS max N E

reset: 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

QoS max 9:2 R/W maximum QoS
N 1 R/W minimum QoS
E 0 R/W QoS enable

chip n cfg

012345678910111213141516171819202122232425262728293031

B match mask

reset: 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

There is one of these registers for each external chip that is supported. The functions of these
fields are described in the table below:

Name bits R/W Function

B 16 R/W bank-rol-column/row-bank-column
match 15:8 R/W address match
mask 7:0 R/W address mask

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 150

3.2.13.4 The delay-locked loop (DLL)

The SDRAM interface incorporates a delay-locked loop which, though outside the PL340, is
controlled via the PL340 user status and configuration registers.

The general organisation of the DLL is shown below:

The basic operation is that a reference clock, CK, running at twice the SDRAM clock (i.e.
nominally 333 MHz for a 166 MHz SDRAM), is passed through a master delay line and the
output, DCK, inverted and compared with the original clock. A phase comparator drives an
asynchronous finite state machine (AFSM) that in turn drives an up/down bar code counter
to line these two signals up. The SDRAM data strobes, DQS0-3, are passed through matched
delay lines to line up with the middle of the data valid period. Software can fine-tune the
individual strobe timings.

There is a 6th, spare, delay line, that can be used if any of the five primary delay lines fails.

user status: DLL test and status inputs

012345678910111213141516171819202122232425262728293031

L M R K I D C3S3C2S2C1S1C0S0 Meter

reset: 0

The function of these fields is described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 151

Name bits R/W Function

L, M, R 22:20 R 3-phase bar-code control output
K: locKed 18 R Phase comparator is locked
I: Incing 17 R Phase comparator is increasing delay
D: Decing 16 R Phase comparator is reducing delay
C0, C1, C2, C3 9,11,13,15 R Clock faster than strobe 0-3
S0, S1, S2, S3 8,10,12,14 R Strobe 0-3 faster than Clock
Meter 6:0 R Current position of bar-code output

user config0: DLL test and control outputs

012345678910111213141516171819202122232425262728293031

E TLL M R T5ID I D S5 S4 S3 S2 S1 S0

reset: 0

The function of these fields is described in the table below:

Name bits R/W Function

E: Enable 24 W Enable DLL (0 = reset DLL)
TL: Test LMR 23 W Enable forcing of L, M, R
L, M, R 22:20 W Force 3-phase bar-code control inputs
T5: Test 5 19 W Substitute delay line 5 for 4 for testing
ID: Test ID 18 W Enable forcing of Incing and Decing
I: Test Incing 17 W Force Incing (if ID = 1)
D: Test Decing 16 W Force Decing (if ID = 1)
S0-S5 11:0 W Input selects for the 6 delay lines {def, alt, 0, 1}

The default inputs for the 6 delay lines selected by S0-S5 are Tune 2 (master); Tune 0 (DQS0);
Tune 1 (DQS1); Tune 3 (DQS2); Tune 4 (DQS3) as shown in the figure above.

The alternative inputs for the 6 delay lines are: Tune 3 (master); Tune 1 (DQS0); Tune 2
(DQS1); Tune 4 (DQS2); Tune 5 (DQS3).

user config1: DLL fine-tune control

012345678910111213141516171819202122232425262728293031

Tune 5 Tune 4 Tune 3 Tune 2 Tune 1 Tune 0

reset: 0

The function of these fields is described in the table below:

Name bits R/W Function

Tune0 . . . 5 23:0 W Fine tuning control on delay lines 0 . . . 5

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 152

3.2.13.5 Fault-tolerance

Fault insertion

The DLL can be driven by software into pretty much any defective state.

Fault detection

The DLL delay lines can be tested for stuck-at faults and relative timing accuracy.

Fault isolation

A defective or out-or-spec delay line can be isolated.

Reconfiguration

A defective or out-or-spec delay line can be isolated and replaced by using the spare delay line.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 153

3.2.14 System Controller

The System Controller incorpora tes a number of functions for system start-up, fault-tolerance
testing (invoking, detecting and resetting faults), general performance monitoring, etc.

3.2.14.1 Features

• ‘Arbiter’ read-sensitive register bit to determine Monitor Processor ID at start-up.

• 32 test-and-set registers for general software use, e.g. to enforce mutually exclusive access
to critical data structures.

• individual interrupt, reset and enable controls and ‘processor OK’ status bits for each
processor.

• sundry parallel IO and test and control registers.

• PLL and clock management registers.

3.2.14.2 Register summary

Base address: 0xe2000000 (buffered write), 0xf2000000 (unbuffered write).

These registers may only be accessed by a processor executing in a privileged mode; any
attempt to access the System Controller from user-mode code will return a bus error. Only
aligned word accesses are supported - misaligned word or byte or half-word accesses will return
a bus error.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 154

Name Offset R/W Function

r0: Chip ID 0x00 R Chip ID register (hardwired)
r1: CPU disable 0x04 R/W Each bit disables a processor
r2: Set CPU IRQ 0x08 R/W Writing a 1 sets a processor’s interrupt line
r3: Clr CPU IRQ 0x0C R/W Writing a 1 clears a processor’s interrupt line
r4: Set CPU OK 0x10 R/W Writing a 1 sets a CPU OK bit
r5: Clr CPU OK 0x14 R/W Writing a 1 clears a CPU OK bit
r6: CPU Rst Lv 0x18 R/W Level control of CPU resets
r7: Node Rst Lv 0x1C R/W Level control of CPU node resets
r8: Sbsys Rst Lv 0x20 R/W Level control of subsystem resets
r9: CPU Rst Pu 0x24 R/W Pulse control of CPU resets
r10: Node Rst Pu 0x28 R/W Pulse control of CPU node resets
r11: Sbsys Rst Pu 0x2C R/W Pulse control of subsystem resets
r12: Reset Code 0x30 R Indicates cause of last chip reset
r13: Monitor ID 0x34 R/W ID of Monitor Processor
r14: Misc control 0x38 R/W Miscellaneous control bits
r15: GPIO pull u/d 0x3C R/W General-purpose IO pull up/down enable
r16: I/O port 0x40 R/W I/O pin output register
r17: I/O direction 0x44 R/W External I/O pin is input (1) or output (0)
r18: Set IO 0x48 R/W Writing a 1 sets IO register bit
r19: Clear IO 0x4C R/W Writing a 1 clears IO register bit
r20: PLL1 0x50 R/W PLL1 frequency control
r21: PLL2 0x54 R/W PLL2 frequency control
r22: Set flags 0x58 R/W Set flags register
r23: Reset flags 0x5C R/W Reset flags register
r24: Clk Mux Ctl 0x60 R/W Clock multiplexer controls
r25: CPU sleep 0x64 R CPU sleep (awaiting interrupt) status
r26-28 0x68-70 R/W Temperature sensor registers [2:0]
r32-63: Arbiter 0x80-FC R Read sensitive semaphores to determine MP
r64-95: Test&Set 0x100-17C R Test & Set registers for general software use
r96-127: Test&Clr 0x180-1FC R Test & Clear registers for general software use
r128: Link disable 0x200 R/W Disables for Tx and Rx link interfaces

3.2.14.3 Register details

r0: Chip ID

012345678910111213141516171819202122232425262728293031

device version Year # CPUs

0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0

This register is configured at chip design time to hold a unique ID for the chip type. The
device code is 591 in BCD. The version will increment with each design variant. Year holds the
last two digits of the year of first fabrication, in BCD. The bottom byte holds the number of

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 155

CPUs on the chip.

The test chip ID is 0x59100902. The full chip ID is 0x59111012.

r1: CPU disable

012345678910111213141516171819202122232425262728293031

A 0x5EC ProcDis[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will disable processor[n], stalling any attempted access
to its local AHB and thereby preventing it from accessing any external resource. Writing a
0 will enable it. For a write to be effective it must include a security code in bits [31:20]:
0x5ECXXXXX.

To ensure the processor is disabled in a low-power state it should be disabled and then reset
via r9.Reading from this register returns the current status of all of the processor disable lines.

r2: Set CPU interrupt request

012345678910111213141516171819202122232425262728293031

A 0x5EC SetInt[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will set an interrupt request to processor[n], which can
be enabled/ disabled and routed to IRQ or FIQ by that processor’s local Vectored Interrupt
Controller (VIC - see page 12). Writing a 0 has no effect. For a write to be effective it must
include a security code in bits [31:20]: 0x5ECXXXXX. Reading from this register returns the
current status of all of the processor interrupt lines.

r3: Clear CPU interrupt request

012345678910111213141516171819202122232425262728293031

A 0x5EC ClrInt[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will clear an interrupt request to processor[n]. Writing
a 0 has no effect. For a write to be effective it must include a security code in bits [31:20]:
0x5ECXXXXX. Reading from this register returns the current status of all of the processor
interrupt lines.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 156

r4: Set CPU OK

012345678910111213141516171819202122232425262728293031

SetOK[31:0]

0 0

Writing a 1 to bit[n] (n = 0. . . 31) will set that bit, indicating that processor[n] is believed to
be functional. Writing a 0 has no effect. Reading from this register returns the current status
of all of the processor OK bits. Any bits that do not correspond to a processor number can be
used for any purpose - the functions of this register are entirely defined by software.

In normal use a processor will set its own bit after performing some functional self-testing. The
Monitor Processor will read the register after the start-up phase to establish which processors
are functional, and assign them tasks accordingly. The MP may attempt to restart faulty
processors by resetting them via r6-11, or it may take them off-line by disabling their clocks via
r1.

r5: Clear CPU OK

012345678910111213141516171819202122232425262728293031

ClrOK[31:0]

0 0

Writing a 1 to bit[n] (n = 0. . . 31) will clear that bit, indicating that processor[n] is not
confirmed as functional or has detected a fault. Writing a 0 has no effect. Reading from this
register returns the current status of all of the processor OK bits.

r6: CPU node soft reset - level

012345678910111213141516171819202122232425262728293031

A 0x5EC LSreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will set a level on the reset input of processor[n] which is
ORed with the corresponding output of the pulse reset generator, r9. For a write to be effective
it must include a security code in bits [31:20]: 0x5ECXXXXX. Reading from this register returns
the current status of this register, that is the level before the OR with the pulse reset output.

This is a soft reset which resets the ARM9 processor core, thereby restarting its execution at
the reset vector, and resets the Communication and DMA Controllers once active transactions
have completed.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 157

r7: CPU node hard reset - level

012345678910111213141516171819202122232425262728293031

A 0x5EC LHreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will set a level on the reset input of processor node[n]
which is ORed with the corresponding output of the pulse reset generator, r10. For a write to
be effective it must include a security code in bits [31:20]: 0x5ECXXXXX. Reading from this
register returns the current status of this register, that is the level before the OR with the pulse
reset output.

This is a hard reset which resets the entire ARM968 processor node, including the peripheral
hardware components in that node.

r8: Subsystem reset - level

012345678910111213141516171819202122232425262728293031

A 0x5EC LSSreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will set a level on the reset input of a subsystem. For a
write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX. Reading
from this register returns the current status of this register, that is the level before the OR with
the pulse reset output.

The assignment of these bits to subsystems is given in the following table:

LSSreset Reset target

0 Router
1 PL340 SDRAM controller
2 System NoC
3 Communications NoC

4-9 Tx link 0-5
10-15 Rx link 0-5

16 System AHB & Clock Gen (pulse reset only)
17 Entire chip (pulse reset only)

18-19 unassigned

r9: CPU node soft reset - pulse

012345678910111213141516171819202122232425262728293031

A 0x5EC PSreset[17:0]

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 158

Writing a 1 to bit[n] (n = 0. . . 17) will generate a pulse (of 256 System Controller clock cycles)
on the reset input of processor[n], which is ORed with the corresponding output of the reset
level register r6. For a write to be effective it must include a security code in bits [31:20]:
0x5ECXXXXX. Reading from this register returns the current status of the reset lines after the
OR with the level reset output.

The reset function is as described for r6.

r10: CPU node hard reset - pulse

012345678910111213141516171819202122232425262728293031

A 0x5EC PHreset[17:0]

Writing a 1 to bit[n] (n = 0. . . 17) will generate a pulse (256 clock cycles long) on the reset input
of processor node[n], which is ORed with the corresponding output of the reset level register
r7. For a write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.
Reading from this register returns the current status of the reset lines after the OR with the
level reset output.

The reset function is as described for r7.

r11: Subsystem reset - pulse

012345678910111213141516171819202122232425262728293031

A 0x5EC PSSreset[17:0]

Writing a 1 to bit[n] (n = 0. . . 17) will generate a pulse (256 clock cycles long) on the reset
input of a subsystem. For a write to be effective it must include a security code in bits [31:20]:
0x5ECXXXXX. Reading from this register returns the current status of the reset lines after the
OR with the level reset output.

The assignment of these bits to subsystems is the same as that described for r8.

r12: Reset code

012345678910111213141516171819202122232425262728293031

RC

These bits return a code indicating the last active reset source. The reset sources are given
in the following table:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 159

RC[2:0] Reset source Hard/soft reset actionbits

000 POR - Power-on reset hard, everything
001 WDR - Watchdog reset hard, all but MPID[4:0] in r13
010 UR - User reset hard, all but MPID[4:0] in r13 & B in

r14
011 REC - Reset entire chip (r11 bit 17) hard, all but MPID[4:0] in r13 & B in

r14
100 WDI - Watchdog interrupt soft, only Monitor Processor if R = 1 in

r13

The Power-on reset RC[2:0] = 000 hard resets everything, including setting MPID[4:0] =
11111 in r13 and B = 0 in r14.

WDR, UR and REC (RC[2:0] = 001, 010 or 011) do not reset MPID[4:0] in r13, which retains
its value through the reset, thereby preventing the old Monitor Processor from competing to be
Monitor Processor after the reset.

UR and REC (RC[2:0] = 010 or 011) do not reset B in r14, which will retain its value through
the reset, thereby allowing booting from RAM.

The Watchdog interrupt RC[2:0] = 100 only soft resets the Monitor Processor (with a 256
cycle pulse), and then only if this is enabled in r13.

r13: Monitor ID

This register holds the ID of the processor which has been chosen as the Monitor Processor,
together with associated control bits.

Software must set the MPID value in the Router Control Register, which the Router uses to
route P2P and NN packets to the Monitor Processor, to match MPID[4:0].

MPID[4:0] is initialised by power-on reset to an invalid value which does not refer to any
processor. Other forms of reset do not change MPID[4:0]. It is set to the ID of the processor
that wins the competition at start-up by reading its respective register r32 to r63 first.

012345678910111213141516171819202122232425262728293031

A 0x5EC R A MPID

reset: 0 1 1 1 1 1 1

The functions of these fields are described in the table below:

Name bits R/W Function

R 16 R/W Reset Monitor Processor on Watchdog interrupt
A 8 R/W Write 1 to set MP arbitration bit (see r32-63)
MPID[4:0] 4:0 R/W Monitor Processor ID

The ‘R’ bit causes the Watchdog interrupt signal to cause a soft reset of processor[MPID],
which will override any interrupt masking by the Monitor Processor. In any case, this interrupt
is available at all processor VICs and can therefore be enabled locally as an IRQ or FIQ source.

Reading bit[8] returns the current value of the MP arbitration bit (see r32-63).
For a write to r13 to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 160

r14: Misc control

This register supports general chip control.

012345678910111213141516171819202122232425262728293031

R D C E T J B

reset: 0 0 0 0 0 0 0

The function of these fields is described in the table below:

Name bits R/W Function

R 20 R read value on JTAG RTCK pin
D 19 R read value on JTAG TDO pin
C 18 R read value on Clk32 pin
E 17 R read value on Ethermux pin
T 16 R read value on Test pin
J 15 R/W select on-chip (1) or off-chip (0) control of JTAG pins
B 0 R/W map System ROM (0) or RAM (1) to Boot area

The JTAG port is controllable by software using r14 and r16. Bit[15] of r14 selects this option
when high. When selected, the GPIO bits in r16 control the JTAG inputs: GPIO[27:24] drive
JTAG NTRST, JTAG TMS, JTAG TDI and JTAG TCK respectively, and the JTAG outputs
JTAG TDO and JTAG RTCK are readable via r14 as above.

When JTAG is being driven externally, reading the r14 bits[20:19] and r16 bits[27:24] returns
the state of the JTAG pins.

B is reset by power-on reset (POR) and watchdog reset (WDR).

r15: GPIO pull up/down control

012345678910111213141516171819202122232425262728293031

IO port pull up/down enable

1 1

The functions of these bit fields are described in the table below:

bits R/W Function

31:29 R/W GPIO[31:29] - on-package SDRAM control - pull-
down

28:24 R/W Unused
23:20 R/W GPIO[23:20] & MII TxD port pull-down
19:16 R/W GPIO[19:16] & MII RxD port pull-up
15:0 R/W GPIO[15:0] pull-down

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 161

r16: IO port

012345678910111213141516171819202122232425262728293031

IO port data

0 0

This register holds a 32-bit value, most bits of which may be driven out through pins when
the corresponding bit in r17 is 0. When read, the values in this register are returned. The
number of physical IO pins available depends on whether or not the Ethernet interface is in use.
The external EtherMux input, if driven high, enables the Ethernet Tx D[3:0] and Rx D[3:0]
onto the pins used for IO[23:16]. If EtherMux is low these pins are available for general-purpose
IO use.

The functions of these bit fields are described in the table below:

bits R/W Function

31:29 R/W On-package SDRAM control
28 R/W Unused

27:24 R/W Can drive the JTAG interface
23:20 R/W IO pins or MII TxD
19:16 R/W IO pins or MII RxD
15:0 R/W IO pins

Note: GPIO[15:14] can be configured to access the spare delay line in the DLL under the
control of the external Test pin. If Test = 1 then spare DLL input = GPIO[14] and GPIO[15]
= spare DLL output; if Test = 0 GPIO[15:14] connect to the System Controller GPIO pins.

r17: IO direction

012345678910111213141516171819202122232425262728293031

IO port direction

1 1

This register determines whether each IO port bit is an input (1) or an output (0). Setting
a bit to an input does not invalidate the corresponding bit in r16 - that value will be held in
r16 until explicitly changed by a write to r16. When read, this register returns the value last
written.

r18: Set IO

012345678910111213141516171819202122232425262728293031

SetIO

0 0

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 162

Writing a 1 sets the corresponding bit in r16. Writing a 0 has no effect.

Reading this register returns the values on the IO pins (if present).

r18: Clear IO

012345678910111213141516171819202122232425262728293031

ClearIO

0 0

Writing a 1 clears the corresponding bit in r16. Writing a 0 has no effect. Reading this
register returns the values on the IO pins (if present).

r20: PLL1 control, and register 21: PLL2 control

012345678910111213141516171819202122232425262728293031

T P FR MS[5:0] NS[5:0]

reset: 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0

The function of these fields is described in the table below:

Name bits R/W Function

T 24 R/W test (=0 for normal operation)
P 18 R/W Power UP
FR[1:0] 17:16 R/W frequency range (25-50, 50-100, 100-200, 200-400 MHz)
MS[5:0] 13:8 R/W output clock divider
NS[5:0] 5:0 R/W input clock multiplier

The PLL output clock frequency, with a 10 MHz input clock, is given by 10×NS/MS. Thus
setting NS[5:0] = 010100 [=20] and MS[5:0] = 000001 [=1] will give 200 MHz.

r22: Set flags

012345678910111213141516171819202122232425262728293031

32-bit flags register

0 0

Writing a 1 to any bit position sets the corresponding bit in the flags register. Writing a 0
has no effect. Reading returns the value of the flags register.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 163

r23: Reset flags

012345678910111213141516171819202122232425262728293031

32-bit flags register

0 0

Writing a 1 to any bit position sets the corresponding bit in the flags register. Writing a 0
has no effect. Reading returns the value of the flags register.

r24: Clock multiplexer control

The clock generator circuits are organised as shown below:

/1/2/3/4

clk_in

Fref

Fref

(eg 10MHz)

Inv

system_clk

memory_clk

router_clk

/1/2/3/4

/1/2/3/4

/1/2/3/4

/1/2/3/4
CkOut

Tcko

PLL1_xxx[]

PLL2_xxx[]

Div by 4

PLL2

PLL1

Cin

Cin

proc_node_clk_A

proc_node_clk_B

proc_node_clk_B_sel

memory_clk_sel

router_clk_sel

proc_node_clk_A_sel

pll2_clk

pll1_clk

clk_in_4

clk_in

SpiNNaker2 Clock Module

Tcki

CkOut

Tcko

Tcki

2

3

proc_node_clk_A_div

memory_clk_div

proc_node_clk_B_inv proc_node_clk_B_div

router_clk_div

system_clk_div

0

1

system_clk_sel

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 164

012345678910111213141516171819202122232425262728293031

V Sdiv Sys Rdiv Rtr Mdiv Mem Bdiv Pb Adiv Pa

0 0

The functions of these fields are described in the table below:

Name bits R/W Function

V 31 R/W invert CPU clock B
Sdiv[1:0] 23:22 R/W divide System AHB clock by Sdiv + 1(= 1− 4)
Sys[1:0] 21:20 R/W clock selector for System AHB components
Rdiv[1:0] 18:17 R/W divide Router clock by Rdiv + 1(= 1− 4)
Rtr[1:0] 16:15 R/W clock selector for Router
Mdiv[1:0] 13:12 R/W divide SDRAM clock by Mdiv + 1(= 1− 4)
Mem[1:0] 11:10 R/W clock selector for SDRAM
Bdiv[1:0] 8:7 R/W divide CPU clock B by Bdiv + 1(= 1− 4)
Pb[1:0] 6:5 R/W clock selector for B CPUs (0 3 5 6 9 10 12 15 17)
Adiv[1:0] 3:2 R/W divide CPU clock A by Adiv + 1(= 1− 4)
Pa[1:0] 1:0 R/W clock selector for A CPUs (1 2 4 7 8 11 13 14 16)

All clock selectors choose from the same clock sources:

Sel[1:0] Clock source

00 external 10MHz clock input
01 PLL1
10 PLL2
11 external 10MHz clock divided by 4

Clock switching is safe at any time once the PLLs have locked, which takes a defined time
(maximum 80µs for the PLLs) after they have been configured.

r25: CPU sleep status

012345678910111213141516171819202122232425262728293031

CPUwfi[17:0]

Each bit in this register indicates the state of the respective ARM968 STANDBYWFI (stand-
by wait for interrupt) signal, which is active when the CPU is in its low-power sleep mode.

r26-28: Temperature sensor registers

There are three independent temperature sensors on the chip, each with its own control and
sensor read-out register. The three sensors use different sensor mechanisms to enable the tem-

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 165

perature to be corrected for process and voltage variations.

012345678910111213141516171819202122232425262728293031

S F temperature

0 0

The functions of these fields are described in the table below:

Name bits R/W Function

S 31 R/W start temperature measurement
F 24 R temperature measurement finished
temperature 23:0 R temperature sensor reading

Setting S to 1 starts the temperature measurement process. When F reads as 1 the sensor
reading is complete, and bits[23:0] may be read. Clearing S stops the sensing and clears F.

r32-63: Monitor Processor arbitration

012345678910111213141516171819202122232425262728293031

A

1 0

The same single-bit value ‘A’ appears in all registers r32 to r63.

‘A’ is set by a reset event (with RC[1:0] = 000, 001, 010 or 011 in r12) and can also be set
by software via r13 bit[8]. A processor which has passed its self-test may read this register
at address offset 0x80 + 4*N, where N is the processor’s number. If A is set when the read
takes place and N is not equal to the current value in r13 (the Monitor Processor ID register),
0x80000000 is returned, N is placed in r13, and A is cleared.

