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1 Introduction

1.1 Scope of this document

This user guide intends to give an overview of the Nux’s design and how to use it in
hardware designs and for executing software on it. It is not (yet) a full specification. It
should serve as a starting point for everyone wanting to contribute to the design and
provide the necessary knowledge to use it in other hardware designs.

1.2 Related material

Most of the internals are documented in detail in Friedmann (2013). Some overview
of the vector Single Instruction Multiple Data (SIMD) unit and the use for plasticity is
given in Friedmann and Schemmel (2015).
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2.1 Design parameters

The top-level module Pu_v2 offers a large number of parameters that control various
aspects of the design. Additionally some important parameters are hidden deeper in the
code. This section lists and describes those parameters.

2.1.1 Top-level parameters
First, the top-level design parameters (see also file rt1/processor/pu.sv):

OPT_BCACHE type: int, default: 0
Configures the branch predictor (branch cache). A value of 0 disables branch
prediction completely. Higher values control the number of entries in the branch
cache. The branch cache contains 297 T-"“AHE entries.

OPT_MULTIPLIER type: bit, default: 1

Set to one to include a fixed-point multiplier in the design.

OPT_DIVIDER type: bit, default: 1

Set to one to include a fixed-point divider in the design.

OPT_IOBUS type: bit, default: 1
Include an OMNIBUS (OMNIBUS) interface for use by the external control facility
(see PowerISA (2010)). The interface is called iobus.
OPT_VECTOR type: bit, default: 1
Set to one to include the Fixed-point Vector Extension (FXV) SIMD extension.
Enables also the vector_bus interface for serial load/store accesses (fxvlax,
fxvstax)and vector_pbus for parallel load/store accesses (fxvinx, fxvoutx).
OPT_VECTOR_SLICES type: int, default: 8
Control the number of parallel datapath blocks called slices in the FXV unit.

OPT_VECTOR_NUM_HALFWORDS type: int, default: 8

Control the width of the datapath of one FXV slice in units of halfwords (16 bit).
With the default configuration the unit operates on 8 x 16 bit vectors.
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OPT_VECTOR MULT DELAY type: int, default: 4

Configure the number of pipeline stages used for multiplication in the FXV slices.

OPT_VECTOR_ADD_DELAY type: int, default: 1

Configure the number of pipeline stages used for addition in the FXV slices.

OPT_VECTOR_INST_ QUEUE_DEPTH type: int, default: 4
Configure the depth of the First In First Out (FIFO) for instructions from the
general-purpose part to the FXV unit.
OPT_NEVER type: bit, default: 0
Deprecated
Enables the Nibble Vector Extension (NEVER) unit for accelerated plasticity pro-
cessing in High Input Count Analog Neural Network (HICANN).
OPT_SYNAPSE type: bit, default: 0
Deprecated

Enables the Synapse processing extension (SYNAPSE) unit for accelerated plastic-
ity processing in HICANN. The SYNAPSE unit uses the syn_io_aand syn_io_b
interfaces.

OPT_DMEM type: Pu_types:Opt_mem, default: Pu_types:MEM_BUS

Select whether to use the tight (Pu_t ypes:MEM_TIGHT) or bus (Pu_types:MEM_BUS)
interface to connect the data memory. The tight memory variant uses the dmem
interface, while the bus variant uses dmem_bus. The bus interface is a OMNIBUS
interface that allows for variable delay of requests with multiple requests in flight
simultaneously. The tight interface is suitable for direct connection to a memory
block.

OPT_IF_LATENCY type: int, default: 1

Control the number of pipeline stages between instruction memory and the rest of
the frontend. Can be useful, when the memory is physically far away but impacts
branch penalty.

OPT_BCACHE_IGNORES_JUMPS type: bit, default: 1
Optimization parameter to remove a long timing path. The branch predictor does
not predict for instruction locations that are targets of branches.
OPT_BUFFER_BCTRL type: bit, default: 0

If set, adds a buffering register stage between the branch functional unit and the
address generation unit in the instruction fetcher. This buffer increases branch
penalty by one cycle, but removes a long timing arc through the functional unit.
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OPT_WRITE_THROUGH type: bit, default: 1

Implement a bypass for writes to general-purpose registers, i.e. simultaneous
reads directly use the result from the functional unit. Decreases length of pipeline
bubbles at the cost of timing.

OPT_LOOKUP_CACHE type: bit, default: 1

Instruction tracking uses the lookup cache mechanism described in Friedmann
(2013). Required if OPT_DMEM = Pu_types:MEM_BUS or any other variable
latency instruction is implemented.

2.1.2 Internal parameters

Now, internal parameters in rt1/packages/frontend_pkg.sv. Generally, these
require more thinking when changing then top-level options. For example, the multiplier
latency depends on the actual multiplier implementation. For Field Programmable Gate
Arrays (FPGAs) this might be a fixed generated core. In that case, changing the number
here will affect only the scheduling logic but not the actual multiplier latency. So change
these parameters only if you know what you are doing.

mul_latency type: int, default: 4
Latency of the fixed-point multiplier in cycles. What values are possible depends
on the selected implementation (e.g. DesignWare block or Xilinx generated core).
div_latency type: int, default: 31

Latency of fixed-point divide in cycles.

1ls_latency type: int, default: 2

Latency of load /store operations when using OPT_MEM = Pu_types:MEM_TIGHT.
Possible values are 2 and 3. In the latter case an additional pipeline stage is added
to improve timing.

1ls_bus_latency type: int, default: 3

Expected latency of variable latency load /store operations when using OPT_MEM =
Pu_types:MEM_BUS. A wrtie-back slot is scheduled at the indicated time in the
result shift register. If it is not used, the variable latency write-back takes over.

2.2 Interfaces and ports
The top-level module contains the following ports and interfaces:

clk type: logic
Clock signal
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reset type: logic
Active-high Reset signal.

hold type: logic
Deprecated
Active-high signal to stall instruction fetch. Should be tied low, or you have to
check if it still works in all cases.

imem type: Ram_if
Interface to either instruction cache or directly to memory. Honors the delay signal
in the interface.

dmem type: Ram_if
Interface to data memory when OPT_MEM = Pu_types:MEM_TIGHT. Otherwise,
connect dummy interface instance.

dmem_bus type: Bus_if
OMNIBUS interface to data memory when OPT_MEM = Pu_types:MEM_BUS.
Otherwise, connect dummy interface instance.

iobus type: Bus_if

OMNIBUS interface for the device control facility. Only used when OPT_IOBUS is
set. The device control facility provides a separate address space for Input/Output

(I0).

vector_bus type: Bus_if
Bus for the serial load /store unit of the FXV unit. Only used when OPT_VECTOR
is set.

vector_pbus type: Bus_if
Bus for the parallel load /store unit of the FXV unit. Only used when OPT_VECTOR
is set.

gout type: logic[31:0]
Register mapped output for the processor. Is set by writing an Special Purpose
Register (SPR). Typically used for digital chip pins.

gin type: logic[31:0]
Register mapped input for the processor. Is read by reading an SPR. Typically used
for digital chip pins.

goe type: logic[31:0]

Register mapped output enable for the processor. Is set by writing an SPR. Typically
used for digital chip pins.
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ctrl type:Pu_ctrl_if
Control interface for interrupt handling, sleeping, and monitoring of program
execution.

timer type: Timer_if
Access to timer facilities. The timer is outside of the processor core, because it is
active in sleep states during which the core’s clock might be turned off. The timer
facility also provides interrupts to the core that can trigger wake-up from the sleep
state.

syn_io_a, syn_io_b type:Syn_io_if
Deprecated
IO interfaces for SYNAPSE unit.

