

Integrating virtual brains with virtual bodies Simulated robots for closed-loop in-silico experiments

Alberto Antonietti, University of Pavia - Politecnico di Milano

Code Jam #10- 26-28 November 2019

Brain areas involved in motor control

Physiological Background: the Plasticity

Physiological Background: the Plasticity

[Carrillo et al., 2008; Garrido et al., 2013; Kleberg et al., 2014]

Physiological Background: the Functionality

Cerebellum is the most plastic neural structure in the brain and has a critical role in adaptive motor control by implementing three fundamental operations:

- Prediction
- Timing
- Learning

[D'Angelo and Casali, 2012, D'Angelo et al., 2013]

Motor control protocols where the cerebellum is critically involved:

• Eye Blink Classical Conditioning (EBCC) [Medina et al., 2000; Bracha et al., 2000]

Vestibulo-Ocular Reflex (VOR)
 [Ito, 1982]

• Limb movements perturbed by Force Fields (FF) [Donchin et al., 2012]

Robotic Embodiment of the Cerebellar Models

Eye Blink Classical Conditioning (EBCC)

Movements perturbed by Force Fields (FF)

[Casellato et al., 2014]

Physiological Models of the Cerebellum: Paradigm

EBCC (EyeBlink Classical Conditioning)

Conditioned Stimulus (CS)
Tone → Start of MF activity

Conditioned Response (CR), anticipating US Anticipated blink and reduced US sensation

2 sessions of 100 Trials 80 Trials of Acquisition + 20 Trials of Extinction

Physiological Models of the Cerebellum: Results

CR threshold Eyelid closure

DCN: Decoding the motor output

IO: Encoding the US (Air puff)

PC: activity modulated trial-by-trial

MF: their activity encodes the CS (Tone)

Trial Time [each trial = 500 ms]

Physiological Models of the Cerebellum: Results

Robotic Embodiment of the Cerebellar Models: EBCC with NAO Robot

EBCC with NAO Robot

NAO Robot

[Antonietti et al., 2018]

1000

trial end

Robotic Embodiment of the Cerebellar Models: EBCC with NAO Robot

https://www.youtube.com/watch?v=57stDA5zU3Q

Robotic Embodiment of the Cerebellar Models

Eye Blink Classical Conditioning (EBCC)

Vestibulo-Ocular Reflex (VOR)

Movements perturbed by Force Fields (FF)

H Human Brain Project

[Casellato et al., 2014]

Conditioned

Response

Robotic Embodiment of the Cerebellar Models: FF with NAO Robot

Joint 1 = Shoulder Pitch (Shoulder Elevation)

Joint 2 = Elbow Yaw (Humeral Rotation)

Joint 3 = Elbow Roll (Elbow flex-extension)

[Antonietti et al., 2019]

Robotic Embodiment of the Cerebellar Models: FF with NAO Robot

How can we deal with heavier simulations?

- Point-neuron simulator
- Physics simulator
- Robot controller
- Experiment pipeline
- Interface layer

Caveats from my (limited) experience

- If default models are used, you can leverage the online platform,
 the container (Docker) or the live USB image.
- Other cases require to build NRP from source (quite tricky)
- Install it on a VM or, better, a dedicated partition/disk.
- For local simulations, keep the complexity of the network and robotic environment at low levels.

NRP in action: parking-sensor cerebellum

[Negri and Trapani, work In progress!]

Slide 18

Cerebellar Potentiation and Learning a Whisker-Based Object Localization Task with a Time Response Window

[O'Connor et al., 2010; Rahmati et al., 2014]

Mouse model with four controllable whiskers

[Ahissar et al, 2011]

- Instead of licking the virtual mouse moves its head to hit a support above the snout, receiving or not a reward
- 2 seconds trials, grouped in sessions by 10 trials each, 5 GO and 5 NOGO, performed in a randomized sequence

Whisking mouse in the NRP during a GO and NOGO-trial

Whisker Position Cells

Trigeminal Ganglion during contact

On the left whisking cells during free whisking compared to actual whisker position. On the right trigeminal ganglion activity during contact

Last Session

[Edoardo Negri, MSc Thesis 2019]

GO trial

NOGO trial

Slide 24

NRP in action: fine motor correction

$$y_0 = A \cdot \sin(\pi \cdot t)$$

$$y_1 = A \cdot \sin(\pi \cdot t + \theta)$$

Technical University of Denmark

[Corchado et al., 2019]

NRP in action: fine motor correction

NRP in action: fine motor correction

What's next?

Parallel NRP

Integration with HPC

Larger networks

More complex paradigms

Thank You

www.humanbrainproject.eu

@HumanBrainProj

Human Brain Project