If A is clear when the read takes place, or N equals the current value in r13, then the value
0x00000000 is returned and A and r13 are unchanged.

r64-95: Test and Set

012345678910111213141516171819202122232425262728293031

X

0 0

A unique single-bit value ‘X’ appears in each register r64 to r95. Reading each register returns
0x00000000 or 0x80000000 depending on whether its respective bit was clear or set prior to the
read, and as a side-effect the bit is set by the read. Together with r96 to r127, these registers
provide support for mutual exclusion primitives for inter- processor communication and shared
data structures, compensating for the lack of support for locked ARM ‘swap’ instructions into
the System RAM.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 166

r96-127: Test and Clear

012345678910111213141516171819202122232425262728293031

X

0 0

The same unique single-bit value ‘X’ appears in each register r96 to r127 as appears in r64 to
r95 respectively. Reading each register returns 0x00000000 or 0x80000000 depending on whether
its respective bit was clear or set prior to the read, and as a side-effect the bit is cleared by the
read.

r128: Tx and Rx link disable

012345678910111213141516171819202122232425262728293031

A 0x5EC R TxDisable RxDisable

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

For a write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX. The
functions of these fields are described in the table below:

Name bits R/W Function

R 16 R/W Router parity control
TxDisable[5:0] 13:8 R/W disables the corresponding link transmitter
RxDisable[5:0] 5:0 R/W disables the corresponding link receiver

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 167

3.2.15 Ethernet MII interface

The SpiNNaker system connects to a host machine via Ethernet links. Each SpiNNaker chip
includes an Ethernet MII interface, although only a few of the chips are expected to use this
interface. These chips will require an external PHY. The interface hardware operates at the
frame level. All higher-level protocols will be implemented in software running on the local
monitor processor.

3.2.15.1 Features

• support for full-duplex 10 and 100 Mbit/s Ethernet via off-chip PHY

• outgoing 1.5Kbyte frame buffer, for one maximum-size frame

– outgoing frame control, CRC generation and inter-frame gap insertion

• incoming 3Kbyte frame buffer, for two maximum-size frames

– incoming frame descriptor buffer, for up to 48 frame descriptors

– incoming frame control with length and CRC check

– support for unicast (with programmable MAC address), multicast, broadcast and
promiscuous frame capture

– receive error filter

• internal loop-back for test purposes

• general-purpose IO for PHY management (SMI) and PHY reset

• interrupt sources for frame-received, frame-transmitted and PHY (external) interrupt

[The implementation does not provide support for half-duplex operation (as required by a
CSMA/ CD MAC algorithm), jumbo or VLAN frames.]

3.2.15.2 Using the Ethernet MII interface

The Ethernet driver software must observe a number of sequence dependencies in initialising
the PHY and setting-up the MAC address before the Ethernet interface is ready for use.

Details of these issues are documented in “SpiNNaker AHB-MII module” by Brendan Lynskey.
The latest version of this is v003, February 2008.

3.2.15.3 Register summary

Base address: 0xe4000000 (buffered write), 0xf4000000 (unbuffered write).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 168

User registers

The following registers allow normal user programming of the Ethernet interface:

Name Offset R/W Function

Tx frame buffer 0x0000 W Transmit frame RAM area
Rx frame buffer 0x4000 R Receive frame RAM area
Rx desc RAM 0x8000 R Receive descriptor RAM area
r0: Gen command 0xC000 R/W General command
r1: Gen status 0xC004 R General status
r2: Tx length 0xC008 R/W Transmit frame length
r3: Tx command 0xC00C W Transmit command
r4: Rx command 0xC010 W Receive command
r5: MAC addr ls 0xC014 R/W MAC address low bytes
r6: MAC addr hs 0xC018 R/W MAC address high bytes
r7: PHY control 0xC01C R/W PHY control
r8: Interrupt clear 0xC020 W Interrupt clear
r9: Rx buf rd ptr 0xC024 R Receive frame buffer read pointer
r10: Rx buf wr ptr 0xC028 R Receive frame buffer write pointer
r11: Rx dsc rd ptr 0xC02C R Receive descriptor read pointer
r12: Rx dsc wr ptr 0xC030 R Receive descriptor write pointer

Test registers

In addition, there are test registers that will not normally be of interest to the programmer:

Name Offset R/W Function

r13: Rx Sys state 0xC034 R Receive system FSM state (debug & test use)
r14: Tx MII state 0xC038 R Transmit MII FSM state (debug & test use)
r15: PeriphID 0xC03C R Peripheral ID (debug & test use)

See “SpiNNaker AHB-MII module” by Brendan Lynskey version 003, February 2008 for
further details of the test registers.

3.2.15.4 Register details

r0: General command register

012345678910111213141516171819202122232425262728293031

H D V P B M U F L R T

reset: 0 0 0 0 1 1 1 1 0 0 0

The functions of these fields are described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 169

Name bits R/W Function

H 10 R/W Disable hardware byte reordering
D 9 R/W Reset receive dropped frame count (in r1)
V 8 R/W Receive VLAN enable
P 7 R/W Receive promiscuous packets enable
B 6 R/W Receive broadcast packets enable
M 5 R/W Receive multicast packets enable
U 4 R/W Receive unicast packets enable
F 3 R/W Receive error filter enable
L 2 R/W Loopback enable
R 1 R/W Receive system enable
T 0 R/W Transmit system enable

r1: General status register

012345678910111213141516171819202122232425262728293031

RxDFC[15:0] RxUC[5:0] T

0 0

Name bits R/W Function

RxDFC[15:0] 31:16 R Receive dropped frame count
RxUC[5:0] 7:1 R Received unread frame count
T 0 R Transmit MII interface active

r2: Transmit frame length

012345678910111213141516171819202122232425262728293031

TxL[10:0]

reset: 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

TxL[10:0] 10:0 R/W Length of transmit frame (60 - 1514 bytes)

r3: Transmit command register

012345678910111213141516171819202122232425262728293031

Any write to register 3 causes the transmission of a frame.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 170

r4: Receive command register

012345678910111213141516171819202122232425262728293031

Any write to register 4 indicates that the current receive frame has been processed and
decrements the received unread frame count in register 1.

r6: MAC address high bytes

012345678910111213141516171819202122232425262728293031

MAC5[7:0] MAC6[7:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

MAC5[7:0] 15:8 R/W MAC address byte 5
MAC4[7:0] 7:0 R/W MAC address byte 4

r7: PHY control

012345678910111213141516171819202122232425262728293031

Q C E O I R

reset: 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

Q 5 R/W PHY IRQn invert disable
C 4 R/W SMI clock (active rising)
E 3 R/W SMI data output enable
O 2 R/W SMI data output
I 1 R SMI data input
R 0 R/W PHY reset (active low)

r8: Interrupt clear

012345678910111213141516171819202122232425262728293031

R T

The functions of these fields are described in the table below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 171

Name bits R/W Function

R 4 W Clear receive interrupt request
T 0 W Clear transmit interrupt request

Writing a 1 to bit [0] if this register clears a pending transmit frame interrupts. Writing a 1
to bit [4] clears a pending receive frame interrupt. There is no requirement to write a 0 to these
bits other than in order to prevent unintentional interrupt clearance.

r9: Receive frame buffer read pointer

012345678910111213141516171819202122232425262728293031

V RFBRP[11:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

V 12 R Rollover bit - toggles on address wrap-around
RFBRP[11:0] 11:0 R Receive frame buffer read pointer

r10: Receive frame buffer write pointer

012345678910111213141516171819202122232425262728293031

V RFBWP[11:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

V 12 R Rollover bit - toggles on address wrap-around
RFBWP[11:0] 11:0 R Receive frame buffer write pointer

r11: Receive descriptor read pointer

012345678910111213141516171819202122232425262728293031

V RDBP[5:0]

reset: 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

V 6 R Rollover bit - toggles on address wrap-around
RFBP[5:0] 5:0 R Receive descriptor read pointer

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 172

r12: Receive descriptor write pointer

012345678910111213141516171819202122232425262728293031

V RDWP[5:0]

reset: 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

V 6 R Rollover bit - toggles on address wrap-around
RFWP[5:0] 5:0 R Receive descriptor write pointer

3.2.15.5 Fault-tolerance

The Ethernet interface will only be used on a small number of nodes; most nodes are insensitive
to faults in its functionality as they will not attempt to use it.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 173

3.2.16 Watchdog timer

The watchdog timer is an ARM PrimeCell component (ARM part SP805, documented in ARM
DDI 0270B) that is responsible for applying a system reset when a failure condition is detected.
Normally, the Monitor Processor will be responsible for resetting the watchdog periodically to
indicate that all is well. If the Monitor Processor should crash, or fail to reset the watchdog
during a pre-determined period of time, the watchdog will trigger.

3.2.16.1 Features

• generates an interrupt request after a programmable time period;

• causes a chip-level reset if the Monitor Processor does not respond to an interrupt request
within a subsequent time period of the same length.

3.2.16.2 Register summary

Base address: 0xe3000000 (buffered write), 0xf3000000 (unbuffered write).

User registers

The following registers allow normal user programming of the Watchdog timer:

Name Offset R/W Function

r0: WdogLoad 0x00 R/W Count load register
r1: WdogValue 0x04 R Current count value
r2: WdogControl 0x08 R/W Control register
r3: WdogIntClr 0x0C W Interrupt clear register
r4: WdogRIS 0x10 R Raw interrupt status register
r5: WdogMIS 0x14 R Masked interrupt status register
r6: WdogLock 0xC00 R/W Lock register

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the program-
mer:

Name Offset R/W Function

WdogITCR 0xF00 R/W Watchdog integration test control register
WdogITOP 0xF04 W Watchdog integration test output set register
WdogPeriphID0-3 0xFE0-C R Watchdog peripheral ID byte registers
WdogPCID0-3 0xFF0-C R Watchdog Prime Cell ID byte registers

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for
further details of the test and ID registers.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 174

3.2.16.3 Register details

r0: Load

012345678910111213141516171819202122232425262728293031

Wdog load

1 1

This read-write register contains the value the from which the counter is to decrement. When
this register is written to, the count immediately restarts from the new value. The minimum
value is 1.

r1: Count

012345678910111213141516171819202122232425262728293031

Wdog count

1 1

This read-only register contains the current value of the decrementing counter. The first time
the counter decrements to zero the Watchdog raises an interrupt. If the interrupt is still active
the second time the counter decrements to zero the reset output is activated.

r2: Control

012345678910111213141516171819202122232425262728293031

E I

reset: 0 0

The functions of these fields are described in the table below:

Name Offset R/W Function

E 1 R/W Enable the Watchdog reset output (1)
I 0 R/W Enable Watchdog counter and interrupt (1)

Once the Watchdog has been initialised both enables should be set to ‘1’ for normal watchdog
operation.

r3: Interrupt clear

012345678910111213141516171819202122232425262728293031

A write of any value to this register clears the watchdog interrupt and reloads the counter
from r1.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 175

r4: Raw interrupt status

012345678910111213141516171819202122232425262728293031

R

reset: 0

The function of this field is described in the table below:

Name Offset R/W Function

R 0 R Raw (unmasked) watchdog interrupt

r5: Masked interrupt status

012345678910111213141516171819202122232425262728293031

R

reset: 0

The function of this field is described in the table below:

Name Offset R/W Function

W 0 R Watchdog interrupt output

r6: Lock

012345678910111213141516171819202122232425262728293031

Key L

reset: 0

The functions of these fields are described in the table below:

Name Offset R/W Function

Key 31:0 W Write 0x1ACCE551 to enable writes
L 0 R Write access enabled (0) or disabled (1)

A read from this register returns only the bottom bit, indicating whether writes to other
registers are enabled (0) or disabled (1). A write of 0x1ACCE551 enables write access to the
other registers; a write of any other value disables write access to the other registers. Note that
the ‘Key’ field is 32 bits and includes bit 0.

The lock function is available to ensure that the watchdog will not be reset by errant programs.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 176

3.2.17 System RAM

The System RAM is an additional 32 Kbyte block of on-chip RAM used primarily by the
Monitor Processor to enhance its program and data memory resources as it will be running
more complex (though less time-critical) algorithms than the fascicle processors.

As the choice of Monitor Processor is made at start-up (and may change during run-time for
fault- tolerance purposes) the System RAM is made available to whichever processor is Monitor
Processor via the System NoC. Accesses by the Monitor Processor to the System RAM are non-
blocking as far as SDRAM accesses by the fascicle processors are concerned.

The System RAM may also be used by the fascicle processors to communicate with the
Monitor Processor and with each other, should the need arise.

3.2.17.1 Features

• 32 Kbytes of SRAM, available via the System NoC.

• can be used as source of boot code.

3.2.17.2 Address location

Base address: 0xe5000000 (buffered write), 0xf5000000 (unbuffered write). Can
also appear at the Boot area at 0xff000000 if the ‘Boot area switch’ is set in the
System Controller.

3.2.17.3 Fault-tolerance

Fault insertion

• It is straightforward to corrupt the contents of the System RAM to model a soft error –
any processor can do this. It is not clear how this would be detected.

Fault detection

• The Monitor Processor may perform a System RAM test at start-up, and periodically
thereafter.

• It is not clear how soft errors can be detected without some sort of parity or ECC system.

Fault isolation

• Faulty words in the System SRAM can be mapped out of use.

Reconfiguration

• For hard failure of a single bit, avoid using the word containing the failed bit.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 177

• If the System RAM fails completely the only option is to use the SDRAM instead, which
will probably result in compromised performance for the fascicle processors due to loss of
SDRAM bandwidth. An option then would be to relocate some of the fascicle processors’
workload to another chip.

3.2.17.4 Test

Production test

• run standard memory test patterns from one of the processing subsystems.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 178

3.2.18 Boot ROM

3.2.18.1 Features

• a small (32Kbyte) on-chip ROM to provide minimal support for:

• initial self-test, and Monitor Processor selection

• Router initialisation for bootstrapping

• system boot.

The Test chip Boot ROM also supports the loading of code from an external SPI ROM using
the GPIO[5:2] pins as an SPI interface.

3.2.18.2 Address location

Base address: 0xf6000000 and, after a hard reset and unless the ‘Boot area switch’
is set in the Sytem Controller, in the Boot area at 0xff000000.

3.2.18.3 Fault-tolerance

Fault insertion

Switch the ‘Boot area switch’ to remove the Boot ROM from the reset location.

Fault detection

If the Boot ROM fails the boot process will also fail, which will be detected at start-up.

Fault isolation

Switching the Boot ROM out of the boot area should render it harmless.

Reconfiguration

When the Boot ROM is switched out of the boot area the System RAM is switched into the
boot area. A neighbour ‘nurse’ chip can initialise the System RAM with the boot code and
retry initialisation.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 179

3.2.19 JTAG

The JTAG IEEE 1149.1 system on the SpiNNaker chip provides access only to the ARM968
processors for software debug purposes. There is no provision for scan access to the SpiNNaker
pins or other on-chip features.

3.2.19.1 Features

• standard ARM debug access to all 18 ARM968 processors

• device ID codes of 0x05968477

3.2.19.2 Organisation

The organisation of the ARM968 JTAG access is as shown below:

The ARM968 CPUs synchronize TCK to their respective local clocks, which may be different,
so the ARM interface has an addition clock return signal, RTCK, which indicates when a
transition on TCK has been recognised. TCK may then make a further transition. The RTCK
signal allows TCK to be operated at the maximum safe frequency.

TCK and RTCK should obey a standard handshake protocol, so TCK may only rise when
RTCK is low, and TCK may only fall when RTCK is high.

All of the processors are in series on the data scan path (TDI to TDO), with CPU0 com-
ing before CPU1, etc. All processor TAP controllers have JTAG-standard bypass registers to
support more efficient access to the other processor.

3.2.19.3 Operation

The JTAG interface supports direct connection of the ARM software development tools to the
SpiNNaker test chip, giving those tools standard access to the ARM processors, their local
memories, and all system functions visible from those processors.

It is expected that the JTAG interface will be used only with suitable JTAG-aware tools, for
hardware debugging (if necessary) and software debugging as required.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 180

3.2.20 Input and Output signals

The SpiNNaker chip has the following IO, power and ground pins. All IO is assumed to operate
at 1.8V with CMOS logic levels; the SDRAM interface is 1.8V LVCMOS. All other IOs are non-
critical, though output delay affects link throughput.

3.2.20.1 Key

The ‘Drive’ column in the tables uses the following notation:

Direction Drive Meaning

output NmA maximum drive current N mA
output A/B slow/fast slew rate
input S Schmitt trigger input
input D/U pull down/up resistor incorporated

3.2.20.2 SDRAM interface

Signal Type Drive Function #

DQ[31:0] IO 8mA B Data 1-32
A[13:0] O 4mA B Address 33-46
CK, CK# O 8mA B True and inverse clock 47, 48
CKE O 4mA B Clock enable 49
CS#[1:0] O 4mA B Chip selects 50, 51
RAS# O 4mA B Row address strobe 52
CAS# O 4mA B Column address strobe 53
WE# O 4mA B Write enable 54
DM[3:0] O 8mA B Data mask 55-58
BA[1:0] O 4mA B Bank address 59, 60
DQS[3:0] IO 8mA DB Data strobe 61-64
Vdd 18[23, 13:0] 1.8V Power for SDRAM pins 65-79
Vss 18[23, 13:0] Gnd Ground for SDRAM pins 80-94

When the package incorporates an internal SDRAM die, all of the above signal pins apart
from CS#[1] will be connected to it. They may or may not also be connected to package balls.
CS#[1] connects only to a package ball.

3.2.20.3 JTAG

Signal Type Drive Function #

nTRST I SU Test reset (active low) 95
TCK I SD Test clock 96
RTCK O 4mA A Return test clock 97
TMS I SU Test mode select 98
TDI I SU Test data in 99
TDO O 4mA A Test data out 100

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 181

3.2.20.4 Ethernet MII

Signal Type Drive Function #

EtherMux I SD select Ethernet or GPIO[23:16] 101
RX CLK I SD Receive clock 102
RX D[3:0] IO 4mA A SU Receive data/GPIO[19:16] 103-106
RX DV I SD Receive data valid 107
RX ERR I SD Receive data error 108
TX CLK O 4mA A Transmit clock 109
TX D[3:0] IO 4mA A SD Transmit data/GPIO[23:20] 110-113
TX EN O 4mA A Transmit data valid 114
TX ERR O 4mA A Force transmit data error 115
MDC O 4mA A Management interface clock 116
MDIO IO 4mA A Management interface data 117
PHY RSTn O 4mA A PHY reset (optional) 118
PHY IRQn I SD PHY interrupt (optional) 119
Vdd 18[15] 1.8V Power for Ethernet MII pins 120
Vss 18[15] Gnd Ground for Ethernet MII pins 121

3.2.20.5 Communication links

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 182

Signal Type Drive Function #

L0in[6:0] I SD link 0 2-of-7 input code 122-128
L0inA O 12mA B link 0 input acknowledge 129
L0out[6:0] O 12mA B link 0 2-of-7 output code 130-136
L0outA I SD link 0 output acknowledge 137
L1in[6:0] I SD link 1 2-of-7 input code 138-144
L1inA O 12mA B link 1 input acknowledge 145
L1out[6:0] O 12mA B link 1 2-of-7 output code 146-152
L1outA I SD link 1 output acknowledge 153
L2in[6:0] I SD link 2 2-of-7 input code 154-160
L2inA O 12mA B link 2 input acknowledge 161
L2out[6:0] O 12mA B link 2 2-of-7 output code 162-168
L2outA I SD link 2 output acknowledge 169
L3in[6:0] I SD link 3 2-of-7 input code 170-176
L3inA O 12mA B link 3 input acknowledge 177
L3out[6:0] O 12mA B link 3 2-of-7 output code 178-184
L3outA I SD link 3 output acknowledge 185
L4in[6:0] I SD link 4 2-of-7 input code 186-192
L4inA O 12mA B link 4 input acknowledge 193
L4out[6:0] O 12mA B link 4 2-of-7 output code 194-200
L4outA I SD link 4 output acknowledge 201
L5in[6:0] I SD link 5 2-of-7 input code 202-208
L5inA O 12mA B link 5 input acknowledge 209
L5out[6:0] O 12mA B link 5 2-of-7 output code 210-216
L5outA I SD link 5 output acknowledge 217
Vdd 18[22:21,17:14] 1.8V Power for link pins 218-223
Vss 18[22:21,17:14] Gnd Ground for link pins 224-229

3.2.20.6 Miscellaneous

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 183

Signal Type Drive Function #

GPIO[15:0] IO 4mA A SD General-purpose IO 230-245
PORIn I SD Power-on reset 246
ResetIn I SD Chip reset 247
Test I SD Chip test mode 248
Clk10MIn I S Main input clock - 10MHz 249
nClk10MOut O 4mA A Daisy-chain 10MHz clock out 250
Clk32kIn I S Slow (global) 32kHz clock 251
Vdd 18[18:17] 1.8V Power for miscellaneous pins 252-253
Vss 18[18:17] Gnd Ground for misc. pins 254-255
Vdd 12[13:0] 1.2V Power for core logic 256-269
Vss 12[13:0] Gnd Ground for core logic 270-283
Vdd PLL[3:0] 1.2V Power for PLLs 284-287
Vss PLL[3:0] Gnd Ground for PLLs 288-291
Tres I analogue Temp. sensor analogue input 292
Int[1:0] I SD Exteernal interrupt requests 293-294

3.2.20.7 Internal SDRAM interface

Signal Type Drive Function #

GPIO[31] IO 4mA A SD Connects to SDRAM TQ 293
GPIO[30] IO 4mA A SD SDRAM DPD input 294
GPIO[29] IO 4mA A SD Bond to Vdd 295

3.2.20.8 Internal SDRAM power & ground

In addition to the signal pins that connect the internal SDRAM to the SpiNNaker chip, the
SDRAM also requires 1.8V Vdd and ground connections - 30 in total.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 184

3.2.21 Packaging

The SpiNNaker chip is packaged in a 300LBGA package with 1mm ball pitch. The allocation
of signals to balls is as shown below:

Link 4

GPIO

PLL Power

Link 1Link 0Link 5

SDRAM

Link 3

Misc

GPIO

PLL Power

Link 2

MII

JTAG

Top view

V

U

T

S

P

N

M

L

K

J

H

G

F

E

D

C

B

A

54321 6 7 8 9 10 11 12 13 14 15 16 17 18

DQ14 VSS[31] GPIO[10]

A2 VSS[27]

A10 VSS[0] VDD18[25] VDD18[26] VDD18[27] POR Reset VSS_PLL[3]

CK# CK CS1# VDD12[0] VDD12[1] VDD12[2] NC TRES VDD_PLL[2]VDD_PLL[3]

A13 A0 A11 A9 VSS[3] VSS[4] VDD12[5] VDD12[6] GPIO[7] GPIO[6]

A7 A5 A3 VDD18[11] VDD18[12] VSS[19] VSS[20] VSS[21] GPIO[3] GPIO[2] VSS_PLL[1]

CAS# WE# CKE VSS[6] VSS[7] VSS[8] VDD18[22] VDD18[24] GPIO[1] VDD_PLL[1]

DQ16 DQ17 VSS[10] VSS[11] VSS[12] VSS[18] VDD18[18] VDD18[19] VDD18[20] VDD18[21] L2in[0] L2in[1] L2in[2]

DQ18 DQ19 DQ20 DQ21 VSS[13] VSS[14] VSS[15] VSS[16] VDD12[4] VDD18[14] VDD18[15] VDD18[16] VDD18[17] NC L2in[4] L2in[5]

DM3 DQS3 L5outA L5in[3] L0outA L1out[3] L1outA L1in[3] NC L2out[0] L2out[1]

DQ24 L5out[3] L5out[6] L5in[2] L0out[6] L0in[2] L1out[2] L1in[2] L1in[6] L2out[3] L2out[4]

DQ29 L5out[2] L5out[5] L5in[1] L5in[5] L0out[1] L0out[5] L0in[1] L0in[5] L1in[1] L2out[5]

DQ30 DQ31 L5out[0] L5out[1] L5out[4] L5in[0] L5in[4] L0out[0] L0out[4] L0in[0] L0in[4] L1in[0] L1in[4] Int[1] L2outA

DQ0 DQ1 L4in[0] L4in[1] L4in[4] L4out[0] L4out[4] L3in[0] L3out[0] L3out[4] MDIO

DQ2 DQ3 DQ4 L4in[2] L4in[5] L4out[1] L4out[5] L3in[1] L3in[5] L3out[1]

L3in[4] TX_D[3] TX_CLK RX_D[3] RX_D[1] RX_D[0] RX_CLK

TDORTCKRX_D[2]RX_DVTX_D[0]TX_ENPHY_RSTL3out[5]

TCKTMSTDIRX_ERRTX_D[1]TX_ERRPHY_IRQL3out[6]L3out[2]L3in[6]L3in[2]L4out[6]L4out[2]L4in[6]L4in[3]DQ7DQ6DQ5

DQS0 DM0 DQ8 DQ9 L4inA L4out[3] L4outA L3in[3] L3inA L3out[3] L3outA EtherMux MDC TX_D[2] NC nTRST GPIO[15] GPIO[14]

GPIO[11]GPIO[12]GPIO[13]NCVSS[35]VSS[34]VSS[33]VSS[32]VDD12[8]VSS[36]VDD18[3]VDD18[2]

VDD18[6] VDD18[7] VSS[37] VDD12[9] VSS[28] VSS[29] VSS[30] NC GPIO[9] GPIO[8]

TestClk10MInnClk10MOutClk32kInVSS[26]VSS[25]

VSS_PLL[2]

VSS[22] VSS[23] VSS[24]

GPIO[4]GPIO[5]VDD12[7]

VSS_PLL[0]

VDD_PLL[0]GPIO[0]VDD18[23]

VDD18[9]VDD18[8]A4BA0

A8 A12 VSS[1]

CS#

VSS[5]

VDD18[13]A1

RAS#

DM2 DQS2 VSS[9] VDD12[3]

L5inA

L5in[6]DQ26DQ25

DQ23DQ22

VSS[17]

L0in[3]

L0out[2] L0in[6]

L0inAL0out[3] L2inA

L1out[6] L2out[2]

Int[0]L1in[5]

L1inA

L1out[5]

L1out[4]L1out[0]

L1out[1]DQ27 DQ28

VSS[2]

VDD18[10]

DQ11DQ10

DQ15 DQS1

DQ12 DQ13

DM1

VDD18[1]

VDD18[5]VDD18[4]

VDD18[0]

BA1

L2in[3]

L2in[6]

A6

L2out[6]

Figure 3.2.1: SpiNNaker 300LBGA Packaging

It is expected that a 128Mbyte Mobile DDR SDRAM will normally be incorporated into the
package with the SpiNNaker chip, using wire-bonded Multi-Chip Package (MCP) assembly.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 185

3.2.22 Application notes

3.2.22.1 Firefly synchronization

The local time phase, used for errant packet trapping, can be maintained across the system by a
combination of local slightly randomized timers and local phase-locking using nearest-neighbour
communication.

