


Insights: Successful infrastructure usage
Benchmarking and optimizing the performance of NEST at scale

using Piz Daint

3 November 2020

1 Norwegian University of Life Sciences



The NEST simulator

• Simulator for spiking neural networks

• Focuses on the dynamics, size and 

structure of neural systems

–Not as much on the exact 

morphology of individual neurons

• Has a Python api and a core written in 

C++

Norwegian University of Life Sciences2



The NEST simulator

• NEST is fast and memory efficient

–World record simulation (2014):

1.86 × 109 neurons, 11.1 × 1012

synapses

On the K computer in Japan

Norwegian University of Life Sciences3

By Toshihiro Matsui from Tsukuba and Yokohama, 

Japan -京コンピュータ, CC BY 2.0



The NEST simulator

• Developed since 1995

• Active developer community

• New models, connectivity rules, 

etc. can be added

Norwegian University of Life Sciences4



The NEST simulator

• A key requirement of NEST is that it should work on

models of any size

• Run on laptops and supercomputers

Norwegian University of Life Sciences5



The NEST simulator

• Reliable science: important to test

• Efficient science: Performance counts

Norwegian University of Life Sciences6



Norwegian University of Life Sciences7

Our use of FENIX, first period



Timeline

Norwegian University of Life Sciences8

Oct. 2018

Applied for 

access on 

Piz Daint

Started 

benchmarking

Sept. 2019

Applied for an 

extension on 

Piz Daint

Aug. 2020

Applied for an 

extension on 

Piz Daint, new 

resources on 

JUSUF and 

CEA



• We sent our first ICEI application for HBP resources on the 23rd of October 2018

• Applied for 25 000 node x hours on Piz Daint

• Received allocations 12th of November 2018

• Got access to Piz Daint on 20th of November 2018

Norwegian University of Life Sciences9

How we got started



• We use the JUBE Benchmarking Environment to run our benchmarks

–Framework for creating benchmark sets, run the benchmarks on different 

systems and analyze the results

–Can set up parameters, shell commands, system dependencies, ++

• Less error prone benchmark system

–Versatile and robust 

–Can analyze and extract results from your benchmark output files

–Developed by the Jülich Supercomputing Centre at FZ Jülich

Norwegian University of Life Sciences10

Benchmark set-up



nest-benchmarks

BenchModels

Benchmarks

jube_bench

jube_build

jube_configResults

BenchWorks

nest-source

nest-build

Jube-analysis

Norwegian University of Life Sciences11

Layout



• Need a large variety when testing NEST

–Models that use PyNEST

–Models with networks distributed in space

–HPC benchmarks with long history of benchmarking

–Realistic models

–Models that use different connectivity rules

• The focus on the benchmarks has been connectivity

Norwegian University of Life Sciences12

Benchmark models



• Population model

–Consist of constant x 20 

populations

• Each containing 5000 neurons

–Every population connects to 100 

random populations

–Fan in of 50 neurons for each 

projection

• Each neuron connects to 5000 

other neurons

• HPC benchmark model

–2 population model

–Both connected to themselves and 

each other

• Every neuron connected to 

11,250 other neurons

–Quite easy to switch connectivity 

rules

–Long tradition as benchmark

Norwegian University of Life Sciences13

Benchmark models



• 4x4 mesocircuit model

– Senk et al (2018) Reconciliation of weak 

pair-wise spike-train correlations and highly 

coherent local field potentials across space 

https://arxiv.org/abs/1805.10235

– 8 populations in 4 cortical layers

• Distributed in space

– 1.2 × 106 neurons, 5.5 × 109 connections

• Multi-area model

– Schmidt et al (2018) Multi-scale account of 

the network structure of macaque visual 

cortex Brain Structure and Function 

https://doi.org/10.1007/s00429-017-1554-4

– See also: https://inm-6.github.io/multi-area-

model/

– Represents the visual pathway

– 32 different areas, each with 8 populations

– 4.1 × 106 neurons, 2.4 × 1010 connections

Norwegian University of Life Sciences14

Benchmark models

https://arxiv.org/abs/1805.10235
https://doi.org/10.1007/s00429-017-1554-4
https://inm-6.github.io/multi-area-model/


• Run the benchmarks from the 

${SCRATCH} folder

• Use git (G-node) to transfer the 

results

–German neuroinformatics node

–Developed for neuroscientists

–Focus on data management

Norwegian University of Life Sciences15

Running the benchmarks



Each benchmark run consists of the following steps:

1. Commit any potential modifications of benchmark scripts to benchmark repository

2. Submit benchmark job 

jube run <path>/nest-benchmarks/jube_bench/<benchmark-file>.xml

noting the JUBE output directory and benchmark run counter of the benchmark

3. Collect benchmark output and condense to report in cvs-format

jube analyse <jube_out dir> -i <run #>

jube result <jube_out dir> -i <run #> > <results dir>/<result-name>.csv

4. Commit report <result-name>.csv to benchmark repository

5. Visualize results using jupyter notebook.

Norwegian University of Life Sciences16

Running the benchmarks



• We focused on weak scaling

• Used 1-32 compute nodes

–36 virtual processes per compute node

–6 threads per MPI rank (18 core CPUs)

• For each benchmark:

–Chose a scale s for a single compute node

–Used this base scale to scale up the model relative to number of compute nodes

Norwegian University of Life Sciences17

Scaling and system for first allocation



Challenges

• Difficult to keep track of all the different 

runs, versions, results

–Using commit hashes still makes it 

difficult to keep track

• Generate a lot of output, what should 

we keep?

–Having an enormous number of 

result files is not helpful when you 

want to look back

Norwegian University of Life Sciences18



• Received support from help@cscs.ch

–Fast response times

–Useful recommendations

Norwegian University of Life Sciences19

Help and difficulties

mailto:help@cscs.ch


Norwegian University of Life Sciences20

Bisectioning to locate performance regressions



Bisectioning to locate performance regressions

Norwegian University of Life Sciences21



Norwegian University of Life Sciences22

Identifying use cases with poor scaling



Norwegian University of Life Sciences23

Debugging large-network threading error



Norwegian University of Life Sciences24



Norwegian University of Life Sciences25



FENIX enabled PRs for first allocation period

#1099: Refactor GetConnections to improve 

performance

#1101: Take multiplicity into account in 

local_spike_counter

#1103: Throw error if creating too many 

connections on one thread

#1105: Add MPI test for correct number of 

spikes when multiplicity > 1

Norwegian University of Life Sciences26



FENIX enabled PRs for first allocation period

#1118: Connection sorting using Boost's 

sorting function

#1119: Improve connection performance 

over threads

#1147: Fix MPI synchronization problem in 

presence of very small layers

#1170: CMake option and documentation for 

using the Intel compiler

Norwegian University of Life Sciences27



Norwegian University of Life Sciences28

Second allocation period – towards NEST 3.0



• We sent our extension ICEI application on the 15th of September 2019

• Received 20 000 node x hours on Piz Daint

• Received allocations on the 15th of October 2019

Norwegian University of Life Sciences29

Second allocation period



Focus

• PR #1282: Introducing NEST 3.0

–Cumulation of 2 to 3 years work

– Introduced a lot of changes

–New ways of representing nodes

• Touched a lot of code

–Restructured how we created, 

connected and communicated

–Needed extensive benchmarks

Norwegian University of Life Sciences30



• Continued with our set-up from the first period:

–Weak scaling

–Used 1-32 compute nodes

• 36 virtual processes per compute node

• 6 threads per MPI rank

• Also strong scaling experiments

–Used 1-128 compute nodes

Norwegian University of Life Sciences31

Weak and strong scaling



Norwegian University of Life Sciences32

Benchmarking to avoid performance regressions



• NEST API changed a lot

–Need to update benchmark scripts

–Different scripts for different versions

Norwegian University of Life Sciences33

Challenges



• Modules available on Piz Daint changed

–Older modules no longer available

–Had to upgrade all dependencies

–Made it difficult to have consistency in benchmarking process

• Run some interactive jobs to try to debug the problems

salloc -Cmc -pdebug -t15 -N1

Norwegian University of Life Sciences34

Challenges



FENIX enabled PRs for second allocation period

#1276: Fix threading issue when 

connecting

#1282: Introducing NEST 3.0! (1169 files!)

#1333: Remove spurious 

thread_local_connectors update.

Norwegian University of Life Sciences35



Norwegian University of Life Sciences36

Third allocation period – multi-system benchmarks



• We sent our second extension ICEI application on the 25th of August 2020

• Applied for 20 000 node x hours on Piz Daint, 10 000 node x hours On JUSUF and 

10 000 node x hours at CEA

• Received allocations on the 4th of September 2020

Norwegian University of Life Sciences37

Third allocation period



• Weak and strong scale benchmarks

• Resources on JUSUF and CEA

–Need to find the best set-up so we utilize the systems optimally

–Need to make sure NEST is optimized for more than one type of machine

Norwegian University of Life Sciences38

Scaling and system for third allocation



Norwegian University of Life Sciences39

First results

Needs further investigation!

a641eec1e: 16th of October



FENIX enabled PRs for third allocation period

#1645: Create connections with lists of 

synapse dictionaries

Norwegian University of Life Sciences40



• Make the benchmark system more automated

• Set up our benchmarking system on JUSUF and CEA and start testing on multiple 

systems

• Working on new connectivity scheme that will need to be tested

Norwegian University of Life Sciences41

TODO



Thank you!