2.3 Example: core environment

Figure 2.1 shows an example of a simple core environment using a shared main memory.
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Figure 2.1: Example of environment for Nux as PPU. The top-level module Pu_v2 is
shown as the red block labeled PU. The shown configuration uses a shared
main memory with instruction cache. Data memory, instruction cache, and
FXV serial load/store all share access to the single main memory block. The
yellow symbols represent OMNIBUS modules. A slave port allows access
from the outside to change control registers (reset, clock gating) and to main
memory (program loading, result retrieval). A master port allows access
from within the PPU to an external bus. The interrupt_ctrl and timer
units implement interrupts and timing. They exist outside the clock domain
controlled by control registers, but within the reset domain.
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Executing a program on Nux in hardware or simulation requires three steps outlined
in the next sections. First, you have to install the cross-compilation toolchain for the
PowerISA. The compilation and linking of the programs for the Nux is described next.
For the actual execution implementation specific software is required to interface with
Nux.

3.1 Building binutils and the cross-compiler

Any cross-compiler will do that emits code for the target “powerpc-eabi”, i.e. Power in-
struction set architecture using the Embedded Application Binary Interface (EABI) (IBM,
1998). There exists however a gcc and binutils version with basic support for the vec-
tor instructions at https://github.com/electronicvisions/gcc and https:
//github.com/electronicvisions/binutils-gdb. An installation script is pro-
vided in the Nux repository to download and compile the patched gcc-toolchain for
the processor from source (support/gcc/install. sh). You may want to change the
PREFIX variable at the top to select the target installation directory. The gcc with vector
instruction support is currently at the version 4.9 and therefore depends on outdated
libraries. The dependencies downloaded in the install script (e.g. mpfr, gmp, mpc, ...)
should be preferred over the most recent versions in order to avoid failing builds due
to version incompatibilities. Refer to GCC installation for further dependencies and
required minimum versions.

The goal of the installation script is to build a minimal gcc and binutils with support
for C but without libc. Support for C++ is added to the compiler while still being
experimental.

3.2 Compiling programs

The processor starts execution after reset is released at address 0. Also, exceptions trigger
a control transfer to fixed locations in the range from address 4 to 44. The final result
of compilation is therefore to generate a binary image that can be written to memory
with valid code at the correct addresses. This is achieved by a special linker script
elf32nux.x and the C runtime crt . s. An example linker script and C runtime can be
found in the libnux at https://github.com/electronicvisions/libnux.
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3.2.1 C runtime
The C runtime is a wrapper for the compiled code with various tasks
e initialize the stack pointer
e declare interrupt routines
e start the execution of the compiled program at the correct symbol
e resume into a well defined state at the end of the program

An example wrapper is discussed below:

# crt.s
.extern
.extern
.extern

1 -—- part a
2

3

4

5 .extern
6

7

8

9

start

reset
_isr_undefined
isr_einput
isr_alignemnt
isr_program
isr_doorbell
isr_fit
isr_dec

.extern
.extern
.extern
.extern
10 .extern
11
12 .extern stack_ptr_init

This declares symbols that can be overwritten by other parts of the program. The start
symbol declared on line 2 is the entry point for the C code. It is defined by declaring a
function void start () inyour C code. The isr_« symbols on lines 5 to 10 represent
interrupt service routines. The _isr_undefined symbol is a default handler that is
used if no service routine is defined.

# crt.s —-— part b
.text

.extern _start:
reset:

# interrupt jump table

1
2
3
4
5 b __init
6
7
8
9

int_mcheck: b _isr _undefined
int_cinput: b _isr_undefined
10 int_dstorage: b _isr_undefined
11 int_istorage: b _isr_undefined
12 int_einput: b isr_einput
13 int_alignment: b isr_alignment
14 int_program: b isr_program
15 int_syscall: b _isr_undefined
16 int_doorbell: b isr_doorbell
17 int_cdoorbell: b _isr_undefined
18 int_fit: b isr fit
19 int_dec: b isr_dec

12
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This block is the start of the code section of the binary. It begins on line 5 with a branch
to the __init symbol defined below. The linker script ensures that this instruction
resides at address 0 of the produced binary image. After that follows the interrupt jump
table on lines 8 through 19. It consists of branches to interrupt service routines, which
are located at the appropriate addresses defined by the hardware implementation.

1 # crt.s —— part c

2 _ init:

3 # set the stack pointer

4 lis 1, stack_ptr_init@h

5 addi 1, 1, stack_ptr_init@l
6 # start actual program

7 bl start

8

9

end_loop:
10 wait
11 b end_loop

This fragment initializes the stack pointer in general-purpose register 1 as defined by
the EABI (IBM, 1998). The symbol stack_ptr_init is defined by the linker script to
match the size of the implemented memory. After initialization on line 7, the wrapper
calls the user code at the start symbol. If user code returns from the start() function, the
loop at the end sends the processor to sleep. In case of wake-up events, the appropriate
service routine will be taken through the interrupt jump table. On return from the service
routine, the branch on line 11 ensures a return to the sleep state.

3.2.2 Linker script

The linker script e1£32nux.x is passed to the linker to configure how the resulting
binary is generated. An example is discussed below:

1 MEMORY {
2 ram(rwx) : ORIGIN = 0, LENGTH = 16K
3}

This specifies the memory layout of the implementation. In the given case we have one
memory region with a size of 16 kib starting at address 0. In a tight memory configuration
(OPT_MEM = Pu_types:MEM_TIGHT) there would be two locations here for data and
code.

1 mailbox_size = 4096;

2 mailbox_end = 0x4000;

3 mailbox_base = mailbox_end - mailbox_size;
4 stack_ptr_init = mailbox_base - 8;

The intention here is to create a reserved memory region at the end called mailbox. This
is used for communication with the environment by software running on Nux. The
stack pointer is initialized to start at lower addresses than the mailbox region. Note, that

13
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the crt . s wrapper uses the stack_ptr_init symbol to do the actual initialization of

register 1.
1 SECTIONS {
2 .text @ {
3 _isr_undefined = .;
4
5 xcrt.o(.text)
6 * (.text)
7
8 PROVIDE (isr_einput = _isr_undefined);
9 PROVIDE (isr_alignment = _isr_ undefined);
10 PROVIDE (isr_program = _isr_undefined);
11 PROVIDE (isr_doorbell = _isr_undefined);
12 PROVIDE (isr_fit = _isr_undefined);
13 PROVIDE (isr_dec = _isr_undefined);
14 } > ram
15
16 .data : {
17 * (.data)
18 * (.rodata)
19 } > ram
20
21 .bss : {
22 * (.bss)
23 * (.sbss)
24 } > ram

26 /DISCARD/ : {
27 * (.eh_frame)
28 }

29 '}

This part specifies, where generated code sections should be mapped. We use only the
three sections text for instructions, data for data, and bss for zeroed data. Line 5
ensures, that the wrapper is positioned at memory location 0, so that reset and interrupt
handling work correctly. Line 3 defines the default interrupt handler _isr_undefined
to be equivalent to the reset vector at address 0. Lines 8 to 13 connect the default handler

to all interrupt service routines that were not defined in user code.