Time phase accuracy

If the system time phase is F and the skew is K (that is, all parts of the system transition
from one phase to its successor within a time K), then a packet has at least F −K to reach its
destination and will be killed after at most 2F +K. Thus, if we want to allow for a maximum
packet transit time of F −K = T and can achieve a minimum phase skew of K, then T and K
are both system constants and we should choose F = T + K. The longest packet life is then
2T + 3K.

3.2.22.2 Neuron address space

Neurons ocuppy an address space that identifies each Neuron uniquely within the domain of
its multicast routing path (where this domain must include alternative links that may be taken
during emergency routing). Where these domains do not overlap it is possible to reuse the same
address, though this must be done with considerable care. Neuron addresses can be assigned
arbitrarily; this can be exploited to optimize Router utilization (e.g. by giving Neurons with
the same routing requirements related addresses so that they can be routed by the same Router
entries).

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 186

3.3 SpiNNaker Software Datasheet

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 187

Background

SpiNNaker was designed at the University of Manchester within an EPSRC-funded project in
collaboration with the University of Southampton, ARM Limited and Silistix Limited. Subse-
quent development took place within a second EPSRC-funded project which added the univer-
sities of Cambridge and Sheffield to the collaboration. The work would not have been possible
without EPSRC funding, and the support of the EPSRC and the industrial partners is gratefully
acknowledged.

Intellectual Property rights

All rights to the SpiNNaker design and its associated software are the property of the Univer-
sity of Manchester with the exception of those rights that accrue to the project partners in
accordance with the contract terms.

Disclaimer

The details in this design document are presented in good faith but no liability can be accepted
for errors or inaccuracies. The design of a complex chip multiprocessor and its associated
software is a research activity where there are many uncertainties to be faced, and there is no
guarantee that a SpiNNaker system will perform in accordance with the specifications presented
here.

The APT group in the School of Computer Science at the University of Manchester was
responsible for all of the architectural and logic design of the SpiNNaker chip, with the exception
of synthesizable components supplied by ARM Limited and interconnect components supplied
by Silistix Limited. All design verification was also carried out by the APT group. As such the
industrial project partners bear no responsibility for the correct functioning of the device.

Error notification and feedback

Please email details of any errors, omissions, or suggestions for improvement to Steve Furber
<steve.furber@manchester.ac.uk>

3.3.1 Run-time software

The SpiNNaker run-time software involves four different devices:

• The Host, used for application I/O and monitoring.

• Root Monitors (Monitor Processors with direct Ethernet access), used as Monitor Pro-
cessors and, additionally, to communicate with the host over Ethernet.

• Monitor Processors, used for system-wide inter-processor communication, application sup-
port and system monitoring.

• Application Processors (APs), used to run applications.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 188

3.3.1.1 Run-time software stack

Figure 3.3.1 illustrates the run-time software stack in the four devices. The stack is formed by
three basic layers with well-defined interfaces between them: Application and monitoring, Run-
time support and Hardware device drivers. The two interfaces are the Application Programming
Interface (API) and the Hardware Programming Interface (HPI).

To support applications, each of the devices runs a run-time kernel (RTK). The kernel sup-
ports the following:

• Application control - the ability to start application execution or terminate gracefully.

• Resources - the ability to use the chip hardware/peripherals in an abstracted way. For
example, starting a 1ms timer, setting an entry in the multicast routing table or installing
a handler to deal with packet arrival.

• Communication - applications may want to get information either to other APs or to the
outside world, for example, Tube-like output or writing files on a host machine.

• Monitoring and debugging - a host running some form of debugger may want to inspect
a running application.

These services are available to the applications through the API, described in Section 3.3.2

3.3.1.2 Inter-processor communication

Processor Virtualisation

Each SpiNNaker chip has an address in a SpiNNaker network once a point-to-point (P2P)
configuration has been set up during the system boot phase. Each core on the chip has an
address - the core ID, which is hardwired. For practical purposes, however, this is not very
useful as, viewed from outside, there is no knowledge of which core is the Monitor and which
cores are non-functional.

Following the selection of the Monitor Processor, it allocates each working core a “virtual core
number”. Number zero is assigned to the Monitor Processor (MP) and numbers one onwards
to the Application Processors (APs). The major advantage of this is that the core number of
the Monitor is always known.

Addressing SpiNNaker Nodes

As SpiNNaker chips are usually connected together in a two-dimensional grid, it’s convenient to
address them by their (X,Y) coordinate in the grid. This is the basis for the P2P addressing.,
using a 256 x 256 grid (only partially filled!) where the P2P address is 256 ∗X + Y .

Processors on each chip can be addressed using their virtual number as described above, so
any processor in a SpiNNaker network can be addressed by the triplet < X,Y, P > (where P
is the virtual core number). It’s unlikely that the number of cores on a chip will exceed 256 in
the near future so three bytes is enough to specify < X,Y, P >. This triplet is the basis for a
datagram protocol described below to allow SpiNNaker nodes to communicate.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 189

E
th

e
rn

e
t

L
in

u
x

H
o
s
t
R

T
S

A
P

I

C
o
m

m
s
N

o
C

S
y
s
te

m
 R

A
M

D
ri
v
e
rs

D
e
v
ic

e

S
D

P

D
ri
v
e
rs

D
e
v
ic

e

S
D

P

M
o
n
it
o
r

R
T

S

A
p
p
l.
 P

ro
g
.
In

te
rf

a
c
e
 (

A
P

I)

H
o
s
t

M
o
n
it
o
r

S
y
s
te

m
 R

A
M

H
W

A
p
p
lic

a
ti
o
n

D
a
ta

C
o
d
e

P
ro

t.
 (

S
D

P
)

D
a
ta

g
ra

m
S

p
iN

N
a
k
e
r

A
p
p
lic

a
ti
o
n
 P

ro
c
e
s
s
o
r

R
u
n
−

T
im

e
 S

y
s
te

m
 (

R
T

S
)

A
p
p
lic

a
ti
o
n
 P

ro
c

T
C

P
/U

D
P

M
o
n
it
o
r

R
T

S

C
o
m

m
s
N

o
C

E
th

e
rn

e
tD

ri
v
e
rs

D
e
v
ic

e

S
D

P

R
o
o
t
m

o
n
it
o
r

A
P

I

H
P

I
H

P
I

A
P

I

Application

Monitoring Application

Application

Monitoring Application

S
y
s
te

m

M
o
n
it
o
ri
n
g

Application

Monitoring Application

S
y
s
te

m

M
o
n
it
o
ri
n
g

M
o
n
it
o
ri
n
g

S
y
s
te

m

ApplicationMonitoring

H
W

 P
ro

g
.
In

te
rf

a
c
e
 (

H
P

I)

Figure 3.3.1: SpiNNaker run-time software stack.
HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 190

SpiNNaker Datagram Protocol (SDP)

SDP is an unreliable datagram protocol (similar to Internet UDP). An SDP datagram (or
packet) contains some addressing information and an arbitrary amount of data (the size of
which is limited by the implementation - currently using 256+16 or 272 bytes). The addressing
information consists of 8 bytes. There are two 3-byte triplets as above which specify the source
and destination addresses and also a Tag byte and a Flag byte.

The Tag byte allows an SDP packet to be associated with a full Internet address (IP & Port)
so that SDP can support communication between any SpiNNaker core and any IP-connected
host. The Flag byte is used for a variety of nefarious things which most users won’t want to
mess with!

There is also a length associated with each SDP packet and a checksum and these are carried
in a variety of ways depending on the underlying transport mechanism.

The current implementation of SDP transport layers for SpiNNaker use both P2P packets
(for communication between arbitrary chips/cores) and NN packets. The latter allows commu-
nication with neighbouring chips if P2P addressing is not set up. SDP can also be carried over
Internet UDP and this is the basis for the various bootloaders and debug mechanisms that are
currently in use. SDP packets are passed between cores on the same chip by the use of shared
memory (e.g., System RAM).

Software support for communication

The Monitor run-time kernel supports inter-processor communication. It receives SDP packets
either from other SpiNNaker chips via P2P or NN, the Internet via the Ethernet interface or
other cores on the same chip via shared memory. A (software) router is used to send SDP
packets to their destination. Those chips which have an Ethernet interface maintain “IPTag”
tables to route SDP packets to arbitrary IP addresses based on the Tag byte in the SDP header.

The APs do not perform the SDP packet routing as it’s not needed. All cores are able to
receive and respond to commands sent to them via SDP. In most cases it will be a host sending
commands but, in principle, any core can send commands to any other.

The set of commands provided includes reading and writing memory, and causing the core
to start execution at any address. This is enough to get arbitrary applications loaded onto any
core and start them running.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 191

3.3.1.3 Runtime memory map

Figure 3.3.2 shows the Application Processors run-time memory map.

unallocated

0x00000000

0x00008000

0x00400000

0x00410000

0x00800000

0x00000000

0x80000000

0xe5000000

0xe6000000

ITCM

ITCM
aliased

DTCM

aliased
DTCM

local peripherals

unallocated

system peripherals

system RAM

ROM

kernel data

kernel stacks

static variables

0x−tbdtbd−

0x−tbdtbd−

0x−tbdtbd−

0x−tbdtbd−

SDRAM

SDRAM

0x680000000x78000000

0x600000000x70000000

0xe20000000xf2000000

0xf5000000

0xf6000000

expansion

unbuffered
access

buffered
access

application heap

application stack

application code

kernel code

access causes an error

access causes an error

Figure 3.3.2: SpiNNaker run-time memory map.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 192

3.3.2 Application programming interface (API)

3.3.2.1 Event-driven programming model

The SpiNNaker Programming Model (PM) is a simple, event-driven model. Applications do
not control execution flow, they can only indicate the functions, referred to as callbacks, to
be executed when specific events occur, such as the arrival of a packet, the completion of a
Direct Memory Access (DMA) transfer or the lapse of a periodic time interval. An Application
Run-time Kernel (ARK) controls the flow of execution and schedules/dispatches application
callback functions when appropriate.

!

d
is

p
a

tc
h
e
r

s
c
h
e

d
u

le
r

control flow

data flow

C
B

 q
u
e

u
e

s

Dispatcher
thread

Scheduler
thread

p
re

e
m

in
e

n
t

c
a
llb

a
c
kFiq

thread

!

!

Figure 3.3.3: SpiNNaker event-driven programming framework.

Fig. 3.3.3 shows the basic architecture of the event-driven framework. Application developers
write callback routines that are associated with events of interest and register them at a certain
priority with the kernel. When the corresponding event occurs the scheduler either executes the
callback immediately and atomically (in the case of a non-queueable callback) or places it into a
scheduling queue at a position according to its priority (in case of a queueable callback). When
control is returned to the dispatcher (following the completion of a callback) the highest-priority
queueable callback is executed. Queueable callbacks do not necessarily execute atomically: they
may be pre-empted by non-queueable callbacks if a corresponding event occurs during their

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 193

execution. The dispatcher goes to sleep (low-power consumption state) if the pending callback
queues are empty and will be awakened by an event. Application developers can designate
one non-queueable callback as the preeminent callback, which has the highest priority and can
pre-empt other non-queueable callbacks as well as all queueable ones.

The preeminent callback is associated with a FIQ interrupt while other non-queueable call-
backs are associated with IRQ interrupts. The API provides different functions to disable inter-
rupts: spin1 irq disable disables IRQs, spin1 fiq disable disables FIQs while spin1 int disable
disables both FIQs and IRQs. The use of spin1 fiq disable may lead to priority inversion.

Design considerations

• Non-queueable callbacks are available as a method of pre-empting long running tasks with
short, high priority tasks. The allocation of application tasks to non-queueable callbacks
must be carefully considered. The selection of the preeminent callback can be particularly
important. Long-running operations should not be executed in non-queueable callbacks
for fear of starving queueable callbacks.

• Queueable callbacks may require critical sections (i.e., sections that are completed atom-
ically) to prevent pre-emption during access to shared resources. Critical sections may
be achieved by disabling interrupts before accessing the shared resource and re-enabling
them afterwards. Applications are executed in a privileged mode to allow the callback
programmer to insert these critical sections. This approach has the risk that it allows the
programmer to modify peripherals –such as the system controller– unchecked.

• Non-queueable callbacks may also require critical sections, as they can be pre-empted by
the preeminent callback.

• Events –usually triggered by interrupts– have priority determined by the programming
of the Vectored Interrupt Controller (VIC). This allows priority to be determined when
multiple events corresponding to different non-queueable callbacks occur concurrently. It
also affects the order in which queueable callbacks of the same priority are queued.

3.3.2.2 Programming interface

The following sections introduce the events and functions supported by the API.

Events

The SpiNNaker PM is event-driven: all computation follows from some event. The following
events are available to the application:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 194

event trigger

MC packet received reception of a multicast packet

DMA transfer done successful completion of a DMA transfer

Timer tick passage of specified period of time

SDP packet received reception of a SpiNNaker Datagram Protocol packet

User event software-triggered interrupt

In addition, errors can also generate events:

— events not yet supported —

event trigger

MCP parity error multicast packet received with wrong parity

MCP framing error wrongly framed multicast packet received

DMA transfer error unsuccessful completion of a DMA transfer

DMA transfer timeout DMA transfer is taking too long

Each of these events is handled by a kernel routine which may schedule or execute an appli-
cation callback, if one is registered by the application.

Callback arguments

Callbacks are functions with two unsigned integer arguments (which may be NULL) and no
return value. The arguments may be cast into the appropriate types by the callback. The
arguments provided to callbacks (where ‘none’ denotes a superfluous argument) by each event
are:

event first argument second argument

MC packet received uint key uint payload

DMA transfer done uint transfer ID uint tag

Timer tick uint simulation time uint none

SDP packet received uint *mailbox uint destination port

User event uint arg0 uint arg1

Pre-defined constants

logic value value keyword

true (0 == 0) TRUE

false (0 != 0) FALSE

function result value keyword

failure 0 FAILURE

success 1 SUCCESS

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 195

transfer direction value keyword

read (system to TCM) 0 DMA READ

write (TCM to system) 1 DMA WRITE

packet payload value keyword

no payload 0 NO PAYLOAD

payload present 1 WITH PAYLOAD

event value keyword

MC packet received 0 MC PACKET RECEIVED

DMA transfer done 1 DMA TRANSFER DONE

Timer tick 2 TIMER TICK

SDP packet received 3 SDP PACKET RX

User event 4 USER EVENT

Pre-defined types

type value size

uint unsigned int 32 bits

ushort unsigned short 16 bits

uchar unsigned char 8 bits

callback t void (*callback t) (uint, uint) 32 bits

sdp msg t struct (see below) 292 bytes

diagnostics t struct (see below) 44 bytes

SDP message structure

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 196

typedef struct sdp msg // SDP message (=292 bytes)
{

struct sdp msg ∗next ; // Next in f r e e l i s t
ushort l ength ; // l ength
ushort checksum ; // checksum (i f used)

// sdp hdr t

uchar f l a g s ; // SDP f l a g byte
uchar tag ; // SDP IPtag
uchar d e s t p o r t ; // SDP d e s t i n a t i o n port
uchar s r c e p o r t ; // SDP source port
ushort dest addr ; // SDP d e s t i n a t i o n address
ushort s r c e addr ; // SDP source address

// cmd hdr t (op t i ona l)

ushort cmd rc ; // Command/Return Code
ushort seq ; // Sequence number
uint arg1 ; // Arg 1
uint arg2 ; // Arg 2
uint arg3 ; // Arg 3

// user data (op t i ona l)

uchar data [SDP BUF SIZE] ; // User data (256 bytes)

uint PAD; // Pr ivate padding
} sdp msg t ;

diagnostics variable structure

typedef struct
{

uint e x i t c o d e ; // s imu la t i on e x i t code
uint warnings ; // warnings type b i t map
uint t o ta l mc packe t s ; // t o t a l routed MC packets during s imu la t i on
uint dumped mc packets ; // t o t a l dumped MC packets by the route r
uint d i scarded mc packet s ; // t o t a l d i s ca rded MC packets by API
uint dma trans f e r s ; // t o t a l DMA t r a n s f e r s reques ted
uint dma bursts ; // t o t a l DMA burs t s completed
uint dma queue fu l l ; // dma queue f u l l count
uint t a s k q u e u e f u l l ; // task queue f u l l count
uint t x p a c k e t q u e u e f u l l ; // t r an smi t t e r packet queue f u l l count
uint wr i t eBack e r r o r s ; // write−back b u f f e r e r r r o r count

} d i a g n o s t i c s t ;

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 197

Pre-declared variables

variable type function

leadAp uchar TRUE if appointed chip-wise application leader

diagnostics diagnostics t returns diagnostic information (if turned on in compilation)

Kernel services

The kernel provides a number of services to the application programmer:

Simulation control functions

Start simulation

function arguments description

uint spin1 start void no arguments

returns: EXIT CODE (0 = NO ERRORS)

notes: • transfers control from the application to the ARK.

• use spin1 kill to indicate a non-zero EXIT CODE.

Stop simulation

function arguments description

void spin1 stop void no arguments

returns: no return value

notes: • transfers control from the ARK back to the application.

Stop simulation and report error

function arguments description

void spin1 kill uint error error code to report

returns: no return value

notes: • transfers control from the ARK back to the application.

• The argument is used as the return value for spin1 start.

Set the timer tick period

function arguments description

void spin1 set timer tick uint period timer tick period (in microseconds)

returns: no return value

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 198

Request simulation time

function arguments description

uint spin1 get simulation time void no arguments

returns: timer ticks since the start of simulation.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 199

DEPRECATED! Indicate which cores are involved in the simulation

function arguments description

void spin1 set core map uint chips number of chips

uint * core map bit map array of cores

returns: no return value

notes: • sets the map of the cores that need to synchronise to start the simulation.

• the numbers of chips & cores default to 1, thus no synchronisation is attempted.

Core Map Examples

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 200

// ch ips are i d e n t i f i e d us ing Cartes ian coo rd ina t e s .
// Note that the core map i s a uni−dimens iona l array but
// d e s c r i b e s a bi−dimens iona l array o f ch ips in x−major format
// i . e . , the order i s (0 , 0) , (0 , 1) , . . . , (1 , 0) , (1 , 1) , . . .

// 2 x 2 core map on SpiNN−2, SpiNN−3 and SpiNN−4 boards − 2 co r e s on each chip
uint const NUMBER OF CHIPS = 4 ; // v i r t u a l 2 x 2 array o f ch ips
uint core map [NUMBER OF CHIPS] =
{

0x6 , 0x6 , // (0 , 0) , (0 , 1)
0x6 , 0x6 // (1 , 0) , (1 , 1)

} ;

// ”hexagonal” 8 x 8 core map on SpiNN−4 board − 16 co r e s on each chip
uint const NUMBER OF CHIPS = 64 ; // v i r t u a l 8 x 8 array o f ch ips
uint core map [NUMBER OF CHIPS] =
{

0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 , 0 , 0 , 0 ,
0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 , 0 , 0 ,
0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 , 0 ,
0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 ,
0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e ,
0 , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e ,
0 , 0 , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e ,
0 , 0 , 0 , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e

} ;

// ”notched” 5 x 5 core map on SpiNN−4 board − v a r i a b l e number o f co r e s
uint const NUMBER OF CHIPS = 64 ; // v i r t u a l 8 x 8 array o f ch ips
uint core map [NUMBER OF CHIPS] =
{

6 , 6 , 2 , 2 , O, 0 , 0 , 0 ,
6 , 6 , 2 , 2 , 2 , 0 , 0 , 0 ,
6 , 6 , 2 , 2 , 2 , 0 , 0 , 0 ,
2 , 2 , 6 , 2 , 2 , 0 , 0 , 0 ,
2 , 2 , 2 , 2 , 2 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

} ;

// NOTE: co re maps with ”holes” may not synchron i s e in the cur rent v e r s i on .
// INCORRECT 8 x 8 core map on SpiNN−4 board − 7 co r e s on each chip
uint const NUMBER OF CHIPS = 64 ; // v i r t u a l 8 x 8 array o f ch ips
uint core map [NUMBER OF CHIPS] =
{

0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 , 0 , 0 , 0 ,
0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 , 0 , 0 ,
O, 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 , 0 ,
0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 ,
0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe ,
0 , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe ,
0 , 0 , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe ,
0 , 0 , 0 , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 x f e

} ;

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 201

Indicate which cores are involved in the simulation

function arguments description

void spin1 application core map uint xchips map x dimension

uint xchips map y dimension

uint * core map bit map array of cores

returns: no return value

notes: • sets the map of the cores that need to synchronise to start the simulation.

• the numbers of chips & cores default to 1, thus no synchronisation is attempted.

Core Map Examples

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 202

// ch ips are i d e n t i f i e d us ing Cartes ian coo rd ina t e s .

// 2 x 2 core map on SpiNN−2, SpiNN−3 and SpiNN−4 boards − 2 co r e s on each chip
uint const NUMBER OF XCHIPS = 2 ; // v i r t u a l 2 x 2 array o f ch ips
uint const NUMBER OF YCHIPS = 2 ;
uint core map [NUMBER OF XCHIPS] [NUMBER OF YCHIPS] =
{
{0x6 , 0x6 } , // (0 , 0) , (0 , 1)
{0x6 , 0x6} // (1 , 0) , (1 , 1)

} ;

// ”hexagonal” 8 x 8 core map on SpiNN−4 board − 16 co r e s on each chip
uint const NUMBER OF XCHIPS = 8 ; // v i r t u a l 8 x 8 array o f ch ips
uint const NUMBER OF YCHIPS = 8 ;
uint core map [NUMBER OF XCHIPS] [NUMBER OF YCHIPS] =
{
{0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 , 0 , 0 , 0} ,
{0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 , 0 , 0} ,
{0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 , 0} ,
{0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0} ,
{0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e } ,
{0 , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e } ,
{0 , 0 , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e } ,
{0 , 0 , 0 , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e , 0 x 1 f f f e }

} ;

// ”notched” 4 x 5 core map on SpiNN−4 board − v a r i a b l e number o f co r e s
uint const NUMBER OF XCHIPS = 4 ; // v i r t u a l 4 x 5 array o f ch ips
uint const NUMBER OF XCHIPS = 5 ;
uint core map [NUMBER OF XCHIPS] [NUMBER OF YCHIPS] =
{
{6 , 6 , 2 , 2 , O} ,
{6 , 6 , 2 , 2 , 2} ,
{6 , 6 , 2 , 2 , 2} ,
{2 , 2 , 2 , 2 , 2}

} ;

// NOTE: co re maps with ”holes” may not synchron i s e in the cur rent v e r s i on .
// INCORRECT 6 x 7 core map on SpiNN−4 board − 7 co r e s on each chip
uint const NUMBER OF XCHIPS = 6 ; // v i r t u a l 6 x 7 array o f ch ips
uint const NUMBER OF YCHIPS = 7 ;
uint core map [NUMBER OF XCHIPS] [NUMBER OF YCHIPS] =
{
{0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 , 0 , 0} ,
{0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 , 0} ,
{O, 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0} ,
{0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 x f e } ,
{0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 x f e } ,
{0 , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 xfe , 0 x f e }

} ;

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 203

Event management functions

Register callback to be executed when event id occurs

function arguments description

void spin1 callback on uint event id event that triggers callback

callback t callback callback function pointer

uint priority priority <0 denotes preeminent

priority 0 denotes non-queueable

priorities >0 denote queueable

returns: no return value

notes: • a callback registration overrides any previous ones for the same event.

