

Human Brain Project

Federated HPC, Cloud and storage services for research in Europe

Dirk Pleiter (Forschungszentrum Jülich/JSC)

Heidelberg 25.11.2019

Fenix Concept

Federated HPC, Cloud and storage services for research in Europe, 25.11.2019

- Service multiple user communities (including the brain research community)
- Provide federated infrastructure services to support community specific platform services (e.g. **EBRAINS** services)
- Site local infrastructure services versus federation services
- Composability of services according to the needs of users
- Support for different local implementations of services to avoid technology/vendor lock

Key Fenix Services

Computing services

- Interactive Computing Services
- Scalable Computing Services
- Virtual Machine Services

Data services

- Active Data Repositories
- (Federated) Archival Data Repositories
- Data Mover Services, Data Location and Transport Services

Federation services

- Authentication and Authorisation Services (AAI)
- User and Resource Management Services (FURMS)

Fenix Resource Providers

Partners providing resources today/soon

- Barcelona Supercomputing Centre (Barcelona, ES)
- CEA (Bruyeres-le-Chatel, FR)
- CINECA (Bologna, IT)
- CSCS (Lugano, CH)
- Jülich Supercomputing Centre (Jülich, DE)
- Extensible to other sites
 - Not limited to supercomputing centres

Federated HPC, Cloud and storage services for research in Europe, 25.11.2019

Benefits of a Federated e-Infrastructure

Data locality

- Facilitate processing of data where data is located
- Higher availability of services
 - Services can be replicated at different sites
- Diversity of infrastructure service implementations
 - Local resource providers provide different service implementations
- Diversity of expertise
 - Different kind of experts at different resource provider sites
- Improved sustainability of overall infrastructure
 - Individual resource providers are (partially) replaceable

Compute Services

Scalable Computing Services

- Massively parallel HPC systems for scalable applications
- Possibly elastic access

Interactive Computing Services

- Interactive access to fast servers and large-scale data-sets
- Support of interactive frameworks like Jupyter notebooks

Virtual Machine Services

- Service for deploying virtual machines in a stable and controlled environment
- Fully customisable by user (e.g. platform developer)

Data Services

- Federate Archival Data Repositories with Cloud-standard access interfaces
 - Access via SWIFT interface
- Non-federated Active Data **Repositories** optimised for performance
 - Typically POSIX interface
- Data mover to move data asynchronously between data repositories
- Support for storing sensitive data + long-term archiving of data

Federation Services

Authentication and Authorisation Services

- Support industry standard protocol (e.g. OIDC, SAML2)
- Central proxy Identity Provider (IdP)
- Trust the IdPs of all resource providers
 - Open for other IdPs
- Fenix User and Resource Management Service (FURMS)
 - Group/project membership management
 - Authorization attributes provider
 - SSH public keys management
 - Managing site specific Usage Agreements
 - Reporting and metering

Implementation at CSCS: Overview

Implementation at CSCS: Details

Piz Daint Multicore

- 2x Intel Xeon E5-2695 v4 (2.10GHz, 18 cores)
- 64 or 128 GByte host memory
- Up to 1431 nodes per job

Piz Daint Hybrid

- 1x Intel Xeon E5-2690 v3 (2.6 GHz, 12 cores) + 1x NVIDIA P100 GPU
- 64 GByte host + 16 GByte device memory
- Up to 5320 nodes per job

Active Data Repositories

- Lustre parallel file system
- Archival Data Repository
 - Access via Swift interface

Fenix Resource Allocation (1/2)

Fenix Credits

- Fenix Credits allocated to Fenix Communities
- Fenix Communities allocate Fenix Credits to Fenix Projects

Fenix Resource Allocation (2/2)

- Principles of the allocation mechanism for resources that are available through Fenix:
 - Process follows peer review principles established by PRACE
 - Each Fenix Community (e.g. HBP) is responsible for the actual distribution of their share within that community
- HBP is the initial prime and lead user community
 - 25% of available resources are reserved for HBP
 - 15% are provided to European researchers at large via PRACE
 - The remaining 60% are with the respective centre that is providing the resources and are made available to users, e.g. via national calls

- Continues call for proposals with decisions on resource allocations managed by EBRAINS Infrastructure Allocation Committee
- Access for non-HBP members
 - ICEI PRACE Tier-1 calls opened 4x per year

Usage Examples/Scenarios (1/2)

Large scale simulations of models: Hippocampus

- Project studies the mechanisms that may contribute to the emergence of higher brain functions at the cellular and behavioural level in the hippocampus
- Required resources of the Fenix Infrastructure
 - Scalable Computing Services for running large-scale simulations using Neuron
 - Active Data Repositories as temporary storage to write from simulation and read for analysis
 - Interactive Computing Services for analysing data produced by simulations
 - Archival Data Repositories for storing final data products
 - VM Services for providing web-based access to visualisations of the final data products

[M. Migliore et al.]

Usage Examples/Scenarios (2/2)

- Creation of a digital brain atlas
 - Input: O(1) PByte of brain slice image data
- Required resources of the Fenix Infrastructure
 - Archival Data Repositories for storing image data
 - Interactive Computing Services for interactive analysis of images
 - Scalable Computing Services, e.g., for
 - Image segmentation based on deep learning methods
 - Image registration
 - Active Data Repositories as temporary storage for fast access to data
 - VM Services for providing web-based access to data

Neuro-

High throughput imaging

HPC

World wide web

Digital brain atlases

[T. Dickscheid]

Summary and Outlook

- Fenix provides a generic concept for federated e-infrastructure services
 - Basic layer for deploying community specific platform services like EBRAINS services
- Initial set of Fenix services available for brain researchers and European researchers at large
 - Allocation of resources through HBP and PRACE
- Service portfolio is being extended to 5 European supercomputing sites
 - Expect in future other resource providers to join

Thank You

www.humanbrainproject.eu