3.2.3 Minimum user code

Minimal C user code consists of just the start() function:

1 void start () {
2 }

3.2.4 Generating the binary image

Generating the final binary image involves three steps:

14
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1. Compile source files to object files.
2. Link object files to executable.
3. Extract binary image of . text and .data sections out of the executable.

The following examples assume an architecture with single main memory as shown
in Figure 2.1. When using two memories, two images have to be extracted at the end,
which requires a different e1£32nux. x file as the one shown above. The examples also
assume, that gcc binaries are visible through the PATH variable and that it was installed
with prefix powerpc-eabi.

Compiling

The assembly wrapper has to be assembled:

1 $ powerpc-eabi-as -mnux crt.s -o crt.o

And C-source compiled:

1 $ powerpc-eabi-gcc -c <sourcefile> -o <objectfile> \
2 -mcpu=nux

3 —ffreestanding

4 -msdata=none

5 -mstrict-align

6 -msoft-float

7 -mno-relocatable

~ s

The exact meaning of options is given in Stallman (2015). The option on line 3 tells the
compiler to use a “freestanding” environment. From the gcc manual:

A freestanding environment is one in which the standard library may not
exist, and program startup may not necessarily be at main. The most obvious
example is an OS kernel.

Line 4 disables the use of the . sdata (small data) section in generated code. Refer to
IBM (1998) to learn how this section would be used. Line 5 avoids unaligned memory
accesses. The PowerISA allows embedded implementations to raise an exception on
unaligned loads and stores, which is what this implementation does. Line 6 disables
the use of floating point instructions. Floating point math is instead implemented in
software. Line 7 tells the compiler, that code may not be relocated to a different address
at runtime.

Linking
The executable is generated by the linker:
1 $ powerpc-eabi-1d crt.o <objl.o> ... -o <binary.elf> \
2 -T elf32nux.x \
3 -static \
4 -nostdlib \
5 -lgcc

15
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Line 2 tells the linker to use a specified linker script. Line 3 uses static linking of libraries.
Line 4 disables linking of standard libraries, especially libc (which we do not have). Line
5 links libgcc. This is a gcc internal library with routines that the compiler might use
instead of directly emitting code for them. For example, optimized implementations of
memcpy or soft floating point implementations. See libgcc for more information.

Extracting the binary image

The objcopy command from binutils allows to extract the raw bits from the executable:

1 $ powerpc-eabi-objcopy -0 binary <binary.elf> <image.raw>

3.2.5 Useful commands

To inspect the resulting image you can use the hexdump program:

1 $ hexdump -C <image.raw>

It outputs a hex-dump to stdout.
The executable can be inspected using readelf to get information about symbol (vari-
ables and functions) locations. Objdump contains a dissasembler:

1 $ powerpc-eabi-objdump -d <binary.elf>

The extracted binaries can be disassembled, too, when supplying the relevant informa-
tion on the architecture and file format:
1 $ powerpc-eabi-objdump \

2 -b binary -m powerpc -Mnux --endian=big \
3 -d <image.raw>

3.3 Loading and executing programs

The specifics of how to do this are defined by the system, in which the processor is used.
The binary image generated using objcopy has to be transferred to the memory in the
system. During this time, the processor should be in reset, or you have to know what
you are doing. After loading, reset is released to start the program. The crt . s wrapper
ensures, that the program goes into the sleep state when the user code terminates, i.e.
returns from the start() function.

16



4 Running simulations

Available tests are described in detail in Chapter 4 of Friedmann (2013). Here, we
will focus on how to use theses tests. In order to do that, we will also discuss the
Makefile-based build flow.

4.1 Build flow

The build flow uses make and was inspired by the Linux build system kbuild (Chastain
et al., 2015). There is a central configuration file . config in the top-level directory that
defines configuration options. Source files are collected by using Makefile.srclist
files throughout the directory hierarchy using the configured options. Separate files
Makefile.build hold the build rules for make for each supported simulator. These
Makefiles reside in run directories under verification/sim_x. Currently only Mod-
elSim is supported in verification/sim_model/. Run directories for synthesis are
located in target/.

4.1.1 Configuration options

These configuration options can be given in the global configuration file .config.

CONFIG_PLATFORM =[virtex5 | tsmc65 | umc180 | designware | achronix_speedster22ihd |

Select the target technology. Some components for clock generation, memories,
multipliers, etc. only work in particular technologies, for example when using
specialized FPGA resources. Note, that support for the achronix FPGA is merely a
placeholder.

CONFIG_BOARD =[ml505 | flyspi-board |

Select which FPGA board is used. The Xilinx evaluation board m1505 (Xil, 2008)
or the “flyspi” board of the electronic vision(s) group. Support for the latter is
preliminary. This option is only relevant for the target/emsys implementation
run directory.

CONFIG_USE_XILINX MULTIPLIER =[y | n]
Select whether to use integrated DSP slices, when building for CONFIG_PLATFORM
= virtexd.

CONFIG _WITH BUS =[y | n]
Build the OMNIBUS implementation provided as part of the repository or not.

17
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CONFIG WITH VECTOR =[y | n]
Build modules for the FXV unit or not.

4.1.2 Running simulations

To compile sources for simulation with ModelSim according to the selected configuration
do:

1 S ed verification/sim_model
2 $ make
3 $ vsim -do <simulation script>

Several simulation scripts are provided for the different test scenarios.

4.2 Tests

4.2.1 Program test

Simulation script: verification/sim_model/sim_plt.do

Top-level source: testbenches/program_test.sv
This test executes a number of programs from test/testcode. The processor is
simulated in a two memory environment. Therefore, each program provides code and
memory images, plus an additional expected data image. The test compares the memory
contents after simulation to the expected image. Memory images can be provided as
ASCII files with hexadecimal values or in raw binary form. For new programs the
latter format should be preferred, since it can be generated using the flow described in
Chapter 3.

4.2.2 Sequence test

Simulation script: verification/sim_model/sim_seq.do

Top-level source:  testbenches/sequence_test.sv
This test generates random program sequences and compares the final state of internal
registers to the expected state. FXV instructions are excluded from random generation.
Also the tw and twi instructions are not allowed to avoid exceptions. The test can be
configured with four preprocessor options:

PROGRAM_LENGTH Number of instructions of which the last one is always wait.

OPT_BCACHE Passed to the top-level processor option of the same name (see Sec-
tion 2.1.1).

USE_CACHE Perform the test using an instruction cache.
OPT_DMEM_BUS If set, use OPT_DMEM = Pu_types:DMEM_BUS (see Section 2.1.1).

The simulation itself runs indefinitely. Specify a time when starting the simulation. For
good coverage a simulated time of 100 ms should be aimed for.