• only one callback can be registered as preeminent.

• a second preeminent registration is demoted to non-queueable.

Deregister callback from event id

function arguments description

void spin1 callback off uint event id event that triggers callback

returns: no return value

Schedule a callback for execution with given priority

function arguments description

uint spin1 schedule callback callback t callback callback function pointer

uint arg0 callback argument

uint arg1 callback argument

uint priority callback priority

returns: SUCCESS (=1) / FAILURE (=0)

notes: • this function allows the application to schedule a callback without an event.

• priority <= 0 must not be used (unpredictable results).

• function arguments are not validated.

Trigger a user event

function arguments description

uint spin1 trigger user event uint arg0 callback argument

uint arg1 callback argument

returns: SUCCESS (=1) / FAILURE (=0)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 204

notes: • FAILURE indicates a trigger attempt before a previous one has been serviced.

• arg0 and arg1 will be passed as arguments to the registered callback.

• function arguments are not validated.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 205

Data transfer functions

Request a DMA transfer

function arguments description

uint spin1 dma transfer uint tag for application use

void *system address address in system NoC

void *tcm address address in TCM

uint direction DMA READ / DMA WRITE

uint length transfer length (in bytes)

returns: unique transfer identification number (TID)

notes: • completion of the transfer generates a DMA transfer done event.

• a registered callback can use TID and tag to identify the completed request.

• DMA transfers are completed in the order in which they are requested.

• TID = FAILURE (= 0) indicates failure to schedule the transfer.

• function arguments are not validated.

• may cause DMA error or DMA timeout events.

Copy a block of memory

function arguments description

void spin1 memcpy void *dst destination address

void const *src source address

uint len transfer length (in bytes)

returns: no return value

notes: • function arguments are not validated.

• may cause a data abort.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 206

Communications functions

Send a multicast packet

function arguments description

uint spin1 send mc packet uint key packet key

uint data packet payload

uint load 1 = payload present / 0 = no payload

returns: SUCCESS (=1) / FAILURE (=0)

Flush software outgoing multicast packet queue

function arguments description

uint spin1 flush tx packet queue void no arguments

returns: SUCCESS (=1) / FAILURE (=0)

notes: • queued packets are thrown away (not sent).

Flush software incoming multicast packet queue

function arguments description

uint spin1 flush rx packet queue void no arguments

returns: SUCCESS (=1) / FAILURE (=0)

notes: • queued packets are thrown away.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 207

SpiNNaker Datagram Protocol (SDP)

Send an SDP message

function arguments description

uint spin1 send sdp msg sdp msg t * msg pointer to message

uint timeout transmission timeout

returns: SUCCESS (=1) / FAILURE (=0)

Request a free SDP message container

function arguments description

sdp msg t * spin1 msg get void no arguments

returns: pointer to message (NULL if unsuccessful)

Free an SDP message container

function arguments description

void spin1 msg free sdp msg t *msg pointer to message

returns: no return value

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 208

Critical section support functions

Disable IRQ interrupts

function arguments description

uint spin1 irq disable void no arguments

returns: contents of CPSR before interrupt flags altered.

Disable FIQ interrupts

function arguments description

uint spin1 fiq disable void no arguments

returns: contents of CPSR before interrupt flags altered.

Disable ALL interrupts

function arguments description

uint spin1 int disable void no arguments

returns: contents of CPSR before interrupt flags altered.

Restore core mode and interrupt state

function arguments description

void spin1 mode restore uint status CPSR state to be restored

returns: no return value.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 209

System resources access functions

Get core ID

function arguments description

uint spin1 get core id void no arguments

returns: core ID in bits [4:0].

Get chip ID

function arguments description

uint spin1 get chip id void no arguments

returns: chip ID in bits [15:0].

notes: • chip ID contains x coordinate in bits [15:8], y coordinate in bits [7:0].

Get ID

function arguments description

uint spin1 get id void no arguments

returns: chip ID in bits [20:5] / core ID in bits [4:0].

Control state of board LEDs

function arguments description

void spin1 led control uint p new state for board LEDs

returns: no return value.

notes: • the number of LEDs and their colour varies according to board version.

• to turn LEDs 0 and 1 on: spin1 led control (LED ON (0) + LED ON (1))

• to invert LED 2: spin1 led control (LED INV (2))

• to turn LED 0 off: spin1 led control (LED OFF (0))

Set up a multicast routing table entry

function arguments description

uint spin1 set mc table entry uint entry table entry

uint key entry routing key field

uint mask entry mask field

uint route entry route field

returns: SUCCESS (=1) / FAILURE (=0).

notes: • see SpiNNaker datasheet for details of the MC table operation.

• entries 0 to 999 are available to the application.

• routing keys with bit[15] = 1 and bit[10] = 0 are reserved.

• function arguments are not validated.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 210

Memory allocation

Allocate a new block of DTCM

function arguments description

void * spin1 malloc uint bytes size of the memory block in bytes

returns: pointer to the new memory block.

notes: • memory blocks are word-aligned.

• memory is allocated in DTCM.

• there is no support for freeing a memory block.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 211

Miscellaneous

Wait for a given time

function arguments description

void spin1 delay us uint time wait time (in microseconds)

returns: no return value

notes: • the function busy waits for the given time (in microseconds).

• prevents any queueable callbacks from executing (use with care).

Generate a 32-bit pseudo-random number

function arguments description

void spin1 rand void no arguments

returns: 32-bit pseudo-random number

notes: • Function based on example function in:

• ”Programming Techniques”, ARM document ARM DUI 0021A.

• Uses a 33-bit shift register with exclusive-or feedback taps at bits 33 and 20.

Provide a seed to the pseudo-random number generator

function arguments description

void spin1 srand uint seed 32-bit seed

returns: no return value

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 212

Application Programme Structure

In general, an application programme contains three basic sections:

• Application Functions: General application functions to support the callbacks.

• Application Callbacks: Functions to be associated with run-time events.

• Application Main Function: Variable initialisation, callback registration and transfer
of control to main loop.

The structure of a simple application programme is shown on the next page. Many details
are left out for brevity.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 213

// d e c l a r e a p p l i c a t i o n types and v a r i a b l e s
neuron s ta t e s t a t e [1 0 0 0] ;
s p i k e b i n b ins [1 0 0 0] [1 6] ;
. . .

/∗ −−− ∗/
/∗ −−−−−−−−−−−−−−−−−−−−−−− a p p l i c a t i o n f u n c t i o n s −−−−−−−−−−−−−−−−−−−−−−− ∗/
/∗ −−− ∗/
void i z h i k e v i c h u p d a t e (neuron s ta t e ∗ s t a t e){

. . .
spin1 send mc packet (key , 0 , NOPAYLOAD) ;
. . .

}

syn row addr lookup synapse row (neuron key key)
{

. . .
}

void b i n s p i k e (neuron key key , axn de lay delay , syn weigth weight)
{

. . .
}

/∗ −−− ∗/
/∗ −−−−−−−−−−−−−−−−−−−−−−− a p p l i c a t i o n c a l l b a c k s −−−−−−−−−−−−−−−−−−−−−−− ∗/
/∗ −−− ∗/
void update neurons ()
{

. . .
i f (spin1 get simulation time () > 1000) // s imu la t i on time in ” t i c k s ”

spin1 stop () ;
e l s e

f o r (i =0; i < 1000 ; i++) i z h i k e v i c h u p d a t e (s t a t e [i]) ;
. . .

}

void p r o c e s s s p i k e (u int key , u int payload)
{

. . .
row addr = lookup synapses (key) ;
t i d = spin1 dma transfer (tag , row addr , syn bu f f e r , READ, row len) ;
. . .

}

void s c h e d u l e s p i k e ()
{

. . .
b i n s p i k e (key , delay , weight) ;
. . .

}

/∗ −−− ∗/
/∗ −−−−−−−−−−−−−−−−−−−−−−−−−− a p p l i c a t i o n main −−−−−−−−−−−−−−−−−−−−−−−−− ∗/
/∗ −−− ∗/
void c main ()
{

// i n i t i a l i s e v a r i a b l e s and timer t i c k
. . .
spin1 set timer tick (1 0 0 0) ; // t imer t i c k per iod in microseconds
. . .
// r e g i s t e r c a l l b a c k s
spin1 callback on (TIMERTICK, update neurons , 1) ;

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 214

spin1 callback on (MCPACKETRECEIVED, p r o c e s s s p i k e , 0) ;
spin1 callback on (DMATRANSFERDONE, s chedu l e sp ik e , 0) ;
. . .
// t r a n s f e r c o n t r o l to the run−time ke rne l
spin1 start () ;
// c o n t r o l r e tu rn s here on execut ion o f spin1 stop ()

}

3.3.3 Neural net simulation frameworks

3.3.3.1 Spiking Neural net simulation framework

SpiNNaker applications are event-driven (figure 3.3.4) in that all computational tasks follow
from events in hardware. Neuron states are computed in discrete timesteps initiated in each
processor by a local periodic timer event. At each timestep processors evaluate the membrane
potentials of all of their neurons given prior synaptic inputs and deliver a packet to the router
for each neuron that spikes. Spike packets are routed to all processors that model neurons
efferent to the spiking neuron. Receipt raises a packet event that prompts the efferent processor
to retrieve the appropriate synaptic weights from off-chip RAM using a background Direct
Memory Access transfer. The processor is then free to perform other computations during the
DMA transfer and is notified of its completion by a DMA done event that prompts calculation
of the sizes of synaptic inputs to subsequent membrane potential evaluations.

update
neurons

trigger
DMA

buffer
packet

packet
event

DMA
event

timer
event

update
synapses

incoming packet buffer
(spiking neuron IDs)

DMA transfer results
(synaptic data copy)

synaptic inputs

control flow

data flow

(if DMA event not impending)

Figure 3.3.4: Events and corresponding tasks in a typical neural simulation.

Each SpiNNaker processor executes an instance of the Application Run-Time Kernel (ARK)
which is responsible for providing computational resources to the tasks arising from events. The
ARK has two threads of execution (figure 3.3.5) that share processor time: following events,
control of the processor is given to the scheduler thread that queues tasks; upon its completion,
the scheduler returns control to the dispatcher thread that dequeues tasks and executes them.
In terms of figure 3.3.4, for example, a timer event schedules a neuron update task that is
dispatched upon returning from the event.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 215

d
is

p
a

tc
h

er

n

sc
h

ed
u

le
r

C
B

 q
u
eu

es

!
Dispatcher

thread

Scheduler

thread

control flow

data flow

Figure 3.3.5: Control and data flow between the scheduler and dispatcher threads.

Tasks have priorities that dictate the order in which they are executed by the dispatcher.
The scheduler places each task at the end of the queue corresponding to its priority and the
dispatcher continually executes tasks from the highest-priority non-empty queue. To facilitate
immediate execution, priority zero tasks are non-queueable and are executed by the scheduler
directly, precluding any further scheduling or dispatching until the task is complete.

The SpiNNaker Application Programming Interface (API) allows a user to specify the tasks
that are executed following an event. The user writes callback functions in C that encode the
desired task and then registers them with the scheduler against a given event. The following
example lists callbacks to compute the Izhikevich equations on the timer event, to buffer packets
and kickstart DMA transfers on a packet event and to start subsequent DMA transfers (condi-
tional on receipt of further packets) and process synaptic inputs on the DMA done event. In
the main function the timer, packet and DMA done callbacks are registered.

int main() {

// Call hardware and simulation configuration functions

...

// Register callbacks and run simulation

callback_on(PACKET_EVENT , packet_callback , PRIORITY_1);

callback_on(DMA_DONE_EVENT , dma_done_callback , PRIORITY_2);

callback_on(TIMER_EVENT , timer_callback_0 , PRIORITY_3);

start (800);

}

void feed_dma_pipeline () {

// Start engine if idle and transfers pending

if(! dma_busy () && !dma_queue_empty ()) {

void *source = lookup_synapses(packet_queue_get ());

dma_transfer (..., source , ...);

}

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 216

}

void buffer_post_synaptic_potentials(synapse_row_t *synapse_row) {

for(uint i = 0; i < synapse_row_length; i++) {

// Get neuron ID , connection delay and weight for each synapse

...

// Store synaptic inputs

neuron[neuron_id].epsp[connection_delay] += synaptic_weight;

}

}

void dma_done_callback(uint synapse_row , uint unused) {

// Restart DMA engine if transfers pending

feed_dma_pipeline ();

// Deliver synaptic inputs to neurons

buffer_post_synaptic_potentials ((synapse_row_t *) synapse_row);

}

void packet_callback(uint key , uint payload) {

// Queue DMA transfer and start engine if idle

packet_queue_put(key);

feed_dma_pipeline ();

}

void timer_callback_0(uint time , uint null) {

for(int i = 0; i < num_neurons; i++) {

uint current = neuron[i].epsp[time];

// Compute neuron state given input and deliver spikes.

// See Jin et al. "Efficient modelling of spiking neural networks"

...

if(neuron[i].v > THRESHOLD){

send_mc_packet(neuron[i].id);

}

}

}

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 217

3.3.3.2 MLP simulation framework

The Mulitilayer Perceptron (MLP) is a type of non-spiking computational neural network model.
An MLP network arranges neurons in layers, each layer having no (or little) internal connectivity
but usually strongly connected to other layers. Neurons themselves perform a simple, abstract
operation:

Oj = Tj(
∑
i

Oiwij)

where Tj(x) is a range-limited nonlinear transfer function, the most common being the sig-
moid:

1

1 + e−kx

Indices i and j refer to the sending “presynaptic” neuron and the receiving “postsynaptic”
neuron respectively. Such networks use a supervised learing method to adapt their weights (the
wij terms; overwhelmingly the most popular is the backpropagation algorithm:

∆wij = ηδjOi (3.3.1)

δj =

{
(Cj −Oj)

dTj

dSj
if j is an output layer

dTj

dSj

∑
k δjwjk if j is not an output layer

(3.3.2)

Here Sj refers to the neuron’s summation:
∑

iOiwij and η is a constant, called the learning
rate. Cj is the intended output of a neuron; what the neuron “should” have output if the
network had been fully trained.

To promote an efficient on-chip mapping, the MLP implementation splits the processing of
a neuron into 3 stages, each a separate process optimally residing on a separate core. These
stages are:

Weight: This performs the input synaptic multiplication: Oiwij .

Sum: This performs the summation of synaptic inputs:
∑

iOiwij .

Threshold: This computes the output nonlinearity: Tj(Sj).

A fourth processing stage: Input, performs 2 roles: in the forward direction it supplies inputs
to the network; in the backward direction, it computes the output errors (the Cj − Oj terms
above).

Weight processors each contain a square submatrix of inputs to a block of neurons in 2 layers:
MIxJy = mij |inx:in(x+1);jny :jn(y+1)

. The complete architecture is a bidirectional compute-and-
forward algorithm:fig. 3.3.6 For the test chip the architecture of necessity combines parts of the
processing onto the same core: Weight and Sum processes lie on one, while Input and Threshold
lie on the other.

The MLP is designed to implement the Lens simulator on SpiNNaker. For the current version,
the implementation supports a limited subset of Lens constructs. In particular, it supports the
following objects and parameters:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 218

Figure 3.3.6: MLP network mapping.

object supported properties

Algorithm Steepest, Momentum, DougsMomentum

Net Standard, Continuous

Group Input, Output, Bias; STANDARD CRIT; BIASED;
WRITE OUTPUTS

Input Dot Product, Product; IN INTEGR, IN NORM, IN NOISE,
IN DERIV NOISE

Output Linear, Logistic, Ternary, Tanh, Exponential; HARD CLAMP;
OUT INTEGR, OUT NOISE, OUT DERIV NOISE,
OUT CROPPED

Error Sum Squared, Cross Entropy, Divergence

Time TimeIntervals, TicksPerInterval, HistoryLength

Training NumUpdates, BatchSize, Criterion, TrainGroupCrit, Test-
GroupCrit, GroupCritRequired, MinCritBatches, Learn-
ingRate, WeightDecay

Simulation Gain, TernaryShift, RandMean, RandRange, NoiseRange

Processing under the MLP model remains event-driven. In its basic form each processor in the
MLP responds to a single hardware event (packet-received) and schedules software-generated
events to complete processing. The packet-received event performs only 2 tasks: 1) it places the
packet into an internal service queue; 2) it schedules a deferred event to dequeue and process the
packet. The dequeue software event, having retrieved the packet, peforms the address decode
and data processing required, as per each stage.

Each subcomponent of the output vector for a given processor may depend on the arrival of

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 219

a different set of inputs. Thus there can be several output computations awaiting a given input
packet.

3.3.4 Neural net simulation development route

Figure 3.3.7: SpiNNaker neural net simulation development route.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 220

3.3.4.1 pyNN.spiNNaker

PyNN is a standard description language for simulating networks of spiking neurons written in
Python. The script is written accordingly to PyNN API and can be executed on the supported
software/hardware simulator.

It aims to support modelling at a high-level of abstraction: Populations of neurons and
Projections between them.
Objects in PyNN include:

• Population: is a group of neurons which share the same model and parameters (eg.
Izhikevich Regular Spiking neurons), even if some model dependent initialization values
can be randomized.

• Projection: represents the connections between two Populations. Describes the type
of Connector (All To All, One To One, Random, From List), the target synapse and the
connection parameters (weight and delay). It is possible to associate plasticity mechanism
to Projections.

• Input Sources: they are divided into Spike Sources and Current Sources. Spike Sources
are “dummy” neuron populations that produce spikes accordingly to a probability dis-
tribution function. Current sources inject currents into the target neurons which vary
arbitrarily with time.

• Recorder: represent the selection of observables that will be saved eg. spikes, state
variables.

The pyNN.spiNNaker module will compile the PyNN script into a list of populations, projec-
tions and associated plasticity algorithms, configure inputs and observables.

A Population object can be constructed in PyNN as

constructor arguments description

Population uint population id a unique identifier for a Population

uint size Number of neurons in the Population

cell type Neural Model (cell type in PyNN). It corresponds
to the neural application.

dict parameters Parameters for the neurons in the Population.

returns: PyNN Population object

Adds a Population to the netlist

notes: • Assemblies in PyNN are formed by adding two or more Populations together.
They don’t need to be explicitly modeled by the pyNN.spiNNaker module since it
will reason at a Population level.

• PopulationViews are PyNN objects used to define and operate on subsets of
Population objects. In order to deal with them properly the pyNN.spiNNaker plugin
will divide them into two distinct Populations.

• The compiler will select the appropriate parsing accordingly to the neural model
application selected.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 221

http://www.neuralensemble.org/trac/PyNN/wiki/API-0.6

A Projection object can be represented as:

constructor arguments description

Projection uint projection id a unique identifier for a Projection

uint presynaptic population id identifies the presynaptic Population

uint postsynaptic population id identifies the postsynaptic Population

string target target synapse/receptor/effector of
the Projection (eg. excitatory,
NMDA)

connector type describes the connection pattern be-
tween two Populations (see next sec-
tion)

dict parameters Parameters for the Projection. Stan-
dard parameters are weight and delay

dict plasticity Parameters for the Plasticity Algo-
rithm(s) associated with the projec-
tion.

returns: PyNN Projection object

Adds a Projection to the netlist

notes: • The target will be translated into an ID that will help the application to select the
right branch upon a DMA complete. It will then need to be written in the synaptic
word in SDRAM

• Plasticity Algorithm is a dictionary containing the parameters for the Plasticity
algorithm. The dictionary will have a standard entry type helping the partitioner
and the compiler to identify and correctly position the population and compute
plasticity data structures

Connectors describe the connectivity pattern between two Populations and can be differen-
tiated in:

constructor arguments description

OneToOne weights a value or a random process to initialize
weights

delays a value or a random process to initialize
delays

bool allow self connections allows a neuron to connect to another neu-
ron with the same local ID (eg. neurons 0
of both source and destination)

notes: connects the first neuron of the presynaptic Population to the first neuron of the
postsynaptic Population and so on. If the source and destination population don’t
have the same number of neurons exceeding connections will be discarded

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 222

constructor arguments description

AllToAll weights a value or a random process to initialize
weights

delays a value or a random process to initialize
delays

bool allow self connections allows a neuron to connect to another neu-
ron with the same local ID (eg. neurons 0
of both source and destination)

notes: connects all the neurons of the presynaptic Population to all the neurons of the
Postsynaptic Population

constructor arguments description

FixedProbability weights a value or a random process to initialize
weights

delays a value or a random process to initialize
delays

bool allow self connections allows a neuron to connect to another neu-
ron with the same local ID (eg. neurons 0
of both source and destination)

float p probability of a neuron in the presynaptic
Population to connect to a neuron in the
postsynaptic Population

notes: connects all the neurons of the source Population every neuron of the postsynaptic
Population with probability p

constructor arguments description

FromList list a python list containing the connection specified one by one

notes: takes an explicit list of connections in the format source id, target id, params.
The source and target id will be represented relatively to the Population and the
list will be contained in the Parameters section p

Current Sources can be thought as:

• fixed currents known a priori: In this case a table describing the changes in time of current
amplitude for every input neurons must be generated and loaded

• dynamic currents arbitrarily varying with time: a state variable representing the input
current for the neuron is changed

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 223

notes: • currents can vary upon receival of an event (MC packet with particular target,
Message from Host)
• Static current table can be loaded in the monitor/dedicated processor and have
a process that leads to the change of the state variable in the target neuron/core
• In any case the partitioner/compiler needs to know which neurons can receive
input currents in order to link the relative portion of application code

Spike Sources will be considered neural population of a particular type (SpikeSource). The
partitioner and the compiler will then create only the connection structures while they will skip
the neural data themselves. Spikes can be produced by:

• Random Process: in this case parameters for the process (eg. rate) must be passed to the
component generating the spikes

• List: in this case the list needs to be created, parsed and compiled to the appropriate
spike generator component

• Dynamic Source (eg. Silicon Retina): spikes will be injected to a link by an external
source

TBD: how are spikes generated? Process on the host machine? Monitor (or dedicated)
process on chip?

Recorders will enable logging options for the selected Populations. Log can either occur in
SDRAM or can be streamed to the Ethernet TBD. Recorders can also be used to send spikes
out of the Ethernet link. Will be defined as:

• Population: target Population

• Variable: the variable to log (u, v, i)

• Destination: Ethernet or SDRAM

The Population/Projection abstraction let the system deal with aggregated groups rather
than with single neurons and can therefore be used as an efficient representation in the mapping
and compiling binary phases as well.

TBD: The output format for this section can be an exchange file or python structures to
be passed to the next stage, the partitioner. I suggest using a sqlite DB to store
the configuration between different software layers, and be able to update retrieve
information with standard SQL language. In this way information can be spread
across all software components (mapping, compiling, managing input/output, visu-
alising) and represented in a standard, easy to consult and efficient way.