18
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4.2.3 Vector unit test

Simulation script: verification/sim_model/sim_fub_vector.do
Top-level source: ~ testbenches/fub_vector_test.sv
This is a unit test for the vector unit. It tests the design in three phases:

1. Explicitly specified programs.
2. Randomly generated single instructions.
3. Randomly generated sequences of instructions.

A larger test set is defined by testbenches/signoff_vector_test.sv that in-
cludes the top-level of this test. The simulation script verification/sim_model/
sim_signoff_vector_test.do uses this as top-level.

19
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5.1 Implemented subset of Power ISA 2.06

PowerISA (2010) defines an embedded and a server environment, several mandatory and
optional categories for these environments, and allows 32 and 64 bit implementations.
The presented processor realizes an embedded environment supporting categories Base,
Embedded, External Control, and Wait using 32 bit. In addition it supports the custom
FXV instruction set and two now deprecated instruction sets NEVER and SYNAPSE.
The full list of implemented instructions is given in Friedmann (2013).

Opcodes and instruction formats are defined in source file rt1/packages/pu_
inst_pkg.sv. The high-level behavior, e.g. what registers are read and written or
which functional unit is used, is given by the predecode module in rt1/processor/
predecode. sv.

5.2 FXV vector instruction set

This section lists the implemented instructions of the fixed-point vector functional unit
of Nux. The following rules are used in the notation:

e Round brackets indicate the contents of the register selected by the index in brack-
ets. So, (VRA) stands for the contents of the register with index VRA.

e Subscripts denote the element of the vector using the current type: (VRA); /g is the
i — th halfword element, (VRA); /14 is the i — th byte element, and (VRA); /3, is the
i — th half-byte element.

e Lowercase letters u, v, w, m indicate single-precision elements. Uppercase letters
U,V,W, M are double-precision elements.

e Underlined letters u, v indicate full single-precision vectors.

e VRA, VRB, and VRT refer to vector register indices.

e ACC is the contents of the double-precision accumulation register.
e VCRis contents of the 32 bit vector condition register.

e RA, RB refer to general-purpose registers.

5.2.1 Registers
Vector register file (VRF)

0 31 63 95 127

VROg,8[VRO; /5 VRO2/5[VRO3,/5VR04 8 VROs5,5 VRO /5 VRO7/5

VR31
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The vector register file contains 32 128 bit vector registers, which consist of 8 halfword
elements. Each element can also be used as two byte elements depending on the used
instruction.

Vector condition register (VCR)
0 11 23 35 47 59 71 83 95

Co | C | C |G| C|C5|Ce| Cy

The vector condition register, has one field for each of the 8 halfword elements:

EQ GT LT
o|1]2(3|0|1|2]3[0|1]|2|3

Each field consists of three condition areas for equality (EQ), greater than (GT), and
less than (LT). For each nibble (4bit) in the vector one condition bit is stored. Note:
nibble-wise condition bits are a leftover from early days. Currently, there is no way to
set or use them individually. Operations use two or four bits simultaneously for byte or
halfword operations.

5.2.2 Primitive functions

Some instructions take only effect for individual elements if a given condition is met.
The condition is determined by the contents of the vector condition register and the
condition field in the instruction in the following way:
1: function CONDITIONAL(cond, ver_field)
2: if cond =0 then
return true
elseif cond =1 then
return ver_field.gt
else if cond =2 then
return ver_field.lt
else if cond =3 then
9: return ver_field.eq
10: end if
11: end function

Shift and logical functions The SHIFT_LEFT(x, n) function gives the result of shift-
ing x left by n positions while filling in zeros on the right. Shifted-out bits are discarded.

The SHIFT_RIGHT(x, n) function gives the result of shifting x right by n positions
while filling in zeros on the left.

The SIGN_EXTEND(x) function gives the result of sign extending x to the width of the
assignee of this function.

The BITWISE_AND(4, b) function represents the result of performing a bitwise and
between a and b.
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The BITWISE_OR(a,b) function represents the result of performing a bitwise or be-
tween a and b.

Saturating and fractional arithmetic Some instructions use fractional representa-
tion usually combined with saturating arithmetics. The function below defines saturating
multiplication of two fractional operands of nbit size. The result is 2n bit wide and
shifted to the left to get rid of one superfluous sign bit. Saturation only occurs if both
operands represent —1 (= 100. .. 0 in binary).
1. function MULT_SAT_FRACT(a, b, n)
2. ifa=-2"1Ab=-2"" then
3 return 2271 — 1
4 else
5: u<a-b
6 return SHIFT_LEFT(u, 1)
7 end if
8: end function
The following function defines saturating addition of two n bit operands. In case of
overflows, the result saturates to the maximum and minimum representable value.
1: function ADD_SAT(a, b, n)
2: y<a+b
if y>2""1—1 then
return 2”1 — 1
elseif y < —2""1 then
return —2"~!
else
return y
9: end if
10: end function

Memories and 10 Function MEM(a) represents the 32 bit contents of main memory
at address a.

Function 10(a) represents the contents of IO location a. The width of this result is
determined by the width of vectors (OPT_VECTOR_NUM_HALFWORDS) and the number
of slices (OPT_VECTOR_SLICES).

5.2.3 Modulo halfword instructions

Multiply accumulate halfword 6:  enable + CONDITIONAL(C, VCR;/g)
modulo 7: if enable then
. s o " » w3 & (VRT);/s < W+ M; mod 216
9: end if
4 VRT | VRA | VRB 12 C| 10: end for
fxvmahm The contents of vector registers VRA and
VRB are multiplied as 16 bit halfword el-

;: for0 < 1(\<] 13:)0 ements and added to the contents of the

: u < i/8 . g . . . o
3% v (VRB)g 32bit double precision accumulation regis
4 Weu-v ter. The result is written to vector register
5. M« ACCjs VRT modulo 2'° if the specified condition
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is met. Multiply to accumulator halfword
modulo
0 5 10 15 20 29 31
Multiply accumulate to accumulator 4 VRT | VRA | VRB 108 C
halfword modulo fxvmultachm
0 5 10 15 20 29 31
4 | VRT | VRA | VRB 44 C| L for0<i<8do
2 U <— (VRA){/B
fxvmatachm 3 v+ (VRB);/g
4: enable <~ CONDITIONAL(C, VCR;/g)
for0 <i< 8do 5: if enable then
: u < (VRA)i/g 6 ACC,‘/g <~ u-v mod 232
v < (VRB);/s 7 end if
We—u-v 8: end for

ble « CONDITIONAL(C, VCR, 5) The contents of vector registers VRA and

na ’ i . . .

ief enaeble then 8 VRB are mult1p11gd as '16 bit halfword ele-
ACC; /g « W+ M; mod 2% ments. The result is written to the accumu-

end if lator modulo 2% if the specified condition

1:
2
3
4:
5: M +— ACCi/g
6.
7
8
9
0: end for is met.

1
The contents of vector registers VRA and

VRB are multiplied as 16 bit halfword el- gyptract halfword modulo

ements and added to the contents of the o 5 10 15 20 29 31

32bit double-precision accumulation reg- 4 VRT | VRA | VRB 332 C

ister. The result is written to the accumu-

. . . e fxvsubhm
lation register modulo 232 if the specified
condition is met.

for0 <i<8do

1:
2 u < (VRA)Z/g
3 U< (VRB),'/S
. 4 enable <~ CONDITIONAL(C, VCR;/g)
Multiply halfword modulo 5. if enable then
0 5 10 15 20 29 31 ¢ (VRT);/g < u—v mod ol6
4 | VRT | VRA | VRB 76 |C| 7 endif
: ™ 8: end for
xvmutm The contents of the vector register indi-
1. for0 < i< 8do cated by VRB .is subtra'cted from the con-
2. u+ (VRA)g tents of the register indicated by VRA. The
3: v+ (VRB)s result is written to VRT modulo 21 if the
4: enable <~ CONDITIONAL(C, VCR;/g) specified condition is met.
5: if enable then
6: (VRT); /g <~ u-v mod 216
7: endif Add accumulator to accumulator
8: end for halfword modulo
The contents of vector registers VRA and ° > 10 15 2 »

VRB are multiplied as 16 bit halfword ele- 4 VRT | VRA | VRB 364 C
ments. The result is written to the vector {yyaddactachm

register indicated by VRT modulo 21° if the

specified condition is met. 1: for0 <i<8do
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U <+ SIGN_EXTEND((VRA);/g)

M ACC,’/g

enable <~ CONDITIONAL(C, VCR;/g)

if enable then

ACC; /g < U+ M mod 2%
end if
end for

The contents of vector register VRA is
sign extended to double precision and
added to the accumulation register. The
result is written to the accumulator modu-

lor 232 if the specified condition is met.

Add and save to accumulator

halfword modulo
0 5 10

4 |VRT
fxvaddtachm

15

VRA | VRB

20 29 31

c|

428

for0 <i< 8do

: U <+ SIGN_EXTEND((VRA);/g)
V < SIGN_EXTEND((VRB);/g)
enable <— CONDITIONAL(C, VCR;g)
if enable then

ACC s« uU+Vv

end if

end for

The contents of vector registers VRA and
VRB are sign extended to double precision.
If the specified condition is met, their sum
is written to the accumulator.

1:
2
3
4:
5:
6
7
8:

Add accumulator halfword modulo
0 5 10 15 20 29 31

4 VRT | VRA | VRB C
fxvaddachm

396

added to the accumulator. The result is
written to vector register VRT modulo 216,

Add halfword modulo

0 5 10 15
4 VRT | VRA
fxvaddhm

20

VRB

29 31

460

1: for0 <i< 8do

2 U < SIGN_EXTEND((VRA);/s)

3 V <= SIGN_EXTEND((VRB);/g)

4: enable <— CONDITIONAL(C, VCR;/g)
5: if enable then

6 (VRT); /g < U+ V mod 2'°

7 end if

8: end for

The contents of vector registers indicated
by VRA and VRB are added. If the speci-
fied condition is met, the result is written
to the vector register indicated by VRT.

Compare halfword modulo
0 5 15 20

VRA | VRB

10

4 VRT

fxvemphm

29 31

300

1: for0 <i< 8do

2: u< (VRA)iss

3 VCR;/g.eq <~ u =0

4  VCRjggt < u>0

6: end for

The contents of the vector register indi-
cated by VRA is compared to zero and the
result written to the vector condition regis-

ter.

The contents of vector register VRA is
sign extended to double precision and

26

1: for0 <i< 8do
g. ZL\I/I% i%%EXTEND((VRA)i/S) Move to accumulator halfword
= i/8 -
4:  enable + CONDITIONAL(C, VCR, /) EraCtlosnal . ) ) -
5: if enable then
6 (VRT);/g ¢ U+M mod 2'6 4 | VRT | VRA | VRB 15 |C
7 end if
8: end for fxvmtach

1. for0 <i< 8do
2: enable <~ CONDITIONAL(C, VCR;/g)
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if enable then fXVSplath
(ACC)i/s < (VRA)i/g
end if
end for

: for0<i< 8do
1 — RA mod 21¢

1
2
If enabled, the contents of elements in 21 VRT/g <~ u

register VRA are copied to the accumulator % end for
aligned to the right. The lower halfword of general-purpose
register RA is copied to each element of
Splat halfword VRT.
0 5 10 15 20 29 31
4 VRT | RA / 268 /
5.2.4 Modulo byte instructions
Multiply accumulate byte modulo 3: v+ (VRB); 6
0 5 10 15 20 29 31 4 We—u-v
5: M ACC,‘/16
4 VRT | VRA | VRB 13 C 6: enable <— CONDITIONAL(C, VCR;/1¢)
fxvmabm 7:  if enable then
8: ACCI'/16 — W+ M; mod 216
1: for0 < i< 16do 9 endif
2 u < (VRA); /16 10: end for
i Z;\;; (VRB)i/16 The contents of vector registers VRA
3 —u-o . . .
5 M ACC 1 and VRB are multiplied as 8bit byte ele-
6. enable < CONDITIONAL(C, VCR;/1¢) ments and added to the contents of the
7:  if enable then 16 bit double-precision accumulation reg-
8 (VRT);/16 = W+ M; mod 2° ister. The result is written to the accumu-
9 endif lation register modulo 2!° if the specified
10: end for

. condition is met.
The contents of vector registers VRA

and VRB are multiplied as 8bit byte ele-
ments and added to the contents of the Multiply byte modulo

16 bit double-precision accumulation regis- o 5 10 15 20 29 31
ter. The result is written to vector register 4 VRT | VRA | VRB 77 C
VRT modulo 2 if the specified condition is

met fxvmulbm

for0 <i< 16do
u <+ (VRA);/16
v < (VRB);/16
enable <~ CONDITIONAL(C, VCR;/1¢)

1:
Multiply accumulate to accumulator g
4:
5: if enable then
6
7
8:

byte modulo

0 5 10 15 20 29 31
4 VRT | VRA | VRB 45 C (VRT);/16 + 10 mod 28
fxvmatacbm en de?odr if
1: for0 < i < 16 do The contents of vector registers VRA and
2: u+ (VRA) 16 VRB are multiplied as 8 bit byte elements.
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The result is written to the vector register Add accumulator to accumulator
indicated by VRT modulo 28 if the specified byte

condition is met. 0 5 10 15 2 » 3l
4 VRT | VRA | VRB 365 C

fxvaddactacb

Multiply t mulator byt
ultiply to accumulator byte for0 < i < 16 do

1:
modulo 2 U < SIGN_EXTEND((VRA); 16)
0 5 10 15 20 29 31 3 M <+ ACC; /16
4 VRT | VRA | VRB 109 C 4. ?nable < CONDITIONAL(C, VCR;/14)
5: if enable then
fxvmultacbm 6 ACC; 14 < U+ M mod 2'°
7 end if
1: for0 < i< 16do 8: end for
2: u < (VRA)j 56 The contents of vector register VRA is
3 v (VRB)iig sign extended to double precision and
4: enable < CONDITIONAL(C, VCR;/14) . .
5 if enable then added to the accumulation register. The
6: ACC;/16 ¢ u-v mod 2'° result is written to the accumulator mod-
7. endif ulo 2!° if the specified condition is met.
8: end for

The contents of vector registers VRA and Add and save to accumulator byte
VRB are multiplied as 8 bit byte elements. modulo

The result is written to the accumulator o 5 10 15 20 29 31
modulo 2! if the specified condition is 4 VRT | VRA | VRB 429 C
met. fxvaddtacb

for0<i<16do
U < SIGN_EXTEND((VRA); /16)
V <= SIGN_EXTEND((VRB); /16)
enable <~ CONDITIONAL(C, VCR;/1¢)

1:
2
Subtract byte modulo 3
4:
5: if enable then
6
7
8:

0 5 10 15 20 29 31
4 VRT | VRA | VRB 333 C ACCj 1+ U+V
fxvsubbm de?d if
en or

1: for0 < i < 16 do The contents of vector registers VRA and
20 u+ (VRA); 6 VRB are sign extended to double precision.
3: v+ (VRB)i/16 If the specified condition is met, their sum
4 enable < CONDITIONAL(C, VCR; /1) is written to the accumulator.