3.3.4.2 PyNN API functions list

Contents PyNN API version 0.7

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 224

PyNNAPIversion0.7

3.3.4.3 Simulation setup and control

setup(timestep=0.1, min delay=0.1, max delay=10.0, **extra params)
end(compatible output=True)
run(simtime)
reset() To be implemented
get time step() To be implemented
get current time() To be implemented
get min delay() To be implemented
get max delay(): To be implemented

3.3.4.4 Object-oriented interface for creating and recording networks

Population

add (self, other)

getitem (self, index)

init (self, size, cellclass, cellparams=None, structure=None, . . .

describe(self, template=’population default.txt’, engine=’default’)

get(self, parameter name, gather=False)

getSpikes(self, gather=True, compatible output=True): Implemented as a standalone script
using SDRAM/network output

get v(self, gather=True, compatible output=True): Implemented as a standalone script

id to index(self, id)

inject(self, current source): To be implemented as an SDP message passing from the host
machine and the application framework

printSpikes(self, file, gather=True, compatible output=True): Implemented as a standalone
script using SDRAM/network output

print v(self, file, gather=True, compatible output=True): : Implemented as a standalone
script using SDRAM/network output

randomInit(self, rand distr)

record(self, to file=True): Implemented as record(self, save to=True) where save to defines
if the data needs to be saved in SDRAM or sent through the ethernet (deprecated)

record v(self, to file=True): Implemented as record(self, save to=True) where save to defines
if the data needs to be saved in SDRAM or sent through the ethernet (deprecated)

save positions(self, file): To be implemented

set(self, param, val=None)

3.3.4.5 PopulationView

To be implemented, TBD how treat overlapping PopulationView

3.3.4.6 Assembly

Partially implemented at a PyNN level. add (self, other)

getitem (self, index)

iadd (self, other): To be implemented

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 225

http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setuptimestep0.1min_delay0.1max_delay10.0extra_params
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#endcompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#runsimtime
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#reset
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_time_step
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_current_time
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_min_delay
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_max_delay
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Population
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__add__selfother
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__getitem__selfindex
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfsizecellclasscellparamsNonestructureNonelabelNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplatepopulation_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getselfparameter_namegatherFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getSpikesselfgatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_vselfgatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#id_to_indexselfid
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#injectselfcurrent_source
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#printSpikesselffilegatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#print_vselffilegatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#randomInitselfrand_distr
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#recordselfto_fileTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#record_vselfto_fileTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#save_positionsselffile
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setselfparamvalNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__add__selfother2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__getitem__selfindex2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__iadd__selfother

init (self, *populations, **kwargs)

iter (self)

len (self)

describe(self, template=’assembly default.txt’, engine=’default’)

get gsyn(self, gather=True, compatible output=True)

Classes for defining spatial structure Imported from PyNN

Classes for defining spatial structure

3.3.4.7 Object-oriented interface for connecting populations of neurons

Projection

getitem (self, i)

init (self, presynaptic population, postsynaptic population, method, . . .

getDelays(self, format=’list’, gather=True): To be implemented

getSynapseDynamics(self, parameter name, format=’list’, gather=True): To be implemented

getWeights(self, format=’list’, gather=True): To be implemented

printWeights(self, file, format=’list’, gather=True): To be implemented

randomizeDelays(self, rand distr): To be implemented (it is possible to define random weight-
s/delays passing a RandomObject to the Projection constructor

randomizeSynapseDynamics(self, param, rand distr): To be implemented

randomizeWeights(self, rand distr): To be implemented (it is possible to define random
weights/delays passing a RandomObject to the Projection constructor

saveConnections(self, file, gather=True, compatible output=True): To be implemented

setDelays(self, d)

setSynapseDynamics(self, param, value): To be implemented (it is possible to set them when
the Projection is created)

setWeights(self, w): To be implemented (it is possible to set them when the Projection is
created)

size(self, gather=True): Partially implemented
AllToAllConnector

init (self, allow self connections=True, weights=0.0, delays=None, . . .
OneToOneConnector

init (self, weights=0.0, delays=None, space=<pyNN.space.Space object . . .
FixedProbabilityConnector

init (self, p connect, allow self connections=True, weights=0.0, . . .
DistanceDependentProbabilityConnector: Translated as a FromList Connector

init (self, d expression, allow self connections=True, weights=0.0, . . .
FromListConnector

init (self, conn list, safe=True, verbose=False)
FromFileConnector

init (self, file, distributed=False, safe=True, verbose=False)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 226

http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfpopulationskwargs
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__iter__self2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__len__self2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplateassembly_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_gsynselfgatherTruecompatible_outputTrue2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Classesfordefiningspatialstructure
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Classesfordefiningspatialstructure
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Projection
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__getitem__selfi
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfpresynaptic_populationpostsynaptic_populationmethodsourceNonetargetNonesynapse_dynamicsNonelabelNonerngNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getDelaysselfformatlistgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getSynapseDynamicsselfparameter_nameformatlistgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getWeightsselfformatlistgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#printWeightsselffileformatlistgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#randomizeDelaysselfrand_distr
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#randomizeSynapseDynamicsselfparamrand_distr
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#randomizeWeightsselfrand_distr
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#saveConnectionsselffilegatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setDelaysselfd
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setSynapseDynamicsselfparamvalue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setWeightsselfw
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#sizeselfgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#AllToAllConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfallow_self_connectionsTrueweights0.0delaysNonespacepyNN.space.Spaceobjectat0x62749f0safeTrueverboseFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#OneToOneConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfweights0.0delaysNonespacepyNN.space.Spaceobjectat0x17d30e50safeTrueverboseFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#FixedProbabilityConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfp_connectallow_self_connectionsTrueweights0.0delaysNonespacepyNN.space.Spaceobjectat0x5912970safeTrueverboseFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#DistanceDependentProbabilityConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfd_expressionallow_self_connectionsTrueweights0.0delaysNonespacepyNN.space.Spaceobjectat0x58ae570safeTrueverboseFalsen_connectionsNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#FromListConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfconn_listsafeTrueverboseFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#FromFileConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selffiledistributedFalsesafeTrueverboseFalse

3.3.4.8 Procedural interface for creating, connecting and recording net-
works

Not implemented as this is the low level Api.

3.3.4.9 Neural Models

Standard Models: IF curr exp: 16 and 32 bit
IF cond exp: 32 bit
EIF cond exp isfa ista: Under implementation
SpikeSourcePoisson: Implemented, it generates spikes according to a Poisson process that is

extracted from a uniformly distributed random variable.
SpikeSourceArray: Implemented so that a set of spikes is loaded on the SpiNNaker system

and then parsed at simulation time, and the spikes are distributed according to the loaded
pattern.

init (self, parameters)
Non Standard Models:

• IZK curr exp: an implementation of the Izhikevich neuron with 2 first order kinetic synap-
tic types

• NEF input: Translates values to Population spike trains using the Neural Engineering
Framework

• NEF output: Translates Population spike trains to values using the Neural Engineering
Framework

• SpikeSink: Gathers spikes and outputs them through the ethernet

• Dummy: population used for profiling

• SpikeSource: Receive spike packets from the host and propagates them in the neural
network. It needs a standalone program on the host machine sending spike packets. The
software on the host side has been called “SpikeServer”.

3.3.4.10 Specification of synaptic plasticity

SynapseDynamics
init (self, fast=None, slow=None)

describe(self, template=’synapsedynamics default.txt’, engine=’default’)
STDPMechanism

init (self, timing dependence=None, weight dependence=None, . . . describe(self, tem-
plate=’stdpmechanism default.txt’, engine=’default’)

AdditiveWeightDependence
init (self, w min=0.0, w max=1.0, A plus=0.01, A minus=0.01)

SpikePairRule
init (self, tau plus=20.0, tau minus=20.0)

FullWindow

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 227

http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Proceduralinterfaceforcreatingconnectingandrecordingnetworks
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#IF_curr_exp
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#IF_cond_exp
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#EIF_cond_exp_isfa_ista
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#SpikeSourcePoisson
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#SpikeSourceArray
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfparameters9
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#SynapseDynamics
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selffastNoneslowNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplatesynapsedynamics_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#STDPMechanism
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selftiming_dependenceNoneweight_dependenceNonevoltage_dependenceNonedendritic_delay_fraction1.0
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplatestdpmechanism_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplatestdpmechanism_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#AdditiveWeightDependence
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfw_min0.0w_max1.0A_plus0.01A_minus0.01
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#SpikePairRule
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selftau_plus20.0tau_minus20.0

init (self, tau plus=20.0, tau minus=20.0)

TimeToSpike

init (self, L parameter=-65, tau plus=20.0, tau minus=20.0)

SpiNNaker implements three learning rules:

1) Standard STDP rule, that can be instantiated using the class FullWindow. For details
refer to the article “Implementing Spike-Timing-Dependent Plasticity on SpiNNaker Neu-
romorphic Hardware” by Xin Jin, Alexander Rast, Francesco Galluppi, Sergio Davies and
Steve Furber

2) Spike-pair STDP, also known as nearest-neughbour STDP, that can be instantiated using
the class SpikePairRule. The implementation is similar to the standard STDP rule, but
the synaptic weight update is limited to the nearest pair of spikes.

3) STDP with Time-To-Spike forecast, that can be instantiated using the class TimeToSpike.
This learning rule is suitable only for Izhikevich neurons. For details of the learning
rule and its implementation refer to the article ”A forecast-based STDP rule suitable for
neuromorphic implementation” by Sergio Davies, Alexander Rast, Francesco Galluppi and
Steve Furber

3.3.4.11 Current Injection

Current injection To be implemented via SDP message passing between the host and the ap-
plication framework

Example

PyNN example script to run a multichip synfire chain model on the SpiNNaker test board.

A synfire chain (synchronous firing chain) is a feed-forward network of neurons with multiple
layers or pools. In a synfire chain, neural impulses propagate synchronously back and forth
from layer to layer. Each neuron in one layer feeds excitatory connections to neurons in the
next, while each neuron in the receiving layer is excited by neurons in the previous layer.
(http://en.wikipedia.org/wiki/Synfire chain)

This scripts allocates pool number layers on each chip, up to 4 chips and 512 neurons per
chip.

#!/ usr / bin /python

Imports the pyNN. spiNNaker module
from pyNN. spiNNaker import ∗

Def ines the s y n f i r e chain model .
p o o l s i z e = 256 # Numbers o f neurons in a pool
pool number = 8 # Total numbers o f poo l s

runtime = 1000 # Time o f the s imu la t i on

fwd weights = 7 # Feed forward weights
bck weights = −0.1 # I n h i b i t o r y feedback

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 228

http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Currentinjection

s e t t i n g up the PyNN environment
setup (t imestep =1.0 , min delay = 1 . 0 , max delay = 16 .0 ,

spiNNChipAddr=' spinn −1 ' # IP address o f the spiNNaker board
)

p r i n t ” Total number o f poo l s a c r o s s system : ” , pool number

Def ine s neura l parameters f o r the populat ion
ce l l pa rams = { ' tau m ' : 32 ,

' v i n i t ' : −85,
' v r e s t ' : −75,
' v r e s e t ' : −75,
' v thresh ' : −55,
' tau syn E ' : 5 ,
' tau syn I ' : 2 ,
' t a u r e f r a c ' : 10 ,
}

Neural Populat ions c r e a t i o n

popu la t i ons = [] # L i s t conta in ing a l l the popu la t i ons in the model

Loop c r e a t i n g the popu la t i ons − each populat ion models a pool in the s y n f i r e chain
f o r i in range (pool number) : # Total number o f poo l s in the system

popu la t i ons . append (Populat ion (p o o l s i z e , # Neurons per populat ion
IF curr exp , # PyNN Standard Neuron Model .
ce l l params , # Neuron parameters
l a b e l =' poo l %d ' % i) # Label f o r the populat ion

)
popu la t i ons [i] . r ecord ()

Connections c r e a t i o n
connec t i ons = [] # L i s t conta in ing a l l the connect i ons in the model

Loop gene ra t ing the feed forward connec t i ons . Pool N w i l l be connected to pool N+1
f o r i in range (pool number −1): # Cycl ing a l l popu la t i ons in the model

connec t i ons . append (Pro j e c t i on
(popu la t i ons [i] , # Presynapt ic populat ion

popu la t i ons [i +1] , # Postsynapt i c populat ion
OneTo One w i l l connect the f i r s t neuron in the pre synapt i c populat ion
to the f i r s t neuron in the pos t synapt i c populat ion

OneToOneConnector (weights=fwd weights , de lays=de l ayDi s t r) ,
Target synapse type − IF cur r exp supports two d i f f e r e n t s cur rent b ins . one f o r
e x c i t a t o r y synapses and one f o r i n h i b i t o r y synapses with two d i f f e r e n t time cons tant s

t a r g e t =' exc i t a to ry ' ,
l a b e l =' poo l %d−poo l %d ' % (i , i +1) # Connection l a b e l
)

)

Last populat ion connected to f i r s t populat ion
shows how to bu i ld i n h i b i t o r y connect i ons
connec t i ons . append (Pro j e c t i on (popu la t i ons [pool number −1] ,

popu la t i ons [0] ,
OneToOneConnector (weights=bck weights ∗0 . 1 , de lays =1) ,
t a r g e t =' i n h i b i t o r y ' ,

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 229

l a b e l =' c l o s e l o o p '
)

)

I n j e c t i n g cu r r en t s in the f i r s t pool − s e t t i n g up the input waveform
c u r r e n t s o u r c e = StepCurrentSource ([0 , 50 , 1000] , # Time

[0 , 1 , 0]) # Amplitude
I n j e c t i n g in the f i r s t pool
c u r r e n t s o u r c e . i n j e c t i n t o (popu la t i ons [0])

run (runtime) # Simulat ion time

end () # And that ' s a l l f o l k s !

The script above builds a spiking neural network composed by 8 pools of 256 neurons each
connected in a feed-forward way, where every nth neuron of each population is connected to the
nth neuron in the next population. It records spikes from every population. The first population
is injected with a step current.

Such a network can be represented with the structures defined above as:

Populations

id size cell type parameters label

0 256 IF curr exp {’tau m’ : 32,’v init’ : -85, ’v rest’ : -75, ..} pool 0

1 256 IF curr exp {’tau m’ : 32,’v init’ : -85, ’v rest’ : -75, ..} pool 1

2 256 IF curr exp {’tau m’ : 32,’v init’ : -85, ’v rest’ : -75, ..} pool 2

3 256 IF curr exp {’tau m’ : 32,’v init’ : -85, ’v rest’ : -75, ..} pool 3

4 256 IF curr exp {’tau m’ : 32,’v init’ : -85, ’v rest’ : -75, ..} pool 4

5 256 IF curr exp {’tau m’ : 32,’v init’ : -85, ’v rest’ : -75, ..} pool 5

6 256 IF curr exp {’tau m’ : 32,’v init’ : -85, ’v rest’ : -75, ..} pool 6

7 256 IF curr exp {’tau m’ : 32,’v init’ : -85, ’v rest’ : -75, ..} pool 7

Projections

ID source dest target parameters plasticity label

0 0 1 excitatory {weights=7, delays=1} none pool 0-pool 1

1 1 2 excitatory {weights=7, delays=1} none pool 1-pool 2

2 2 3 excitatory {weights=7, delays=1} none pool 2-pool 3

3 3 4 excitatory {weights=7, delays=1} none pool 3-pool 4

4 4 5 excitatory {weights=7, delays=1} none pool 4-pool 5

5 5 6 excitatory {weights=7, delays=1} none pool 5-pool 6

6 6 7 excitatory {weights=7, delays=1} none pool 6-pool 7

7 7 0 inhibitory {weights=7, delays=-0.01} none pool 7-pool 0

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 230

Recorders

ID population id observable save to

0 0 spikes SDRAM

1 1 spikes SDRAM

2 2 spikes SDRAM

3 3 spikes SDRAM

4 4 spikes SDRAM

5 5 spikes SDRAM

6 6 spikes SDRAM

7 7 spikes SDRAM

Currents

id population id parameters

0 0 (’type’:’list, ’times’:’[0, 50, 1000]’, ’amplitudes’:’[0, 1, 0]’

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 231

Figure 3.3.8: PyNN/SpiNNaker interface structure.

3.3.5 Damson development route

3.3.5.1 Damson program compilation

A Damson program for SpiNNaker consists of a single source file containing code for a number
of nodes. Each node maps to a single application processor in SpiNNaker. When the compiler
(damsonc) is run on a Damson program, the output is a number of object files (in ELF format)
where each object file contains the code of a single node in the source.

3.3.5.2 Damson code components

The object files refer to a set of routines in a Damson library known as “damsonlib”. This
provides arithmetic functions (multiply and divide) for the fixed point data type used by Damson
as well as formatted output routines. A jump table is appended to the code of each node so
that calls can be made into damsonlib from the code for each node. The code to be loaded
onto each processor consists of the node code with jump table, a copy of damsonlib and also
a separate runtime system which implements low-level SpiNNaker specific operations such as
timers and packet transmission. The runtime system is currently implemented specifically for
Damson but will be merged with the standard SpiNNaker API in due course.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 232

3.3.5.3 Mapping code to SpiNNaker processors

The Damson compiler also produces a file which details the mapping between the code for each
node and the object file containing it. This file also provides a packet communication map which
indicates to which other nodes a given node sends packets. This latter information is needed to
allow Damson nodes to be allocated to specific application processors in a SpiNNaker system
and to allow generation of the multicast routing tables to route packets correctly. In due course
the PACMAN program will be used to perform this function. For now, the routing tables are
generated by hand. This limits the scale of Damson demonstration programs somewhat!

3.3.5.4 Runtime system

The Damson runtime system currently provides a set of support routines and interrupt handlers.
A timer interrupt may be started by a Damson node at a specified clock rate. A “packet
received” interrupt handler routes packets to a specific handler at a node depending on the
source node of the packet.

3.3.5.5 Damson development flow

In the diagram below the box marked “Object Code” is the set of ELF object files produced
by “damsonc”. The box marked “Netlist” is the map file produced by the compiler. The
netlist and a description of the target SpiNNaker system are fed to PACMAN (Partitioning and
Configuration Manager) which generates a set of multicast routing tables (one per SpiNNaker
chip) and also a driver file used by the code linking stage to build the image(s) to be loaded.
The object files are fed to the linker where they are combined with the runtime system (based
around the SpiNNaker API) to make the code images for loading.

3.3.6 PACMAN: partition and configuration manager

3.3.6.1 Introduction

The function of PACMAN - the Partitioning And Configuration MANager, is to transform the
high-level representation from PyNN, Lens or DAMSON into a physical on-chip implementation:
the instruction and data binaries the boot process loads in order to configure the system.

Example of network representation in PACMAN, showing two different mappings of a neural
network model on the SpiNNaker system. The network consists of 5 populations interconnected
in a random way. PACMAN is set to map the model by fitting up to 100 neurons in each
application core. Two different mapping cases are presented: top) a single population of 150
neurons fits in 1 and 1/2 cores; bottom) two populations of 50 neurons can fit in a single core.

PACMAN is based on a Database that holds three representations of the neural network
(fig.3.3.10):

• Model Level: the network as specified in the high-level language (PyNN, Damson, LENS
etc.)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 233

Figure 3.3.9: PACMAN internal structureHBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 234

Figure 3.3.10: Example of network representation in PACMAN

• PACMAN Level: the network is partitioned in Pre Populations that can be fit into a
single computing core. Projections, probes and inputs are split accordingly. Pre Populations
that can be fit into a core a grouped together

• System Level: a map linking groups of Pre Populations with a particular core (identified
by its coordinates) in the system

Such translations enable the network to be mapped and deployed on the SpiNNaker system,
by generating the binaries needed to configure the simulation components and topology.

In FPGA language, it may be considered similar to a configuration bitstream generator.
Because of the large and highly associative nature of the data structures, it is essential that
algorithms for PACMAN must be a) incremental, b) of linear (or at the very most NlogN)
complexity in the number of neurons.

PACMAN itself (fig.3.3.9) is divided in 4 different steps:

• Splitting, responsible for splitting neural populations which won’t fit in a single core
(because of memory or comutational complexity limitations) into Pre Populations that
will fit in a core (like a neural “place” operation)

• Grouping, responsible of collating Pre Populations which can be run using the same
application code in order to fit more of them onto a single core. Those first two steps
define the Partitioner

• Mapping, responsible of performing virtual-to-physical translation and allocate groups
to cores

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 235

• Object file generation, which creates the actual data binaries from the partitioned and
mapped network.

PACMAN works internally on an SQL database. Fig. 3.3.11 shows the schema for the
database. As PACMAN is invoked the Network Specification schema has already been pop-
ulated by the spiNNaker.pyNN, Lens’s SpiNNaker.tcl or DAMSON plugin as described in the
relative sections.

An example of network representation in PACMAN, showing two different mappings of a
neural network model on the SpiNNaker system is presented in figure. The network consists
of 5 populations interconnected in a random way. Each population receives connections from
other populations (including self connections - not showed in figure for simplicity) PACMAN is
set to map the model by fitting up to 100 neurons in each application core:

• (top) if populations are too big to fit in a single core (150 neurons per population, top
portion of the figure) they are split in 2 Pre Populations of 100+50 neurons. Projections
and other network elements are split accordingly. The resulting model maps to 8 cores in
the SpiNNaker system

• (bottom) if populations are small enough to be fit a sub-portion of a single core (50 neurons
per population, bottom portion of the figure) they are grouped in the same core, up to
the maximum number of neurons. Projections and other network elements are grouped
accordingly. The resulting model maps to 3 cores in the SpiNNaker system

Note: PyNN and Lens use different terminology to refer to associated blocks of neurons
(Populations and Groups, respectively) and connections (Projections and Blocks,
respectively). In addition a “neuron” in Lens goes under the name of Unit and a
“synapse” under the name of Link. To avoid confusion we use the PyNN terminology
throughout; the equivalent Lens names may be substituted in the appropriate places
for an MLP network generation.

3.3.6.2 Splitting

During the Partitioning phase Populations that span more than one core will be divided into
Pre Populations that can be allocated into single cores. In order to do this the system needs to
know:

• the maximum number of neurons that can be fitted in one single core. This information is
stored in the max neuron per fasc field of the cell type table of the Model Library schema

After having split Populations into Pre Populations Projections need to be exploded into
Pre Projections as well. A Pre Projection is a Projection between 2 Pre Populations.