5: if enable then ’

6 (VRT); /16 + u — v mod 28

7 end if Add accumulator byte modulo

8: end for

0 5 10 15 20 29 31

The contents of the vector register indi- 4 VRT | VRA | VRB 397 C

cated by VRB is subtracted from the con-

tents of the register indicated by VRA. The
result is written to VRT modulo 28 if the 1. for0 < i < 16 do

specified condition is met. 2 U« SIGN_EXTEND((VRA); /1)

fxvaddacbm

28
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M ACCl‘/16
enable <— CONDITIONAL(C, VCR; /14)
if enable then
(VRT); /16 + U+ M mod 28
end if
end for

The contents of vector register VRA is
sign extended to double precision and
added to the accumulator. The result is
written to vector register VRT modulo 28.

Add byte modulo

VCR;/16.9 < u =0

VCR,’/lé.gt —u>0

VCRi/m.ll’ —u<o0
end for

The contents of the vector register indi-
cated by VRA is compared to zero and the
result written to the vector condition regis-
ter.

Move to accumulator byte

0 5 10 15 20 29 31

0 5 10 15 20 29 31 4 VRT | VRA | VRB 14 C
4 | VRT | VRA | VRB 461 C| fxvmtacb
fxvaddbm 1: for0 <i < 16do
) 2: enable <~ CONDITIONAL(C, VCR;/1¢)
for0<i<16do 3: if enable then
: U« SIGN_EXTEND((VRA)i/lé) 4: (ACC)1/16 < (VRA)i/16
V < SIGN_EXTEND((VRB);/16) 5. end if
enable <— CONDITIONAL(C, VCR; /14) 6: end for

1
2
3
4:
5: if enable then

6 (VRT); /16 < U+ V mod 28

7 end if

8: end for

The contents of vector registers indicated
by VRA and VRB are added. If the speci-
fied condition is met, the result is written

to the vector register indicated by VRT.

Compare byte

0 5 10 15 20 29 31
4 VRT | VRA | VRB 301 C

fxvempb

1. for0 <i< 16do
2: u < (VRA),'/lé

If enabled, the contents of elements in
register VRA are copied to the accumulator
aligned to the right.

Splat byte

0 5 10 20 29 31

4 VRT | RA 269

fxvsplatb

:for0<i<16do
1 < RA mod 28
VRTi/16 —u
end for

L e

The lower byte of general-purpose regis-
ter RA is copied to each element of VRT.

5.2.5 Saturating, fractional, halfword instructions

Multiply accumulate halfword

fractional saturating

0 5 10 15 20 29 31
4 VRT | VRA | VRB 28 C

fxvmahfs

29

for0 <i< 8do
U < (VRA)Z‘/S
U < (VRB)I/S
W < MULT_SAT_FRACT(u, v, 16 bit)
M < ADD_SAT(ACC; g, W, 32bit)
enable <~ CONDITIONAL(C, VCR;g)

1:
2
3:
4:
5.
6
7 if enable then
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8: (VRT); g < SHIFT_RIGHT(M, 16)
9: end if
10: end for

Perform multiplication of registers VRA
and VRB using fractional representation
and saturating on overflows. The double
width result is added with the contents of
the accumulation register again with sat-
uration on overflow. The upper 16 bits of
the result are returned to register VRT if the
condition is met. The accumulation register
is not modified.

Move to accumulator halfword

fractional

0 5 10 15 20 29 31

4 VRT | VRA | VRB 31

fxvmtachf

1: for0<i<8do

2 enable <— CONDITIONAL(C, VCR;/g)
3 if enable then

4 (ACC)i/g < (VRA); /g - 2!

5 end if

6: end for

If enabled, the contents of elements in
register VRA are copied to the accumulator
aligned to the left.

Multiply accumulate and save to

accumulator halfword fractional

0 5 10 15 20 29 31
4 VRT | VRA | VRB 60 C

fxvmatachfs

1: for0<i < 8do

2 U < (VRA)i/g

3 U 4 (VRB)NS

4 W < MULT_SAT_FRACT(u, v, 16 bit)

5: M <+ ADD_SAT(ACC;,s, W, 32bit)

6: enable <— CONDITIONAL(C, VCR;/g)

7: if enable then

8 (ACC)I‘/g ~ M

9 end if

10: end for

Perform a multiply-add operation of reg-
isters VRA, VRB, and the accumulator us-
ing saturation and fractional arithmetics. If
enabled, the result is stored in the accumu-
lator.

Multiply halfword fractional

saturating

0 5 10 15 20 29 31

4 VRT | VRA | VRB 92 C

fxvmulhfs

1: for0 <i<8do

2: u<+ (VRA)g

3 U < (VRB)I/S

4: W < MULT_SAT_FRACT(u, v, 16 bit)

5: enable <— CONDITIONAL(C, VCR;/g)

6: if enable then

7 (VRT);/g < SHIFT_RIGHT(M, 16)

8 end if

9: end for

Perform saturating multiplication in frac-
tional representation of the contents of reg-
isters VRA and VRB. Store the truncated
result to register VRT if enabled.

Multiply and save to accumulator
halfword fractional saturating
0 5 10 15

4 VRT | VRA
fxvmultachfs

20

VRB

29 31

124

1: for0 <i < 8do

2w (VRA)q

3 U < (VRB)I/S

4: W + MULT_SAT_FRACT(u, v, 16 bit)
5: enable <~ CONDITIONAL(C, VCR;g)
6: if enable then

7 (ACC)I‘/S ~ M

8: end if

9: end for

Perform saturating multiplication in frac-
tional representation of the contents of reg-
isters VRA and VRB. Store the result to the
accumulator.

30
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Subtract halfword fractional

saturating
0 5 10 15 20

29 31

4 VRT | VRA | VRB

348

C

fxvsubhfs

1: for0 <i < 8do

2: U < SIGN_EXTEND((VRA);/g)

3 V <= SIGN_EXTEND(—(VRB);g)

4: W <+ ADD_SAT_FRACT(U, V, 32bit)
5: enable <~ CONDITIONAL(C, VCR;/g)
6: if enable then

7 (VRT); /g < SHIFT_RIGHT(W, 16)
8: end if

9: end for

Add the contents of register VRA to the
negated contents of register VRB using sat-
uration. Store the truncated result to regis-
ter VRT if enabled.

Add accumulator and save to

accumulator halfword fractional
0 5 10 15 20

29 31

4 VRT | VRA | VRB 380 C

fxvaddactachf

1: for0<i < 8do

2: U < SIGN_EXTEND((VRA);/g)

3 V + (ACC)I'/S

4: W < ADD_SAT_FRACT(U, V, 32 bit)
5: enable <~ CONDITIONAL(C, VCR;/g)
6: if enable then

7 (ACC){/g —~ W

8: end if

9: end for

Add the sign extended contents of regis-
ter VRA to the accumulator using saturat-
ing arithmetics and store the result to the
accumulator.

Add accumulator halfword fractional
saturating

0 5 10 15 20 29 31

4 VRT | VRA | VRB 412

fxvaddachfs

: for0<i< 8do
U <+ SIGN_EXTEND((VRA);/g)
V « (ACC)iss
W «+ ADD_SAT_FRACT(U, V, 32 bit)
enable <~ CONDITIONAL(C, VCR;/g)
if enable then

(VRT); /g < SHIFT_RIGHT(W, 16)

end if

end for

Add the sign extended contents of regis-
ter VRA to the accumulator using saturat-
ing arithmetics. Store the truncated result
to register VRT.

Add halfword fractional saturating

0 5 10 15 20 29 31

4 VRT | VRA | VRB 476 C

fxvaddhfs

: for0 <i< 8do
U <+ SIGN_EXTEND((VRA);/g)
V < SIGN_EXTEND((VRB);/g)
W <+ ADD_SAT_FRACT(U, V, 32 bit)
enable <~ CONDITIONAL(C, VCR;/g)
if enable then

(VRT); g < SHIFT_RIGHT(W, 16)

end if

end for

Add the contents of registers VRA and
VRB using saturating arithmetics. Store the
result to register VRT.

5.2.6 Saturating, fractional, byte instructions

Multiply accumulate byte fractional

saturating

0 5 10 15 20 29 31
4 VRT | VRA | VRB 29 C

fxvmabfs

1. for0 <i< 16do
2: U <— (VRA)i/16
3: U< (VRB),‘/16
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4 W < MULT_SAT_FRACT(u, v, 8 bit)

5 M < ADD_SAT(ACC; /14, W, 16 bit)
6: enable < CONDITIONAL(C, VCR;/14)
7 if enable then

8 (VRT); /16 + SHIFT_RIGHT(M, 8)
9 end if

0

10: end for

Perform multiplication of registers VRA
and VRB using fractional representation
and saturating on overflows. The double
width result is added with the contents of
the accumulation register again with satu-
ration on overflow. The upper 8 bits of the
result are returned to register VRT if the
condition is met. The accumulation regis-
ter is not modified.

Move to accumulator byte fractional
0 5 10 15 20 29 31

4 VRT | VRA | VRB C

30

fxvmtacbf

1. for0 <i< 16do

2 enable < CONDITIONAL(C, VCR; /14)

3 if enable then

4: (ACC);16 = (VRA);/16 - 28

5 end if

6: end for

If enabled, the contents of elements in
register VRA are copied to the accumulator

aligned to the left.

Multiply accumulate and save to
accumulator byte fractional

9: end if
10: end for
Perform a multiply-add operation of reg-
isters VRA, VRB, and the accumulator us-
ing saturation and fractional arithmetics. If
enabled, the result is stored in the accumu-
lator.

Multiply byte fractional saturating

0 5 10 15 20 29 31

4 VRT | VRA | VRB C
fxvmulbfs

93

1: for0 <i<16do

2: u< (VRA);/16

3 v« (VRB)i6

4: W < MULT_SAT_FRACT(u, v, 8 bit)

5: enable <~ CONDITIONAL(C, VCR;/1¢)
6: if enable then

7 (VRT);/16 < SHIFT_RIGHT(M, 8)
8 end if

9: end for

Perform saturating multiplication in frac-
tional representation of the contents of reg-
isters VRA and VRB. Store the truncated
result to register VRT if enabled.

Multiply and save to accumulator
byte fractional saturating
0 5 10 15 20

4 VRT | VRA | VRB

29 31

125

0 5 10 15 20 29 31
4 VRT | VRA | VRB 61 C
fxvmatacbfs
:for0<i<16do
: u< (VRA)/16
V4 (VRB)I‘/M

1

2

3

4: W < MULT_SAT_FRACT(u, v, 8bit)

5: M < ADD_SAT(ACC; /14, W, 16 bit)
6: enable < CONDITIONAL(C, VCR;/14)
7 if enable then

8 (ACC)ij16 < M

32

fxvmultacbfs

for0<i<16do
u <+ (VRA);/16
v < (VRB);/16
W < MULT_SAT_FRACT(u, v, 8 bit)
enable <~ CONDITIONAL(C, VCR;/1¢)
if enable then
(ACC)i/16 ¢ M
end if
9: end for

Perform saturating multiplication in frac-
tional representation of the contents of reg-
isters VRA and VRB. Store the result to the
accumulator.

1:
2
3
4:
5:
6.
7
8
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Subtract byte fractional saturating
0 5 10 15 20 29 31

4 VRT | VRA | VRB 349 C

fxvsubbfs

for0 <i< 16do
U < SIGN_EXTEND((VRA);/16)
V < SIGN_EXTEND(—(VRB);/1¢)
W < ADD_SAT_FRACT(U, V, 16 bit)
enable <— CONDITIONAL(C, VCR; /14)
if enable then

(VRT); /16 + SHIFT_RIGHT(W, 8)

end if

end for

Add the contents of register VRA to the
negated contents of register VRB using sat-
uration. Store the truncated result to regis-
ter VRT if enabled.

1:
2
3
4.
5:
6.
7
8
9:

Add accumulator and save to

accumulator byte fractional

0 5 10 15 20 29 31

4 VRT | VRA | VRB 381 C

fxvaddactacbf

1: for0 <i<16do

2: U < SIGN_EXTEND((VRA); 1¢)

3 V<« (ACC)i/16

4: W <+ ADD_SAT_FRACT(U, V, 16 bit)
5: enable <— CONDITIONAL(C, VCR; /14)
6: if enable then

7 (ACC)i/lé —~— W

8 end if

9: end for

Add the sign extended contents of regis-
ter VRA to the accumulator using saturat-
ing arithmetics and store the result to the
accumulator.

5.2.7 Permute instructions

Select

0 5 10 15 20 29 31

4 VRT | VRA | VRB 319

fxvsel

Add accumulator byte fractional

saturating

0 5 10 15 20 29 31

4 VRT | VRA | VRB 413 C

fxvaddacbfs

1. for0 <i< 16do

2: U < SIGN_EXTEND((VRA); 1¢)

3 V<« (ACC)i 6

4: W «+ ADD_SAT_FRACT(U, V, 16 bit)

5: enable <~ CONDITIONAL(C, VCR;/1¢)

6: if enable then

7 (VRT); /16 ¢ SHIFT_RIGHT(W, 8)

8: end if

9: end for

Add the sign extended contents of regis-
ter VRA to the accumulator using saturat-
ing arithmetics. Store the truncated result
to register VRT.