The output of the Partitioner will be stored in the Pre populations and Pre projections tables
which have the following structure:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 236

M
O
D
EL
LI
B
R
A
R
Y

P
A
R
TI
TI
O
N
ER
+
M
A
P
P
ER

cu
rr
e
n
ts

P
K

id p
ar
am
e
te
rs

FK
1

p
o
p
u
la
ti
o
n
_
id

st
ar
t_
id

e
n
d
_
id

m
ap

P
K

id p
ro
ce
ss
o
r_
id

FK
1
p
ro
ce
ss
o
r_
gr
o
u
p
_
id

p
ro
je
ct
io
n
s

P
K

id

FK
2

p
re
sy
n
ap
ti
c_
p
o
p
u
la
ti
o
n
_
id

si
ze

FK
4

m
e
th
o
d

FK
1

p
o
st
sy
n
ap
ti
c_
p
o
p
u
la
ti
o
n
_
id

la
b
e
l

p
ar
am
e
te
rs

FK
3
p
la
st
ic
it
y_
in
st
an
ti
at
io
n
_
id

ta
rg
e
t

p
la
st
ic
it
y_
in
st
an
ti
at
io
n

P
K
id p
ar
am
e
te
rs

p
la
st
ic
it
y_
m
e
th
o
d
s

P
K

id

FK
1

p
la
st
ic
it
y_
in
st
an
ti
at
io
n
_
id

FK
2

m
e
th
o
d
_
ty
p
e

m
e
th
o
d
_
n
am
e

ce
ll_
in
st
an
ti
at
io
n

P
K
id p
ar
am
e
te
rs

p
la
st
ic
it
y_
m
o
d
e
ls

P
K
id m
o
d
e
l_
n
am
e

ce
ll_
m
e
th
o
d
s

P
K

id

FK
1

ce
ll_
in
st
an
ti
at
io
n
_
id

FK
2

m
e
th
o
d
_
ty
p
e

m
e
th
o
d
_
n
am
e

p
la
st
ic
it
y_
p
ar
am
e
te
rs

P
K

id

FK
1

m
o
d
e
l_
id

p
ar
am
_
n
am
e

ce
ll_
p
ar
am
e
te
rs

P
K

id p
o
si
ti
o
n

FK
1

m
o
d
e
l_
id

p
ar
am
_
n
am
e

ty
p
e

tr
an
sl
at
io
n

p
o
p
u
la
ti
o
n
s

P
K

id la
b
e
l

FK
1

ce
ll_
in
st
an
ti
at
io
n
_
id

si
ze
co
n
st
ra
in
ts

p
ro
b
e
s

P
K

id

FK
1

p
o
p
u
la
ti
o
n
_
id

va
ri
ab
le

sa
ve
_
to

ce
ll_
ty
p
e
s

P
K
id m
ax
_
n
e
u
ro
n
_
p
e
r_
fa
sc

n
am
e

p
ro
ce
ss
o
rs

P
K
id st
at
u
s

is
_
e
th

is
_
m
o
n
it
o
r

p x y

co
n
n
e
ct
o
r_
ty
p
e
s

P
K
id n
am
e

as
se
m
b
lie
s

P
K
as
se
m
b
ly
_
id

as
se
m
b
ly
_
la
b
e
l

as
se
m
b
ly
_
as
so
ci
at
io
n
s

P
K

id

FK
1

as
se
m
b
ly
_
id

m
e
m
b
e
r_
id

ty
p
e

rn
g

P
K
id ty
p
e

se
e
d

sy
n
ap
se
_
ty
p
e
s

P
K

id sy
n
ap
se
_
n
am
e

sy
n
ap
se
_
fl
ag

FK
1

ce
ll_
ty
p
e
_
id

tr
an
sl
at
io
n

ra
n
d
o
m
_
d
is
tr
ib
u
ti
o
n

P
K

id la
b
e
l

p
ar
am
e
te
rs

FK
1

rn
g_
id

d
is
tr
ib
u
ti
o
n

C
O
N
N
EC
TO
R
LE
G
EN
D

0
o
r
1
to
0
o
r
m
o
re

0
o
r
1
to
1
o
r
m
o
re

1
to
0
o
r
m
o
re

1
to
1
o
r
m
o
re

p
ar
t_
p
o
p
u
la
ti
o
n
s

P
K

id

FK
1

p
o
p
u
la
ti
o
n
_
id

si
ze
o
ff
se
t

p
ro
ce
ss
o
r_
gr
o
u
p
_
id

st
ar
t_
id

e
n
d
_
id

m
as
k

p
o
p
u
la
ti
o
n
_
o
rd
e
r_
id

lo
o
ku
p
_
m
as
k

fl
ag
s

p
ar
t_
p
ro
b
e
s

P
K

id

FK
2

p
ar
t_
p
o
p
u
la
ti
o
n
_
id

FK
1

p
ro
b
e
_
id

va
ri
ab
le

sa
ve
_
to

p
ar
t_
cu
rr
e
n
ts

P
K

id p
ar
am
e
te
rs

FK
1

cu
rr
e
n
t_
id

FK
2

p
ar
t_
p
o
p
u
la
ti
o
n
_
id

st
ar
t_
id

e
n
d
_
id

p
ar
t_
p
ro
je
ct
io
n
s

P
K

id

FK
4

p
ro
je
ct
io
n
_
id

FK
3

p
re
sy
n
ap
ti
c_
p
ar
t_
p
o
p
u
la
ti
o
n
_
id

FK
2

p
o
st
sy
n
ap
ti
c_
p
ar
t_
p
o
p
u
la
ti
o
n
_
id

si
ze
m
e
th
o
d

p
ar
am
e
te
rs

FK
1
p
la
st
ic
it
y_
in
st
an
ti
at
io
n
_
id

ta
rg
e
t

sd
ra
m
_
ad
d
re
ss

sy
n
ap
ti
c_
ro
w
_
le
n
gt
h

o
p
ti
o
n
s

P
K

id n
am
e

va
lu
e

Figure 3.3.11: Database structure: model library and network specification

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 237

Pre populations

Field type description

id (PRIMARY KEY) INTEGER ID defining a Pre Population

population id (FOREIGN
KEY: populations.id)

INTEGER ID defining the source Population

cell ids TEXT a slice object containing the subset of the Pop-
ulation cell ids mapped by the Pre Population

start id INTEGER the core-relative starting id for the
Pre Population in the core

end id INTEGER the core-relative ending id for the
Pre Population in the core

mask INTEGER mask defining Population and Neuron ID in the
routing key

population order id INTEGER order of the Pre Population in the core

notes: group id will be used during the Grouping phase. population order id, start id,
end id and mask are using for Population-based routing. Pre Populations need to
be ordered decreasingly according to their size

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 238

Pre populations

Field type description

id (PRIMARY KEY) INTEGER ID defining a Pre Projection

presynaptic population id
(FOREIGN KEY:
Pre populations.id)

INTEGER ID defining the presynaptic Pre Population in
the Pre Projection

postsynaptic population id
(FOREIGN KEY:
Pre populations.id)

INTEGER ID defining the postsynaptic Pre Population in
the Pre Projection

method (FOREIGN
KEY: connector types.id)

INTEGER ID referring to the connector type between the
2 Pre Populations

size INTEGER number of single connections (neuron to neu-
ron) in the Pre Projection

source INTEGER string specifying which attribute of the presy-
naptic cell signals action potentials

target (FOREIGN KEY:
TBD)

INTEGER ID referring to which synapse on the postsy-
naptic cell to connect to

parameters TEXT a string containing a Dictionary of parameters
(eg. weights, delays)

plasticity instantiation id
(FOREIGN KEY: plas-
ticity instantiation id)

INTEGER ID defining the type of plasticity algorithm and
its parameters for the Pre Projection

label TEXT human readable label for Pre Projection

notes: The Pre Projection table has the same structure of the Projection table, but
presynaptic population id and postsynaptic population id refer to Pre Populations
rather than Populations. source is done for compatibility with PyNN

Implementation

partitioner/splitter.py

The process is set up by calling the following functions:

• split populations: splits Populations accordingly to the maximum number of neurons for
that model

• split projections: splits Projections accordingly to Pre populations. recalculates offsets
for ids (FromListConnector)

• split probes: splits Probes accordingly to Pre populations

They all take as input an instantiation of the db. An example on how to run the splitter is
reported below:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 239

import sys
p r i n t ”Loading DB: ” , sys . argv [1]
db = load db (sys . argv [1]) # imports the DB passed as argv [1]
db . c l e an pa r t db () # c l e a n s the pa r t ∗ t a b l e s
s p l i t p o p u l a t i o n s (db)
s p l i t p r o j e c t i o n s (db)
s p l i t p r o b e s (db)

3.3.6.3 Grouping

The Grouping stage needs to know information about the system and the model in order to
translate the one to the other. At the model level the partitioner needs to know information
passed either by the pyNN.spiNNaker plugin, or Lens’ SpiNNaker.tcl script, in particular:

• Number of Pre Populations, number of neurons in each Pre Populations, neuron type

• Number and type of Projections

• Number and type of Inputs and Recorders

• Number of types and associated parameters for neurons, projections, and recorders

At the system level the partitioner needs to know

• Number of neurons that can be modelled in a single core for a specific neuron type/ap-
plication. This includes parameters from synaptic and plasticity model as well (eg. all
neuron which share core-wise parameters as STDP tables can be put together in the same
core)

• How neurons and other complex model objects are assembled, i.e. what component func-
tions and parameters must be built into them.

• Obey constraints on the maximum number of neurons per core for a given application

• Only place Populations with the same (composite) neural type on the same core

• Only Populations with the same mapping constraint can be grouped together

The output from the Grouping stage will write its output in the group id field of the Pre populations
table, grouping different populations in the same group.

Implementation

The Grouper joins homogeneous Pre populations together up to the maximum number of neu-
rons for that model

The process is set up by calling the following functions:

• get groups: Retrieves all the Populations that can be grouped together. Such Populations
are homogeneous for neural model and plasticity instantiations. outputs a list of lists
where each element is a list of groupable Populations

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 240

• grouper: groups populations accordingly to the maximum number of neurons for that
neural model

• update core offsets: sets the core offset for that Population (position of the Population in
the group)

They all take as input the instantiation DB.

db = load db (sys . argv [1]) # imports the DB
groups = get groups (db)
grouper (db , groups)
u p d a t e c o r e o f f s e t s (db)
mapper (db)
c r e a t e c o r e l i s t (db)

Grouping criteria can be defined in SQL language. In this case 2 queries need to be
designed, accordingly to the grouping criteria defined. The first query (get grouping rules
in dao.py) extracts the possible combination of criteria. For instance if we have the
three criteria before mentioned (group populations with same neural model, plasticity
instantiation and mapping constraint)

3.3.6.4 Mapper

This information can be passed to the Mapper stage along with model-specific data provided
by the high-level generation tool, which has now all the information needed to locally generate
each portion of the network.

The Mapper task is to assign groups, as organized by the grouper, to a specific core. Available
cores are listed in the Model Library and they are dynamically used by the mapper. Information
needed by the Mapper are:

• Size and health of the system: number of chip/cores available for neural simulation and
their geometry

• Constraints relative to spike/current input/output (eg. neurons that send output must
be on Ethernet attached chip)

• User and System constraints that affect e.g. model geometry or allowable activity rates

Mapping constraint are associated to Populations in the DB, and they define a range of
chip/cores where the Population should be matched. This information can be set by a user
with a custom function, or by a network analysis tool as networkx.

The Mapper will first process groups that have mapping constraints trying to satisfy them,
then allocating all the non-constrained groups. If mapping constraints are inconsistent an
Exception will be raised.

Output from the Mapper is a hierarchical physical description of the entire network (which
will be in a series of tables as below). This in turn passes to an Object File generator (which
for the moment will reside on the Host but could eventually be migrated to an on-SpiNNaker
implementation) which flattens the network and generates the (flattened) actual data binaries.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 241

Processor ID X Y P Type ID Number of Neurons Start ID

0 0 0 0 1 512 0

1 0 0 1 2 512 0

2 1 0 0 3 512 0

Projection ID Type ID
Number of
Synapses

Start ID X Y
SDRAM
Offset

0 1 256 0 0 0 0x0

1 1 256 256 0 0 0x40C

2 2 1024 0 0 0x80C

3 3 512 0 1 0 0x0

Model ID Model

1 IF curr exp

2 IF curr exp stdp

3 IZK curr exp stdp

The Mapper will link the Pre populations table with the processor table through the associ-
ation table map so defined:

map

Field type description

processor id (FOREIGN
KEY: processor.id)

INTEGER ID defining a physical core in the system

group id (FOR-
EIGN KEY:
Pre populations.group id)

INTEGER ID defining the group to be mapped to the cor-
responding core

processor

Field type description

processor id (PRIMARY
KEY: processor.id)

INTEGER ID defining a physical core in the system

x INTEGER X coordinate for the chip containing the pro-
cessor

y INTEGER Y coordinate for the chip containing the pro-
cessor

p INTEGER Virtual ID for the core in the chip

status TEXT Health status for the processor

is eth BOOL Identifies a root chip if True

is monitor BOOL Identifies a monitor processor if True

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 242

Implementation

Mapping constraints are defined in the constraint field in the Populations table. They can be
used to associate a Population to a specific range/value of chip id and core id.

Information in here can be written by any network analysis tool or manually defined by the
user (eg. using the function set mapping constraint in the pyNN.spiNNaker module).

The Mapper dynamically retrieves the available cores list from the Model Library DB and
tries to allocate groups with constraints first, then all the other groups, consuming available
processors until groups are all allocated or there is no more space to allocate the group due to
a map inconsistency.

3.3.6.5 Object File Generator

At this point the hierarchical description still contains abstract objects rather than single neu-
rons. The mapper organises this information is organized so that binary file generation can be
performed locally by target processor, evaluating the table produced by the mapper core by
core.

TBD: The compilation process described here will occur on the host machine for the first
version of the software, but the design ensures that it will be easily portable to the
the SpiNNaker system so that file generation can occur on-chip.

Neural data compilation for a particular core will include these steps:

• Retrieve all the Populations associated with the core

• Load any necessary model configuration files (which describe how to build complex neural
or synaptic models).

• Assemble the model files into an executable and create neural data structures in DTCM

• Build the application, linking the neural/synapse model type with extra information
needed (eg. preconfigured lookup tables for STDP) and switches (eg. for logging)

• Generating the routing table files for each chip

• Build the connectivity information in SDRAM and routing look-up tables (second level
of routing)

TBD: One way to define model configuration files for non-standard models (in PyNN)
uses Translation XML or a translation table in the DB. We envisage a separate
application, the Model Builder, that in future will allow automated generation of
Translations for new models. The Mapper links the cell type and the translation
in one single configuration file.

The table for translating is defined as follows:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 243

cell parameters

Field type description

id (PRIMARY KEY) INTEGER ID defining a cell parameter

model id (FOREIGN
KEY: cell type.id)

INTEGER ID defining the cell type to which the parame-
ter belongs

param name TEXT Name for the parameter

type TEXT Variable type/dimension (short, int, uint etc.)

translation TEXT Translation for the parameter (eg.
toInt(multiply(x,p1))), written in a form
that can be evaluated by the Object file
generator.

position INTEGER Position of the parameter in the compiled data
structure

For the translation field specific operators have been developed to ensure the compatibility
with all the possible type of input which may be provided (see following section). A number of
operators have been defined for the basic functions:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 244

Translation operators

Operator Description

add (a,b) The operator adds the operands a and b, if they are num-
bers, or adds each element of the list a to the correspondent
element of list b, if a and b are lists. If a is a number and
b is a list (or vice-versa) then a is added to each element of
the list b (or vice-versa).

subtract (a,b) The operator subtracts the operands a and b (a− b), if they
are numbers, or subtracts each element of the list b from the
correspondent element of list a (a[n] − b[n]), if a and b are
lists. If a is a number and b is a list (or vice-versa) then the
operation is performed using the same number as one of the
operands and each of the element of the list as the second
operand.

multiply (a,b) The operator multiplies the operands a and b, if they are
numbers, or multiplies each element of the list a with the
correspondent element of list b, if a and b are lists. If a is
a number and b is a list (or vice-versa) then a is multiplied
to each element of the list b (or vice-versa).

divide (a,b) The operator divides the operands a and b (a/b), if they
are numbers, or divides each element of the list a by the
correspondent element of list b (a[n]/b[n]), if a and b are
lists. If a is a number and b is a list (or vice-versa) then the
operation is performed using the same number as one of the
operands and each of the element of the list as the second
operand.

power (a,b) The operator computes the power ab, if a and b are numbers,
or computes the power of each element of the list a by the
correspondent element of list b (a[n]b[n]), if a and b are
lists. If a is a number and b is a list (or vice-versa) then the
operation is performed using the same number as one of the
operands and each of the element of the list as the second
operand.

exponential (a) The operator computes the operation exp(a) if a is a number,
or exp(a[n]) if a is a list of numbers

toInt (a) The operator returns the integer part of a, if it is a number,
or, if a is a list, it returns the integer part of each element
of the list

3.3.6.6 Neural Data Structure generation

The neural data structure writer cycles all mapped processor and generates the data structures
for each of them. It outputs a different file for each core, containing all the data structures for

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 245

the neuron modelled by that processor. Neural data structures are compiled as it follows:

header (1 x f i l e)
− uint runtime
− uni t max synapt ic row length
− uni t max delay
− uint num pops
− uint t o t a l n e u r o n s
− uint s i z e n e u r o n d a t a
− uint r e s e rved2 (NULL)
− uint r e s e rved3 (NULL)

populat ion metadata (1 x populat ion)
− uint pop id
− uint f l a g s
− uint p o p s i z e (number o f neurons in the populat ion)
− uint s i z e o f n e u r o n (s i z e o f a s i n g l e neuron)
− uint r e s e rved1 (NULL)
− uint r e s e rved2 (NULL)
− uint r e s e rved3 (NULL)

neura l s t r u c t u r e s (1 x neuron)
. . . l i s t o f parameters . . .

The neural structures are computed by retrieving the translation from the cell params table in
the Model Library. This table also contains the position of the parameter in the neural structure
and its size. Parameters can be defined as single values, random distribution or arrays explicitly
defining the parameter value for each neuron.

3.3.6.7 Automatic Run Script generation

Pacman generates an automatic run script that is used to load the data in the right chip/-
core/memory location. Doing so, it also selects which executables are to be loaded in each of
the cores. In particular, it may need to select executables featuring plasticity behaviour to be
loaded in specific cores. To be able to discern between executables with or without plasticity,
different file names have been used, with this categorization:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 246

Executable names

Name Description

lif(.aplx) Binary featuring leaky integrate-and-fire neuron with-
out learning capabilities

lif stdp(.aplx) Binary featuring leaky integrate-and-fire neuron and
standard STDP rule

lif stdp sp(.aplx) Binary featuring leaky integrate-and-fire neuron and
spike-pair STDP rule

lif cond(.aplx) Binary featuring leaky integrate-and-fire conductance-
based neuron without learning capabilities

lif cond stdp(.aplx) Binary featuring leaky integrate-and-fire conductance-
based neuron and standard STDP rule

lif cond stdp sp(.aplx) Binary featuring leaky integrate-and-fire conductance-
based neuron and spike-pair STDP rule

izhikevich(.aplx) Binary featuring Izhikevich neuron without learning ca-
pabilities

izhikevich stdp(.aplx) Binary featuring Izhikevich neuron and standard STDP
rule

izhikevich stdp sp(.aplx) Binary featuring Izhikevich neuron and spike-pair STDP
rule

izhikevich tts(.aplx) Binary featuring Izhikevich neuron and STDP with
Time-To-Spike forecast rule

The name of the executables (without the ”.aplx“ extension) is also the name of the target
of the makefile to generate the correspondent binary file.

3.3.6.8 MLP PACMAN

A modification of the original PACMAN design handles the configuration of MLP networks from
Lens scripts. The modification retains support for spiking models while adding functionality
for the MLP. This requires some architectural changes.

Design Considerations

1) Conformity with PACMAN design principles. In the main, this means instantiation based
on a Population/Projection model, not flattening the description internally until the final
data-file generation step, and using the PACMAN database to hold the internal repre-
sentation of the network. It also means using plug-in modules to implement necessary
model-specific functionality that could not be placed in the main PACMAN tools without
sacrificing commonality.

2) Separation of the basic ”machinery” from the model-specific data. The code that generates
the data structures and mapping is kept independent from the model data itself. As much

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 247

as possible, functions and interfaces are designed to take parameters which specify the
type of model being instantiated and its data structures.

3) Avoidance of methods that embed global knowledge about the model into the code. It
is known, in some cases, how the MLP, or for that matter spiking networks, will be
implemented in terms of the details of the mapping. This could either be coded implicitly,
in the generation algorithms, or explicitly, through parameter settings. Where possible
the MLP PACMAN extension uses the latter method (sometimes using helper functions
that themselves are parameters.)

4) Maximal re-use of existing PACMAN facilities. The implementation uses existing PAC-
MAN code unless a change is absolutely necessary for some form of support.

Revised schema

In order to provide the structures necessary to map and route the MLP model, and also in order
to make the database more coherent, the MLP PACMAN implementation extends the schema
with several new tables:

scenarios Added to permit a representation of Lens ExampleSets. A scenario is considered
an ExampleSet; this feature could also be used in spiking models to specify a particular
group of stimuli representing a complete real-time environment

stimuli Added to permit a representation of Lens Examples. A single example is a stimulus;
likewise in spiking models this could be used to represent a multiple-input stimulus with
common temporal parameters.

routes Represents a complete path from a source processor to a target processor. This is
required in Lens because the same population may have multiple routes with different
keys (e.g. for forward/backprop)

routing entries Represents a single routing entry in a given chip. Both this and the routes table
makes the PACMAN system more coherent, in that the Router now writes to the DB
rather than only to an internal variable. (Thus after routing the routes can be inspected,
queried, etc, and changes could potentially be made) Various other tables have had fields
added or removed to support the MLP. Fig 3.3.12 shows the updated schema.

The components

The PACMAN MLP extension consists of the following components (fig. 3.3.13):

1) Front-end translator: An entirely new component that implements the interface to Lens.
It is written in TCL.

2) MLP preprocessor plug-in: A new PACMAN component that transforms the input model
in the database, prior to its being passed to the splitter. Its main function is to split
groups into Weight, Sum, and Threshold populations.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 248

Figure 3.3.12: Updated PACMAN database schema for Lens support

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 249

3) pacman objs: A new, object-oriented interface to PACMAN. This permits object-style
interface to the database.

4) Splitter: An existing PACMAN component. The Splitter has been slightly modified to
handle arbitrary population splits.

5) MLP premapper plugin: A new PACMAN component that performs a preprocess prior
to mapping, to constrain locations of processors.

6) Mapper: An existing PACMAN component. The Mapper has been modified to support
relative as well as absolute constraints, e.g. it is possible to specify that a given population
be mapped onto a core on the same chip as another, or at a fixed chip displacement, rather
than requiring an absolute chip address.

7) Router: An existing PACMAN component, heavily modified. The original Router was
part of the Binary File Generator and strongly relied on an expected population mapping
for spiking networks. The new version dispenses with this coupling, allows for arbitrary
key/mask mappings to population numbers, and extends the database schema to store
routing information.

8) Binary File Generator: An existing PACMAN component, completely rewritten. The new
Binary File Generator takes a template which specifies how to build a given data binary
from fields in the database, and then builds the necessary binary. Although the Router
has been moved into a separate module, the generator continues to handle the generation
of the physical routing tables.

Front-end translator

This component contains a parser for Lens scripts and a tcl interceptor for the PACMAN com-
mands. The parser - a pair of auxiliary utilities, LensScan.tcl and LensParse.tcl generated by
Ylex and Yeti respecfively, accepts the fully-substituted original command as pre-processed by
tcl. The interceptor - MLP PACMAN.tcl passes commands to the translator after they have
been fully substituted by tcl. Only PACMAN-relevant commands are passed to the translator;
the remainder are passed back to the containing namespace (either Lens or the main tcl names-
pace, depending upon the execution context). MLP PACMAN.tcl contains tcl functions for the
commands returned by the parser which then interface to the PACMAN database. The follow-
ing commands are currently supported. (Also see Lens documentation for more on command
syntax)

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 250

Figure 3.3.13: PACMAN Architecture including MLP extensions

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 251

Front-end translator

Command args (required/
optional)

description

addNet name intervals ticks
type groupList

Add a network. A groupList per Lens may in-
stantiate groups as well.

addGroup name size groupType Add a group (population). groupTypes per
Lens specify an extensive range of possible
types.

setTime intervals ticks history
dtfixed

Sets Lens time parameters

connectGroups sources intermediates
targets connectortype
strength mean range
linktype bidirectional

Add a connection (projection). Following Lens
standards a linked chain may be created in one
command between sources, any number of in-
tervening populations in intermediates, and fi-
nal targets.

randWeights group unit mean range
type

Initialises weight randomisations. Parameters
allow various subsets of weights to be ran-
domised with various parameters

train num updates report
algorithm setOnly

Configures training. If setOnly is applied the
network will NOT be set to run automatically
after being built.

test num examples noreset Configures testing (runs the test set). The re-
turn option is not supported.

seed seed Seeds random number generators.

setObject name value Sets any Lens-configurable object. Supports
the various flavours of Lens object references.

MLP Preprocessor

This is a PACMAN preprocessor for MLP networks, that transforms the top-level Lens repre-
sentation into an internal representation suitable for splitting and mapping. It performs 2 main
tasks: 1) splitting populations into weight, sum and threshold subpopulations, creating the nec-
essary intermediate projections in both the forward and backward direction, and 2) computing
source and target populations for the Splitter when projections are split. The preprocessor
creates one-to-one connections in the forward and backward direction between the weight, sum,
and threshold subpopulations in a population, creates a backward connection from weights to
sums of the population’s source groups (the sources of its forward projections) in the back-
propagation direction, and generates forward and backward sync connections from weights to
thresholds (fig. 3.3.14). No weight part population in the forward direction, and thus no sum
population in the backward, will be assigned a subrange of the thresholds that corresponds
to multiple populations. (It is possible, for example, for a given population to be connected
to several populations in previous layers. This would result in the created Weight population
having several different projections. However, the preprocessor ensures that the split will create

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 252

part populations whose projections are associated with a specific population at both the presy-
naptic and postsynaptic terminals.) The preprocessor contains the following externally-visible
functions:

MLP preprocessor

Command args (required/
optional)

description

split pop function None Reads the database and splits popula-
tions into Weight, Sum, and Threshold
populations.

set wt max units population Compute the maximum dimensionality
of a Weight population. The function
generates square matrices of forward
and backward indices.

set sum max units population Compute the maximum size of a Sum
population. For most cases this will be
large - considerably larger than the di-
mensionality of any other population.

set threshold max units population Compute the maximum size of a Thresh-
old population.

get post wt part pops db projection
presynaptic
populations

Identify a subset of the eligible post-
synaptic part populations to be used
to connect to the available presynaptic
populations of a given projection. This
function computes the backpropagation
indices for weight units as well as select-
ing the weight part populations to use
for a given projection.

get pre input subrange db projection
postsynaptic
population

Computes the source part populations
for a given target part population in a
projection.