Add byte fractional saturating

0 5 10 15 20 29 31

4 VRT | VRA | VRB 477

fxvaddbfs

cfor0<i<16do
U < SIGN_EXTEND((VRA); /14)
V < SIGN_EXTEND((VRB);/14)
W « ADD_SAT_FRACT(U, V, 16 bit)
enable <— CONDITIONAL(C, VCR;/1¢)
if enable then

(VRT); /16 + SHIFT_RIGHT(W, 8)

end if

end for

Add the contents of registers VRA and

VRB using saturating arithmetics. Store the
result to register VRT.

:for0<i<16do
u < (VRA);/16
v ¢ (VRB);/16
enable <~ CONDITIONAL(C, VCR;/1¢)
if enable then
(VRT);/16 ¢ ©

AR A

33



5 Instruction set

Use the contents of the condition regis-
ter (VCR) to merge vectors VRA and VRB
into the result vector VRT. The condition
code selects which field of VCR to use. Se-
lect always merges bytewise. Hint: use in
conjunction with the appropriate compare
operation.

Shift left halfword

0 5 10 15 20 29 31

4 VRT | VRA

VRB

316

fxvshh

1: for0 <i < 8do
2: u < (VRA)i/g
3: (VRT),; /g < SHIFT_LEFT(u, VRB)
4: end for
Shift the contents of register VRA left
halfword-wise by the amount VRB. Here
VRB is used as immediate value. Store the

result in register VRT.

Shift left byte

0 5 10 15 20 29 31
4 | VRT | VRA | VRB 317 C

fxvshb

1: for0 <i<16do

2: u < (VRA),'/lé

3: (VRT); 16 + SHIFT_LEFT(u, VRB)
4: end for

Shift the contents of register VRA left
byte-wise by the amount VRB. Here VRB is
used as immediate value. Store the result
in register VRT.

Pack byte upper

0 5 10 15 20 29 31

4 |VRT 239

VRA | VRB

fxvpckbu

1: m < SHIFT_RIGHT(0xffff,C)
2: for0 <i<16do
3: if i <4 then

4 U 4 SHIFT_RIGHT(VRAj; /16, C)

5 VRT; /16 ¢ BITWISE_AND (u, m)

6 else

7 U < SHIFT_RIGHT(VRBy(;_4) /16, C)
8 VRT; /16 ¢ BITWISE_AND(u, m)

9 end if
10: end for

Pack the upper half of fractional num-
bers of 8-C bit stored in halfword elements
in registers VRA and VRB into register VRT,
aligned to the right.

Pack byte lower

0 5 10 15 20 29 31

4 VRT | VRA | VRB 255

fxvpckbl

1: m + SHIFT_RIGHT(0xffff,C)
2: for0<i<16do
3: if i <4 then

4 u ¢ SHIFT_LEFT(VRAy; /16,8 — 2C)
5 U 4— SHIFT_RIGHT(VRAy; 11,14, 2C)
6: w < BITWISE_OR(u,v)
7 VRT; /14 ¢ BITWISE_AND(w, 1)
8 else
9: U ¢ SHIFT_RIGHT(VRBy(;_y4) /14, C)
10: VRT; 16 < BITWISE_AND(u, m)
11: end if
12: end for

Pack the lower half of fractional num-
bers of 8-C bit stored in halfword elements
in registers VRA and VRB into register VRT,
aligned to the right.

Unpack byte left

0 5 10

4 VRT
fxvupckbl

15

VRA

20

VRB

29 31

287

C‘ Reverse the packing operation per-

formed by fxvpckbu and fxvpckbl and
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store the left half of the elements in register
VRT.

Unpack byte right

0 5 10 15

VRT | VRA

20

VRB

29 31

4

271

5.2.8 Load/store instructions

Load array indexed
0 5 10 15

VRT | RA

20

RB

29 31

4

fxvlax

492

1: if RA=0 then
a < (RB)
else
a < (RA) + (RB)
end if
: for 0 < i < NUM_SLICES do
for0 <j <4 do
(VRT);'XSZ:(j-&-l)XBZ
9: a<a+4
10: end for
11: end for

The effective address is computed from
general purpose registers RA and RB. If RA
is zero, then the effective address is taken
from RB. The contents of the vector register
indicated by VRT is loaded starting from
the memory location indicated by the effec-
tive address across the complete array of
slices.

+ MEM(a,a + 3)

Store array indexed
0 5 10 15

VRT | RA

20 29 31

4

fxvstax

RB 508

. if RA =0 then
a + (RB)
else
a <+ (RA) + (RB)
: end if
: for 0 < i < NUM_SLICES do

35

fxvupckbr

1:

Reverse the packing operation per-
formed by fxvpckbu and fxvpckbl and
store the right half of the elements in regis-
ter VRT.

7. for 0 < ] <4do .

8 MEM(a,a +3) « (VRT)} 5 i1y
9. a+a+4
10: end for
11: end for

The effective address is computed from
general purpose registers RA and RB. If RA
is zero, then the effective address is taken
from RB. The contents of the vector regis-
ter indicated by VRT is stored to memory
starting from the location indicated by the
effective address across the complete array
of slices.

Input indexed
0 5 10

VRT

15 20 29 31

4

fxvinx

RA | RB 236

1: if RA=0 then

2 a < (RB)

3: else

4: a + (RA) + (RB)

5: end if

6: u <+ 10(a)

7: for 0 < i < NUM_SLICES do

8 for0 <j<16do
enable <~ CONDITIONAL(C, VCR; /16)
if enable then .

VRT}/16 — g}/w

12: end if

13: end for

14: end for

The effective address is computed from
general purpose registers RA and RB. If
RA is zero, then the effective address is

9:
10:
11:
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taken from RB. Data is loaded in parallel 6: u+0
from the IO location referenced by the ef- 7: for0 < i < NUM_SLICES do
fective address and moved conditionally 8 for0 < j<16do

) . . : enable + CONDITIONAL(C, VCR!
(if C > 0 it uses contents of condition reg- ¢ enable then ( 16

ister (VCR) for masking) to the destination {1. Wi < VRT
. Yi/16 i/16
register VRT. 12 end if
13: end for
14: end for
Output indexed 15: 10(a) + u
‘ ’ L b 2 ? 3 The effective address is computed from
4 VRT | RA | RB 252 C| general purpose registers RA and RB. If RA
fxvoutx is zero, then the effective address is taken
from RB. The contents of registers VRT in
1o if RA=0 then all slices is written to the IO location refer-
g; elseu « (RB) enced by the effective address. If C > 0 the
4 g+ (RA)+ (RB) write is masked by the condition register
5: end if (VCR).

5.3 Deprecated NEVER and SYNAPSE instruction sets

The SYNAPSE instruction set is defined in Friedmann (2013). For NEVER there is no
documentation. All extensions FXV, SYNAPSE, and NEVER use overlapping opcode
spaces. Therefore, they can not be used together. Currently only the FXV instruction set
is of relevance, because it is used in actual hardware (Friedmann and Schemmel, 2015)
and it is generic as opposed to the other two.
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