The MLP preprocessor splits groups into Weight, Sum, and Threshold populations. It then
expands the projections into forward and backward projections, adding sync projections as
well. When the Splitter divides this pre-processed network, it will ensure that any given
part population projects to only one given associated part population in any direction

pacman objs

PACMAN objs.py adds a standard object interface to the SQLite db, so that the major tables,
queries, etc. can be manipulated as objects with defined access and modification methods. It
contains the following objects:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 253

Figure 3.3.14: Mapping of the MLP preprocessor

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 254

pacman objs

Object initialiser args
(required/ optional/
**multiple args)

description

db path db file Top-level object to represent a database. Ini-
tialises basic data access using SQLite.

db obj db id **fields A single object, corresponding to a single query
or table row. A db obj can accept an arbitrary
field specification for the row.

db query db rows qclass
expression **args

A query view, essentially a list of db objs with
usual iterator and access protocols. qclass gives
the class of the row object. expression identifies
the query, which can either be a function (e.g.
standard functions in dao.py) or a literal SQL
expression. args accepts any number of param-
eters for expression. Inherits from db.

¡table object¿ db id ¡field list¿ Each PACMAN table has a convenience object
by its own name. It takes initialisation param-
eters which are the fields of the object. Inherits
from db obj.

db obj supports the following methods:

db obj

Method args (required/
optional/ **multiple
args)

description

copy obj Create a copy of the object. If obj is specified, the
function will copy the specified object rather than
the instance referenced. Typically the obj argument
would only be specified if this was being called as an
unbound method.

insert obj Inserts the object into the database. The obj argu-
ment, here as in other functions, operates similarly
to that in the copy method.

delete None Removes the object from the database.

update obj Updates the fields in the database object. The func-
tion assumes that the current values of the object
specify the update values.

get id Retrieve the object from the database whose id is
given. Usually this will be called as an unbound
method.

and db query supports the following methods:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 255

db query

Method args (required/
optional/ **multiple
args)

description

append obj Merges two db queries, creating a joint list. The
object types must match.

insert query Runs a bulk-update insert query. Inserts all the rows
specified by the insert query into the database. If no
query is specified the function inserts all the rows
present in the current query instance.

get qclass expression **args Runs the query specified by expression with parame-
ters args in order to generate rows, with class qclass.
This is the main method of db query

Splitter

The Splitter reuses, as much as possible, the existing Splitter from the first PACMAN version.
The major change is the addition of a case to test for split sources and split targets in projections,
so that e.g. weight part populations, which must be associated with a specific source population
as well as target population, are properly split. The Splitter detects these restrictions in the
constraints field of the Populations table.

MLP Premapper

MLP premap is a simple PACMAN plugin, that allows for chip-relative constraints. This is
necessary for Weight and Sum part populations, which need to be placed on the same chip,
within a population, but which chip it is does not need to be specified. The plugin extends the
constraint syntax with a ’rel’ dictionary entry that permits the chip/core values to be specified
by population id rather than by physical core location.

Mapper

Like the Splitter, the Mapper reuses as much as possible extant PACMAN code. Note that
in the MLP implementation at present, there is no Grouper; one might be implemented at a
later date to collect weight part populations with contiguous indices in both directions, and
likewise Sum units, but for the moment it was felt this is an unnecessary refinement applicable
only for certain probably fairly exotic situations. The obvious change in the Mapper is the
addition of a test for relative constraints, with appropriate mapping logic. It will be noted
that such a modification is quite general and not limited to MLP-style networks; any network
may contain a relative chip constraint which the Mapper can then handle. As implemented,
the Mapper handles absolute (chip-specific) constraints first, then relative constraints, then any
unconstrained Populations and Projections.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 256

Router

Binary File Generator

This consists of 2 main components, the Data Structure Creator and the ybug File Writer.
The ybug File Writer follows the pattern of reuse of existing components. The Data Structure
Creator is a completely rewritten component. A general object interface, binary file objs.py,
provides a model-independent engine for the generation of binary files. This reads a configura-
tion file that provides the data generation specification for a given model - in this case for the
MLP. Each specification may have up to 5 sections: model global, chip common, core common,
element specific, and component specific, each of which gives the specification for data blocks
at the indicated scope. It is expected that element specific structures will be laid out in arrays
within a core’s DTCM, while component specific structures will be arrays of structures within
SDRAM. The specification file should also provide a path to a function file that contains the
functions needed to generate a given data object from a given series of PACMAN database
rows. data structure creator itself contains the generator functions for each of the sections (e.g.
gen chip common()) that read the specification file, interrogate the database, and then generate
the packed data structures.

3.3.7 Coding guidelines

SpiNNaker software is written in C, ARM assembly and Python. Style guidelines are suggested
here to help make code easily readable and therefore, hopefully, more easily maintainable.
Except where noted these guidelines are soft and should be broken where it is sensible to do so,
especially where the reason given for each style point does not apply.

3.3.7.1 All languages

Comments: A Robodoc comment (see section 3.3.8) should be written documenting the purpose
of each file and function. Further comments within functions may be useful to describe
certain complex operations. Comments must be kept up to date.

Identifiers: File, function and variable name should be written in lower case with words sepa-
rated by underscores to make it easy to recall or guess items in the namespace. Descriptive
(potentially verbose) identifiers should be used to make their purpose clear.

Indentation: Code should be indented with 4 spaces per indentation level. Tabs and spaces
must never be mixed as this quickly makes code completely unreadable when viewed
in different editors.

Line length: TODO discuss...?

3.3.7.2 C

Consistency: Styles for C-like languages vary widely so consistency within a function, file and
project (in that order of importance) may be the best approach to maintaining readability.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 257

When writing or modifying code, read a little of the existing program to get an idea of
the style before beginning.

Compilation: Makefile rules should include both the .c and all #included .h files for each target.
Also, .h files must not #include other .h files. This ensures correct recompilation
behaviour on calling make.

Example: An example of code in the Application Programming Interface is provided:

uint dma_transfer(uint tag , void *system_address ,

void *tcm_address , uint direction , uint length)

{

uint cpsr = irq_disable ();

uint id = 0;

if((dma_queue.end + 1) % DMA_QUEUE_SIZE != dma_queue.start)

{

id = dma_id ++;

dma_queue.queue[dma_queue.end].id = id;

dma_queue.queue[dma_queue.end].tag = tag;

...

}

...

}

3.3.7.3 ARM assembly

Comments: Assembly code should be commented in detail, in some cases with one comment
per line in addition to the required Robodoc comments to help readers follow the code.
It can also be useful to regularly summarise the content of each working register.

Commenting-out: When commenting out lines of code, do so with a comment characters im-
mediately preceding the instruction rather than at the start of the line. For example:

;;This is clear:

ADD r0, r1, r2

;;SUB r3, r4, r5

MUL r0, r1, r2

;; This isn't clear:

ADD r0, r1, r2

;; SUB r3, r4, r5

MUL r0, r1, r2

Please use two semicolons for Robodoc’s sake.

Indentation: Two indentations before opcodes leaves room for labels. One indentation between
opcodes and operands leaves enough room for long instructions. It is often easier to read
the code when opcodes and operands line up. An example:

label ADD r0, r1, r2

STMFDNE sp!, {r4-r9}

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 258

MULEQ r0, r1, r2

3.3.7.4 Python

General: Code should adhere to the Python style guide which is intended to make the language
consistently readable. Note that some style (such as indentation practice) is enforced by
the interpreter but the guide is otherwise flexible. See http://www.python.org/dev/

peps/pep-0008/.

3.3.8 Documentation guidelines

Every file should include an information header formatted for Robodoc. Moreover, where ap-
propriate, each function, class, or section of code should be documented using a template that
Robodoc can convert in documentation.

Each programming language has its own format for comments so here we define an header
format different for each programming language used in this project. However in all the docu-
mentation headers there are several keywords in use with the syntax $keywords$ (words between
$ signs). These keywords are substituted by the svn repository with the appropriate value.

3.3.8.1 C / C++

The following templates are for C/C++ source code and header files

File header documentation template

/∗∗∗∗a∗ f i l ename . ex tens ion / f i l ename
∗
∗ SUMMARY
∗ a b s t r a c t
∗
∗ AUTHOR
∗ author − email
∗
∗ DETAILS
∗ Created on : c rea t i on date
∗ Version : $Revis ion : 1226 $
∗ Last modi f ied on : $Date : 2011−07−01 11:27 :06 +0100 (Fri , 01 Jul 2011) $
∗ Last modi f ied by : $Author : plana $
∗ $Id : docguide . t e x 1226 2011−07−01 10:27 :06Z plana $
∗ $HeadURL: h t t p s :// solem . cs .man. ac . uk/svn/ sp innSo f t d e s i gn doc / docguide . t e x $
∗
∗ COPYRIGHT
∗ Copyright (c) The Unive r s i t y o f Manchester , 2010−2011. A l l r i g h t s re served .
∗ SpiNNaker Pro jec t
∗ Advanced Processor Technolog ies Group
∗ School o f Computer Science
∗
∗∗∗∗∗∗∗/

The substitutions operated by the svn repository are of the type described in the table:

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 259

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

$Revision$ $Revision: 1097 $
$Date$ $Date: 2011-06-02 15:37:34 +0100 (Thu, 02 Jun 2011) $
$Author$ $Author: plana $
Id $Id: docguide.tex 1097 2011-06-02 14:37:34Z plana $
$HeadURL$ $HeadURL: file:///home/amu4/spinnaker/svn/spinnSoft design doc/docguide.tex $

Function documentation template

The following header should be used to describe each of the C/C++ functions:
/∗∗∗∗ f ∗ f i l ename /functionName
∗
∗ SUMMARY
∗ a b s t r a c t
∗
∗ SYNOPSIS
∗ f unc t i on pro to type
∗
∗ INPUTS
∗ parameter : d e s c r i p t i on
∗
∗ OUTPUTS
∗ va lue
∗
∗ SOURCE
∗/

FUNCTION CODE

/∗
∗∗∗∗∗∗∗/

“FUNCTION CODE” indicates where the function should be written. Doing so, the code will
appear also in the documentation generated automatically by Robodoc, with the links to other
functions.

Structure documentation template

/∗∗∗∗ s∗ f i l ename /structureName
∗
∗ SUMMARY
∗ a b s t r a c t
∗
∗ FIELDS
∗ v a r i a b l e : d e s c r i p t i on
∗
∗ SOURCE
∗/

STRUCTURECODE

/∗
∗∗∗∗∗∗∗/

“STRUCTURE CODE” indicates where the function should be written.

3.3.8.2 Assembly language

The following templates are for assembly language source code files

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 260

File header documentation template

; ;∗∗∗∗ a∗ filename . extension/ filename
; ; ∗
; ; ∗ SUMMARY
; ; ∗ abstract
; ; ∗
; ; ∗ AUTHOR
; ; ∗ author − email
; ; ∗
; ; ∗ DETAILS
; ; ∗ Created on : creation date
; ; ∗ Vers ion : $Revis ion : 1226 $
; ; ∗ Last modi f i ed on : $Date : 2011−07−01 11 : 27 : 06 +0100 (Fri , 01 Jul 2011) $
; ; ∗ Last modi f i ed by : $Author : plana $
; ; ∗ $Id : docguide . tex 1226 2011−07−01 10 : 27 : 06Z plana $
; ; ∗ $HeadURL : https : // solem . cs .man. ac . uk/svn/ sp innSo f t d e s i gn doc / docguide . t e x $
; ; ∗
; ; ∗ COPYRIGHT
; ; ∗ Copyright (c) The Un ive r s i ty o f Manchester , 2010 −2011. Al l r i g h t s r e s e rved .
; ; ∗ SpiNNaker Pro j e c t
; ; ∗ Advanced Proces sor Techno log ie s Group
; ; ∗ School o f Computer Sc i ence
; ; ∗
; ;∗∗∗∗∗∗∗

The substitutions operated by the svn repository are of the type described in the table:

$Revision$ $Revision: 1097 $
$Date$ $Date: 2011-06-02 15:37:34 +0100 (Thu, 02 Jun 2011) $
$Author$ $Author: plana $
Id $Id: docguide.tex 1097 2011-06-02 14:37:34Z plana $
$HeadURL$ $HeadURL: file:///home/amu4/spinnaker/svn/spinnSoft design doc/docguide.tex $

Function documentation template

The following header should be used to describe each of the assembler routines:

; ;∗∗∗∗ f ∗ filename . ex t ens i on /functionName
; ; ∗
; ; ∗ SUMMARY
; ; ∗ abstract
; ; ∗
; ; ∗ SYNOPSIS
; ; ∗ function prototype
; ; ∗
; ; ∗ INPUTS
; ; ∗ register : description
; ; ∗
; ; ∗ OUTPUTS
; ; ∗ register : value
; ; ∗
; ; ∗ SOURCE
; ; ∗

FUNCTION CODE

; ; ∗
; ;∗∗∗∗∗∗∗

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 261

“FUNCTION CODE” indicates where the function should be written. Doing so, the code
will appear also in the documentation generated automatically by Robodoc, with the links to
other functions.

3.3.8.3 Robodoc configuration file

Robodoc is an automated documentation generator. It needs some information on how to
interpret appropiately the source files to extract the relevant documentation. These information
are passed to Robodoc through the configuration file “robodoc.rc” which must reside in the root
folder of the project. The output will be stored in the “doc” folder. The following configuration
file allows Robodoc to interpret both the C/C++ files and assembler files. However, since there
is a usage clash for semicolon in C/C++ and assembler source code, assembler code must use
for comments a double semicolon “;;” to start.

#robodoc . rc
#
items :

NAME
FUNCTION
SUMMARY
SYNOPSIS
INPUTS
OUTPUTS
AUTHOR
COPYRIGHT
SOURCE
SEE ALSO
NOTES
TODO

item order :
NAME
FUNCTION
SUMMARY
SYNOPSIS
INPUTS
OUTPUTS
AUTHOR
COPYRIGHT
SOURCE
SEE ALSO
NOTES
TODO

source items :
SOURCE

opt ions :
−−s r c . /
−−doc . / doc
−−html
−−mult idoc
−−index
−−t a b s i z e 4
−−toc
−−s yn taxco l o r s
−−nogeneratedwith
−−documentt i t l e ”SpiNNaker − documentation ”
−−sour ce l i n e number s
−−nosor t

headertypes :
a ”Summary” robo summary

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 262

i gno r e f i l e s :
. svn
∗ . tx t
∗˜

accept f i l e s :
∗ . c
∗ . h
∗ . s

header markers :
/∗∗∗∗
; ;∗∗∗∗

remark markers :
∗
; ; ∗

end markers :
∗∗∗∗
; ;∗∗∗∗

remark begin markers :
/∗

remark end markers :
∗/

source l i n e comments :
//
; ;

keywords :
i f
e l s e
do
whi l e
f o r
re turn
void
unsigned
shor t
i n t
u int
const
char
#d e f i n e
#i f
#e l i f
#e n d i f

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 263

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 264

Part 4

Benchmarks

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 265

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 266

4.1 Overall goals

Benchmarking of neuromorphic hardware puts numbers on performance to allow measuring
progress and comparing different designs. This is useful both for the developers of the Neuro-
morphic Computing Platform and for potential users.

Specifically, benchmarks define a set of reference tasks aiming at a direct comparison of
different neuromorphic (and non-neuromorphic) hardware systems. Each benchmark has a set
of quality measures. It is left to the user to decide which specific measures are relevant for the
particular application in mind.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 267

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 268

4.2 Quality criteria for neuromorphic
benchmark tests

Once benchmark tasks are defined, it is essential to have quality criteria that can be used to
evaluate the performance. In traditional computing, the number of floating point operations per
second (FLOPS) in performing a standard set of tasks was established as a quality criterion for
high performance computers. This well known benchmarking procedure led to the establishment
of the TOP500 list of supercomputers which, although often criticized, is recognized by computer
manufacturers and their customers. During recent years, energy consumption of computing
became a major concern. This led to the establishment of of the TOP GREEN500 list which
uses a FLOPS per Watt (or FLOP per Joule) metric.

The following list of quality criteria are proposed for neuromorphic systems:

• Energy usage for a fundamental operation;

• Computational resource usage (neurons, synapses, transistors);

• Silicon area or volume;

• Execution time for a specific task

• Number of events/spikes processed per second

• Time to configure/upload a network

• Precision of the solution compared to a numerical solution obtained on traditional com-
puting hardware

• Trial-to-trial reproducibility of the result

• Robustness against hardware mismatch

4.2.1 What units should be benchmarked?

With regard to neuromorphic hardware, it was realized that benchmarking of neuromorphic
circuits needs to target different components and levels, from individual neurons and synapses,
to simple and more complex networks and multi-network architectures.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 269

The most ambitious benchmarking scenarios approach definitions of real scientific challenges
like the ten listed by Stanislas Dehaene during his plenary talk at the HBP kickoff meeting.

The numbers that come out from the benchmarking can concern:

• how biomimetic components are (“neuronicity”, “synapticity”);

• how brain-like its network architecture is;

• what functions it can perform;

• and at what level of performance in terms of solution of the task, speed, and energy
expenditure.

Also we could compare state variables’ time courses with software simulations, also for per-
formance level, for instance number of correctly retrieved patterns in a simple storage capacity
measurement, the number of correctly classified items in a classification task, or the progress of
learning in a reinforcement type of task.

It is important to match the model properties to what it will be used for. In many cases
a simple or reduced model may be sufficient to replicate biological and dynamic phenomena
as well as task performance. But sometimes there is a need for a high degree of detail in the
neuron and synapse models to capture phenomena seen in experiments. Thus, a hardware that
is unable to reproduce the latter might still be very useful for other purposes. So it is not at all
necessary to “pass” all the benchmarks discussed below. The benchmark suite should rather be
seen as a way to quantitatively characterize the capabilities of the hardware.

The method will to a large extent be to compare output from hardware runs with the cor-
responding simulations using software. To the extent that the hardware typically implements
some kind of mathematical neuron and synapse models, this is quite straightforward. On the
other hand, digital hardware implementations may use lower precision computation and analog
hardware has intrinsic noise which may or may not be of a similar nature as in the biological
system. Therefore, it may occasionally be motivated to compare the hardware directly with
data from the relevant biological components and systems.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 270

4.3 Use cases

4.3.1 Tracking the performance of a neuromorphic computing
system over time

Primary actor Alice, a neuromorphic system developer.

Description Over time, as new versions of the neuromorphic hardware and associated soft-
ware are developed, Alice wishes to determine how the new versions affect the performance of
the system, according to several measures, including throughput (how many jobs of a given
complexity can be run on the system in a given time), power consumption, and accuracy (how
closely the output of the neuromorphic systems matches the expected behaviour.)

Success scenario

1) Alice selects a number of tasks from a library of benchmark tasks.

2) For each task, she runs a job on the Neuromorphic Computing Platform, with careful
instrumentation of the time required for different stages and of any discrepancies or errors
produced.

3) She compares the numerical measures she obtains to previous runs of the same bench-
marks.

4.3.2 Determining whether the Neuromorphic Computing Plat-
form is suitable for a specific task

Primary actor Boris, a computational neuroscientist.

Description Boris has a model that runs on the HPC Platform, and which he would like to run
an adapted version of the model on the Neuromorphic Computing Platform. Before taking the
time to adapt the model, Boris wants to be sure that the adaptation is likely to be successful.

Success scenario

1) Boris searches the library of benchmark tasks to find the benchmarks that have features
in common with his model.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 271

2) By examining the records of previous runs of these benchmarks, he determines that the
expected discrepancies between hardware and numerical simulations are unlikely to affect
the qualitative behaviour of his model.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 272

4.4 Functional requirements

1) The benchmark library/database shall contain benchmarks to examine:

a) the behaviour of individual neurons;

b) post-synaptic responses of individual synapses;

c) effects of transmission delays, and discrepancies between the nominal (requested)
and actual distribution of delays;

d) the accuracy and correctness of synaptic plasticity implementations;

e) microcircuit behaviour;

f) the capabilities of the system as a whole.

2) Each benchmark task shall produce one or more numerical measures.

3) Such measures may include:

a) how closely the neuromorphic system matches the results of numerical simulations;

b) how well the neuromorphic system performs a certain computational task;

c) how long the neuromorphic system takes to complete a certain task;

d) how closely a given model can be mapped to the neuromorphic circuits;

e) how large is the impact of discrepancies between numerical and neuromorphic models;

f) the energy expenditure required to complete a certain task.

4) except where physical access to the hardware is absolutely required, all benchmarks shall
be automatable, able to run without direct user intervention.

5) the results of benchmark runs shall be stored in a database so as to allow comparisons
across benchmark tasks and across time.

6) for each run of the benchmarks, the exact state of the system (software and hardware
versions) shall be recorded.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 273

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 274

4.5 Architectural overview

• In the first stage of benchmark development, each benchmark will be implemented as
a self-contained Python script, using either the PyNN API or one of the lower-level,
hardware-specific APIs as appropriate.

• In later stages of development, it may be desirable to implement a framework to make it
easier to implement new benchmarks by taking care of common functionality and elimi-
nating boilerplate code.

• Each benchmark script should be tracked using version control.

• Each benchmark script should be registered with a central registry. This could be as
simple as a version-controlled text file containing the URL of each benchmark script, or
could be a more full-featured system making use of a relational database.

• All benchmarks should write the numerical output measures to file using a standardized
format (e.g. JSON, XML).

• The numerical output measures could also be stored in a relational database, allowing
faster and more sophisticated queries.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 275

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 276

4.6 Implementation

4.6.1 Defining models and tasks

As stated above, all benchmark code should be under version control. Each repository may con-
tain one or more models, and for each model one or more tasks should be defined. The top-level
of the repository should contain a JSON-format configuration file named ”benchmarks.json”,
with the following general structure:

[

{

"model": "Description of model A",

"tasks": [

"task_1_for_model_A.py {system}",

"task_2_for_model_A.py arg1 {system}",

]

},

{

"model": "Description of model B",

"tasks": [

"task_1_for_model_B.py {system}",

"task_2_for_model_B.py arg1 {system}",

"task_3_for_model_B.py --option1={system} arg1 arg2 arg3",

"task_3_for_model_B.py --option1={system} arg4 arg5 arg6",

]

}

]

i.e., each task should be expressed as a command-line invocation of a Python script. The
Python script should in general use the PyNN API, in which case the placeholder “system”
must be provided, and will be replaced by the name of the PyNN backend used when running
the benchmark, e.g. “nest”, “spiNNaker”, or “hardware.hbp pm”. If the benchmark is known
to run only on a subset of the available backends, this can be indicated by listing the suitable
backends within the placeholder, e.g. “system=spiNNaker,nest”. For low-level benchmarks for
a single neuromorphic system, the Python script should use the low-level APIs of that platform,
and in this case the ”system” placeholder should be absent.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 277

A specific example, for the repository https://github.com/CNRS-UNIC/hardware-benchmarks,
is:

[

{

"model": "A population of IF neurons, each of which is injected with a different current",

"tasks": [

"run_IF_curve.py {system}"

]

},

{

"model": "A population of random spike sources, each with different firing rates",

"tasks": [

"run_spike_train_statistics.py {system}"

]

}

]

4.6.2 Returning numerical measures

Each task should run a simulation of a neuronal network model, record data from the neurons,
perform analysis of the data, and calculate numerical measures of the system performance. The
numerical measures should be reported in a JSON-format file, consisting of a top-level record
with required fields ”timestamp” and ”results”. The field ”configuration”, containing a copy
of the parameterization of the model and simulator/hardware system”, is optional. The field
”results” contains a list of records with the following fields:

type What is being measured. For example “quality”, “performance”, “energy consumption”.

name A unique name for the measurement. It is suggested that this name takes the form of a
URI containing the URL of the version control repository followed by an identifier for the
task and an identifier for the measurement.

value A floating point number.

units (optional) if the measurement is a physical quantity, the units of the quantity using SI
nomenclature.

measure the type of the measurement, for example “norm”, “p-value”, “time”.

(A controlled vocabulary will be developed for the fields “type” and “measure”).

Here is an example:

{

"timestamp": "2015-06-05T11:13:59.535885",

"results": [

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 278

https://github.com/CNRS-UNIC/hardware-benchmarks

{

"type": "quality",

"name": "https://github.com/CNRS-UNIC/hardware-benchmarks.git/I_f_curve#norm_diff_frequency",

"value": 0.0073371188622418891,

"measure": "norm"

},

{

"type": "performance",

"name": "https://github.com/CNRS-UNIC/hardware-benchmarks.git/I_f_curve#setup_time",

"value": 0.026206016540527344,

"units": "s",

"measure": "time"

},

{

"type": "performance",

"name": "https://github.com/CNRS-UNIC/hardware-benchmarks.git/I_f_curve#run_time",

"value": 1.419724941253662,

"units": "s",

"measure": "time"

},

{

"type": "performance",

"name": "https://github.com/CNRS-UNIC/hardware-benchmarks.git/I_f_curve#closing_time",

"value": 0.03272294998168945,

"units": "s",

"measure": "time"

}

],

}

The task may also optionally produce figures and other output data files.

4.6.3 Registering benchmarks

To add a new benchmark model or task within an existing repository, just modify the “bench-
marks.json” configuration file. To add a new repository, e-mail andrew.davison@unic.cnrs-gif.fr.
In future, a web form for registering new repositories will be introduced.

4.6.4 Running benchmarks

A continuous integration system will be put in place, which will run the entire suite of bench-
marks on each neuromorphic system every time the system configuration (software or hardware)
is changed, and which will run the benchmarks from a given repository on both neuromorphic
systems (where appropriate) each time a new commit is made to the repository. To indicate

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 279

that a given commit should not trigger a run (for example because only documentation has
been changed), include the text ”[skip ci]” or ”[ci skip]” within the commit message.

After running each task, the continous integration system will harvest the JSON-formatted
measurement report, and update a database of benchmark measurements. This benchmark
database will be visualized in an ”App” within the HBP Neuromorphic Platform Collaboratory.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 280

Part 5

Following the platform building:
Key Performance Indicators and

time plans

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 281

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 282

5.1 KPIs and time plans

5.1.1 KPIs of the NMPM

5.1.1.1 Wafer Production

Value Status values Target

Wafers

ordered at United Microelectronics Corporation (UMC)
received from UMC
post-processing started
post-processing finished
mounted into Wafer Module, contact tests finished M18: 20 mntd

operational (complete defect map available) M30: 20

5.1.1.2 Printed Circuit Board Production

Explanation of status values that are used for PCB KPIs:

• Ordered: A prototype has been tested and the design has been signed off for production.
A manufacturer has been selected and an order for fully assembled PCBs has been placed
there.

• Manufactured: PCBs have been produced, assembled and received from the manufacturer.
Bare PCBs have passed electrical tests and are assumed error-free. Assembled PCBs have
passed visual inspection by the manufacturer.

• Tested: Functional tests of the assembled PCB have been completed and it is ready for
usage in NM-PM1.

Wafer Module Main PCB Production

Due to its complexity, the MainPCB will be assembled by a company that is different from the
PCB manufacturer. This gives an additional status value.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 283

Value Status values Target

MainPCBs

bare PCBs ordered
bare PCBs manufactured
PCBs assembled
tested M18: 20 tested

Monitoring and Control PCB Production

Value Status values Target

Cure boards
ordered
manufactured
tested M18: 160 tested

FPGA Communication PCB Production

Value Status values Target

FCPs
ordered
manufactured
tested M18: 960 tested

PowerIt Main Power Supply PCB Production

Value Status values Target

PowerIts
ordered
manufactured
tested M18: 20 tested

Auxiliary Power Supply PCB Production

Value Status values Target

AuxPwrs
ordered
manufactured
tested M18: 40 tested

Analog Readout Components

Value Status values Target

Flyspis
ordered
manufactured
tested M18: 60 tested

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 284

Value Status values Target

AnaFPs
ordered
manufactured
tested M18: 60 tested

Value Status values Target

AnaRMs tested and mounted into NM-PM1 M18: 60

5.1.1.3 Wafer Module Production

Mechanical components

Value Status values Target

Mech. components for
one Wafer Module

material delivered
M18: 20 electrosilvered
and coated

manufactured
electrosilvered and coated

Wafer Modules

Value Status values Target

Wafer Modules

all components delivered
assembled
integrated into server racks M18: 20 integrated

operational M30: 20

5.1.1.4 Software and Hardware Usage KPIs

Value Range Target

Code coverage of hardware abstraction layers 0–100 % M18: 100 %
Code coverage of calibration toolchain 0–100 % M30: 100 %
Code coverage of frontend and mapping layer 0–100 % M30: 100 %
Func. coverage of hardware abstraction layers 0–100 % M18: 100 %
Func. coverage of calibration toolchain 0–100 % M30: 100 %
Func. coverage of frontend and mapping layer 0–100 % M30: 100 %
Number of defect maps available (1/wafer) 0–20 M30: 20
Wafers available for PyNN users 0–100 % M30: 70 %
Number of calibration routines for hardware model parameters 0–15 M30: 15
Number of neural network experiments exec’d Count

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 285

5.1.2 KPIs of the NMMC

5.1.2.1 Cabinet Assembly

Value Status values Target

Cabinet (47U)

ordered
received
assembled
tested
operational M18: 5 assembled

5.1.2.2 Sub-rack assembly

Value Status values Target

6U sub-rack

ordered
received
assembled
tested
operational M18: 25 assembled

Value Status values Target

Card guides

ordered
received
assembled
tested
operational M18: 1200 assembled

Value Status values Target

Backplane PCB

ordered
received
assembled
tested
operational M18: 75 operational

Value Status values Target

Spin5 PCB

ordered
received
assembled
tested
operational M18: 600 operational

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 286

Value Status values Target

SpiNNaker chip

ordered
received
assembled
tested M18: 28800 tested
operational M30: 28800 operational

Value Status values Target

SATA cables

ordered
received
assembled
tested
operational M18: 1800 operational

Value Status values Target

Mains cables

ordered
received
assembled
tested
operational M18: 100 operational

5.1.2.3 Network

Value Status values Target

Switch – Netgear FS726T

ordered
received
assembled
tested
operational M18: 25 operational

Value Status values Target

Network cables

ordered
received
assembled
tested
operational M18: 625 operational

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 287

5.1.2.4 Fan Tray Assembly

Value Status values Target

Fan tray metalwork

ordered
received
assembled
tested
operational M18: 25 operational

Value Status values Target

120mm fan

ordered
received
assembled
tested
operational M18: 150 operational

Value Status values Target

Display module

ordered
received
assembled
tested
operational M18: 25 operational

5.1.2.5 Power Supply Assembly

Value Status values Target

Power supply unit (650W)

ordered
received
assembled
tested
operational M18: 75 operational

Value Status values Target

Power supply panel

ordered
received
assembled
tested
operational M18: 25 operational

5.1.3 KPIs of the common software part

The UI function blocks are described in chapter 1.7 (page 41). The implementation of the
defined blocks will be followed as KPI.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 288

5.1.4 KPIs of the benchmark part

• M12: An initial suite of 4 benchmarks fully specified and defined as Python scripts, one
for each level of neuron, synapse, microcircuit, and network. Initial tests of these on
NM-PM1 (verified via ESS) implemented in PyNN and on NM-MC1 performed.

• M18: 2x4 benchmarks of each type is specified as PyNN scripts and entered into the
repository. 3 complete benchmark runnable on NM-PM1 (verified via ESS) implemented
in PyNN and on NM-MC1. 1 benchmark successfully run on NM-PM1 and 2 different on
NM-MC1, with results entered into the benchmark database.

• M30: 2x3 benchmarks successfully run on NM-PM1 (verified via ESS) and on NM-MC1.
The repeated 3 used to observe and verify improvements from M18.

Targets for benchmarks for Neuron — Synapse — Microcircuit — Network:

Value Status values Target

Benchmark

fully specified and defined in PyNN M18: 2 each
initial tests on NM-PM1 (ESS) and NM-MC1 performed M12: 1 each
complete bench. runnable on NM-PM1 (ESS) + NM-MC1 M18: 3
benchmark successfully run on NM-PM1 M18: 1, M30: 3
benchmark successfully run on NM-MC1 M18: 2, M30: 3

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 289

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 290

Bibliography

[1] Intel NUC. http://www.intel.com/content/www/us/en/nuc/overview.html, 2014.

[2] Raspberry Pi. http://www.raspberrypi.org, 2014.

[3] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty
Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. ExaScale Computing
Study: Technology Challenges in Achieving Exascale Systems. 2008.

[4] R. Brette and W. Gerstner. Adaptive Exponential Integrate-and-Fire Model as an Effective
Description of Neuronal Activity. J. Neurophysiol., 94:3637 – 3642, 2005.

[5] Daniel Brüderle, Eric Müller, Andrew Davison, Eilif Muller, Johannes Schemmel, and
Karlheinz Meier. Establishing a Novel Modeling Tool: A Python-based Interface for a
Neuromorphic Hardware System. Front. Neuroinform., 3(17), 2009.

[6] Daniel Brüderle, Mihai Petrovici, Bernhard Vogginger, Matthias Ehrlich, Thomas Pfeil,
Sebastian Millner, Andreas Grübl, Karsten Wendt, Eric Müller, Marc-Olivier Schwartz,
Dan de Oliveira, Sebastian Jeltsch, Johannes Fieres, Moritz Schilling, Paul Müller, Oliver
Breitwieser, Venelin Petkov, Lyle Muller, Andrew Davison, Pradeep Krishnamurthy, Jens
Kremkow, Mikael Lundqvist, Eilif Muller, Johannes Partzsch, Stefan Scholze, Lukas Zühl,
Christian Mayr, Alain Destexhe, Markus Diesmann, Tobias Potjans, Anders Lansner,
René Schüffny, Johannes Schemmel, and Karlheinz Meier. A comprehensive workflow for
general-purpose neural modeling with highly configurable neuromorphic hardware systems.
Biological Cybernetics, 104:263–296, 2011.

[7] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, and
P. Yger. PyNN: a common interface for neuronal network simulators. Front. Neuroinform.,
2(11), 2008.

[8] Sebastian Millner. Development of a Multi-Compartment Neuron Model Emulation. PhD
thesis, University of Heidelberg, 2012.

[9] The Human Brain Project. A Report to the European Commission, 2012.

[10] United Microelectronics Corporation (UMC). http://www.umc.com.

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 291

http://www.intel.com/content/www/us/en/nuc/overview.html
http://www.raspberrypi.org
http://www.umc.com

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 292

Glossary

10GbE

10-Gigabit Ethernet. 51

40GbE

40-Gigabit Ethernet. 51

ADC

Analog-to-Digital Converter. 53

AnaB

Analog Breakout PCB. 52

AnaFP

Analog Frontend PCB. 53, 285

AnaRM

Analog Readout Module. 50, 51, 53, 285

API

Application Programming Interface. 55–57

ASIC

Application Specific Integrated Circuit. 49, 52

AuxPwr

Auxiliary Power Supply PCB. 52, 284

Calibration

Calibration. 56

CMOS

Complementary Metal-Oxide-Semiconductor. 49

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 293

Compute Cluster

A collection of computers interconnected by a dedicated network. 51, 53

Compute Node

A single compute node as part of a Cluster. 52, 57

Cure

Monitoring and Control PCB for Reticles. 52, 284

DRAM

Dynamic Random Access Memory. 53

ESS

Executable System Specification. 55, 58, 59

FCP

FPGA Communication PCB. 50, 52, 284

Flyspi

Flyspi FPGA PCB. 53, 284

FPGA

Field-Programmable Gate Array. 52, 53

FsBo

Flyspi Breakout PCB. 53

GbE

Gigabit Ethernet. 51, 52

HALbe

Hardware Abstraction Layer Backend. 57

HDD

Hard disk drive. 52

HICANN

High-Input Count Analog Neuronal Network Chip. 49, 52

HICANN Wafer

A 20 cm silicon wafer with 384 HICANN ASICs interconnected by wafer-scale postpro-
cessing. 50, 52

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 294

I/O
Input/Output. 51

I2C
Inter-Integrated Circuit Link. 52

MainPCB
Wafer Module Main PCB. 52, 283, 284

Mapping
Mapping. 56

MCU
Microcontroller Unit. 52

NM-PM
Neuromorphic Physical Model. 4, 49, 51, 55–58

NM-PM1
Neuromorphic Physical Model version 1. 4, 13, 50, 51, 283, 285, 296

NUC
Next Unit of Computing. 53

PCB
Printed Circuit Board. 53, 283, 284

PCIe
Peripheral Component Interconnect Express. 52

Power-FET
Power Field-Effect Transistor. 52

PowerIt
PowerIt Main Power Supply PCB. 52, 284

PyNN
PyNN. 55–57, 59

Python
Python Programming Language. 55

QSFP
Quad SFP. 51

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 295

RDMA
Remote Direct Memory Access. 50

SFP+
Small Form-Factor Pluggable. 51

SSD
Solid-state Disk. 52

StHAL
Stateful Hardware Abstraction Layer. 57

ToR
Top-of-Rack. 50–52

UMC
NM-PM1 semiconductor manufacturer: United Microelectronics Corporation UMC [10].
283

USB 2.0
Universal Serial Bus version 2.0. 53

Wafer
silicon wafer used as the basis of micro-chip production. 283

Wafer Module
Assembly of an HICANN wafer, a Main PCB, 48 FPGA communication PCBs and power
supply PCBs. 49–53, 283, 285

WIO
Wafer I/O PCB. 52

WIOH
Horizontal Wafer I/O PCB. 52

WIOV
Vertical Wafer I/O PCB. 52

HBP SP9 Specification 05 October 2022 (git fbf0f70 — public) 296

	 The Neuromorphic Computing Platform
	 What is Neuromorphic Computing?
	 What are the key features of the HBP Neuromorphic Computing Platform?
	 How will the NM Platform be used?
	 Integration of the NM Platform into the HBP Platform Ecosystem
	 The purpose of this document

	1 User interface to the Neuromorphic Computing Platform
	1.1 Overall goals
	1.2 Use cases
	1.2.1 A single run of a simple network model
	1.2.2 A scripted run of a complex network model with input data and parameter files
	1.2.3 Using the Neuromorphic Computing Platform through the Unified Portal and Brain Simulation Platform
	1.2.4 Parameter sweeps
	1.2.5 Closed-loop experiment involving a virtual environment

	1.3 Functional requirements
	1.3.1 Model and experiment descriptions
	1.3.2 Job control interface
	1.3.2.1 Batch mode

	1.3.3 Data handling
	1.3.4 Closed-loop experiments

	1.4 Non-functional requirements
	1.4.1 Sharing
	1.4.2 Authentication and Authorization
	1.4.3 Security
	1.4.4 Accounting
	1.4.5 Efficiency and user volumes
	1.4.6 Reliability

	1.5 Architectural overview
	1.5.1 Job submission API
	1.5.1.1 Overview
	1.5.1.2 Endpoints
	1.5.1.3 Resource descriptions
	1.5.1.4 Serializations and allowed document types
	1.5.1.5 Physical architecture

	1.5.2 Python client for REST API
	1.5.3 Model/experiment verification
	1.5.4 Resource management software in Heidelberg and Manchester
	1.5.5 Tools for exporting Brain Builder model descriptions as PyNN descriptions

	1.6 Interfaces to other platforms
	1.6.1 Services required from other Platforms
	1.6.2 Services provided to other Platforms

	1.7 Key performance indicators and Function blocks

	2 Neuromorphic Computing with Physical Emulation of Brain Models
	2.1 Physical Model Platform: NM-PM (BrainScaleS-1)
	2.1.1 Neuromorphic Physical Model
	2.1.2 Constitutent Parts of the nmpm1

	2.2 Users view of the nmpm system
	2.2.1 Usage of the NM-PM as a modeling back-end
	2.2.2 Low-level user access
	2.2.3 Real-time interaction with the NM-PM
	2.2.4 Evaluation Workflow

	2.3 Physical Model Platform: BrainScaleS-2
	2.3.1 Omnibus
	2.3.1.1 Bus_if_split
	2.3.1.2 Bus_if_arb
	2.3.1.3 Bus_delay
	2.3.1.4 Bus_reg_target
	2.3.1.5 m4 macro

	2.3.2 Routing
	2.3.2.1 Crossbar (Layer-1)
	2.3.2.2 External events (Layer-2)
	2.3.2.3 PADI-Bus
	2.3.2.4 Synapse driver
	2.3.2.5 Synapse
	2.3.2.6 Neuron

	3 Neuromorphic Computing with Many-core Emulation of Brain Models
	3.1 Multi-core Platform: NM-MC
	3.1.1 Physical Architecture
	3.1.2 Software

	3.2 SpiNNaker Chip Datasheet
	3.2.1 Chip Organization
	3.2.1.1 Block Diagram
	3.2.1.2 System-on-Chip hierarchy
	3.2.1.3 Register description convention

	3.2.2 System architecture
	3.2.2.1 Routing
	3.2.2.2 Time references
	3.2.2.3 System-level address spaces

	3.2.3 ARM968 processing subsystem
	3.2.3.1 Features
	3.2.3.2 ARM968 subsystem organisation
	3.2.3.3 Memory Map

	3.2.4 ARM 968
	3.2.4.1 Features
	3.2.4.2 Organization
	3.2.4.3 Fault-tolerance

	3.2.5 Vectored interrupt controller
	3.2.5.1 Features
	3.2.5.2 Register summary
	3.2.5.3 Register details
	3.2.5.4 Interrupt sources
	3.2.5.5 Fault-tolerance

	3.2.6 Counter/timer
	3.2.6.1 Features
	3.2.6.2 Register summary
	3.2.6.3 Register details
	3.2.6.4 Fault-tolerance

	3.2.7 DMA controller
	3.2.7.1 Features
	3.2.7.2 Using the DMA controller
	3.2.7.3 Register summary
	3.2.7.4 Register details
	3.2.7.5 Fault-tolerance

	3.2.8 Communications controller
	3.2.8.1 Features
	3.2.8.2 Packet formats
	3.2.8.3 Control byte summary
	3.2.8.4 Debug access to neighbouring devices
	3.2.8.5 Register summary
	3.2.8.6 Register details
	3.2.8.7 Fault-tolerance

	3.2.9 Communications NoC
	3.2.9.1 Features
	3.2.9.2 Input structure
	3.2.9.3 Output structure

	3.2.10 Router
	3.2.10.1 Features
	3.2.10.2 Description
	3.2.10.3 Internal organization
	3.2.10.4 Multicast (MC) router
	3.2.10.5 The point-to-point (P2P) router
	3.2.10.6 The nearest-neighbour (NN) router
	3.2.10.7 Time phase handling
	3.2.10.8 Packet error handler
	3.2.10.9 Emergency routing
	3.2.10.10 Register summary
	3.2.10.11 Register details
	3.2.10.12 Fault-tolerance
	3.2.10.13 Test

	3.2.11 Inter-chip transmit and receive interfaces
	3.2.11.1 Features
	3.2.11.2 Programmer view
	3.2.11.3 Fault-tolerance

	3.2.12 System NoC
	3.2.12.1 Features
	3.2.12.2 Organisation

	3.2.13 SDRAM interface
	3.2.13.1 Features
	3.2.13.2 Register summary
	3.2.13.3 Register details
	3.2.13.4 The delay-locked loop (DLL)
	3.2.13.5 Fault-tolerance

	3.2.14 System Controller
	3.2.14.1 Features
	3.2.14.2 Register summary
	3.2.14.3 Register details

	3.2.15 Ethernet MII interface
	3.2.15.1 Features
	3.2.15.2 Using the Ethernet MII interface
	3.2.15.3 Register summary
	3.2.15.4 Register details
	3.2.15.5 Fault-tolerance

	3.2.16 Watchdog timer
	3.2.16.1 Features
	3.2.16.2 Register summary
	3.2.16.3 Register details

	3.2.17 System RAM
	3.2.17.1 Features
	3.2.17.2 Address location
	3.2.17.3 Fault-tolerance
	3.2.17.4 Test

	3.2.18 Boot ROM
	3.2.18.1 Features
	3.2.18.2 Address location
	3.2.18.3 Fault-tolerance

	3.2.19 JTAG
	3.2.19.1 Features
	3.2.19.2 Organisation
	3.2.19.3 Operation

	3.2.20 Input and Output signals
	3.2.20.1 Key
	3.2.20.2 SDRAM interface
	3.2.20.3 JTAG
	3.2.20.4 Ethernet MII
	3.2.20.5 Communication links
	3.2.20.6 Miscellaneous
	3.2.20.7 Internal SDRAM interface
	3.2.20.8 Internal SDRAM power & ground

	3.2.21 Packaging
	3.2.22 Application notes
	3.2.22.1 Firefly synchronization
	3.2.22.2 Neuron address space

	3.3 SpiNNaker Software Datasheet
	3.3.1 Run-time software
	3.3.1.1 Run-time software stack
	3.3.1.2 Inter-processor communication
	3.3.1.3 Runtime memory map

	3.3.2 Application programming interface (API)
	3.3.2.1 Event-driven programming model
	3.3.2.2 Programming interface

	3.3.3 Neural net simulation frameworks
	3.3.3.1 Spiking Neural net simulation framework
	3.3.3.2 MLP simulation framework

	3.3.4 Neural net simulation development route
	3.3.4.1 pyNN.spiNNaker
	3.3.4.2 PyNN API functions list
	3.3.4.3 Simulation setup and control
	3.3.4.4 Object-oriented interface for creating and recording networks
	3.3.4.5 PopulationView
	3.3.4.6 Assembly
	3.3.4.7 Object-oriented interface for connecting populations of neurons
	3.3.4.8 Procedural interface for creating, connecting and recording networks
	3.3.4.9 Neural Models
	3.3.4.10 Specification of synaptic plasticity
	3.3.4.11 Current Injection

	3.3.5 Damson development route
	3.3.5.1 Damson program compilation
	3.3.5.2 Damson code components
	3.3.5.3 Mapping code to SpiNNaker processors
	3.3.5.4 Runtime system
	3.3.5.5 Damson development flow

	3.3.6 PACMAN: partition and configuration manager
	3.3.6.1 Introduction
	3.3.6.2 Splitting
	3.3.6.3 Grouping
	3.3.6.4 Mapper
	3.3.6.5 Object File Generator
	3.3.6.6 Neural Data Structure generation
	3.3.6.7 Automatic Run Script generation
	3.3.6.8 MLP PACMAN

	3.3.7 Coding guidelines
	3.3.7.1 All languages
	3.3.7.2 C
	3.3.7.3 ARM assembly
	3.3.7.4 Python

	3.3.8 Documentation guidelines
	3.3.8.1 C / C++
	3.3.8.2 Assembly language
	3.3.8.3 Robodoc configuration file

	4 Benchmarks
	4.1 Overall goals
	4.2 Quality criteria for neuromorphic benchmark tests
	4.2.1 What units should be benchmarked?

	4.3 Use cases
	4.3.1 Tracking the performance of a neuromorphic computing system over time
	4.3.2 Determining whether the Neuromorphic Computing Platform is suitable for a specific task

	4.4 Functional requirements
	4.5 Architectural overview
	4.6 Implementation
	4.6.1 Defining models and tasks
	4.6.2 Returning numerical measures
	4.6.3 Registering benchmarks
	4.6.4 Running benchmarks

	5 Following the platform building: Key Performance Indicators and time plans
	5.1 KPIs and time plans
	5.1.1 KPIs of the NMPM
	5.1.1.1 Wafer Production
	5.1.1.2 Printed Circuit Board Production
	5.1.1.3 Wafer Module Production
	5.1.1.4 Software and Hardware Usage KPIs

	5.1.2 KPIs of the NMMC
	5.1.2.1 Cabinet Assembly
	5.1.2.2 Sub-rack assembly
	5.1.2.3 Network
	5.1.2.4 Fan Tray Assembly
	5.1.2.5 Power Supply Assembly

	5.1.3 KPIs of the common software part
	5.1.4 KPIs of the benchmark part

	Bibliography
	Glossary

