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Brains remain unrivaled computing devices

COCKATIEL PARROT AUTONOMOUS DRONE

Pre-trained to fly

between known

gates at walking
pace

Brain Navigates and learns CPU/GPU controller
Power: 50 mW unknown environments Power: 18.000 mW

Mass: 2.2 grams at 35 km/h

Mass: ~40 grams

Canlearnto
Canlearnto speak manipulate cups

. Can't learn anything
English words for drinking

online

Sources: PNAS, June 13, 2016; https://link.springer.com/article/10.1007/s00360-011-0603-1; Davide Scaramuzza, ETH Zurich and A. Loguercio et al, “Deep Drone Racing: From Simulation to Reality with Domain Randomization,” IEEE Trans. Robotics, 2020.
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https://link.springer.com/article/10.1007/s00360-011-0603-1

Deep learning models are increasingly power hungry

Two Distinct Eras of Compute Usage in Training Al Systems
Petaflop/s-days

AlphaGoZero
°

Neural Machine

Translation § 300,000x increase in required

e ®TI7 Dota 1vl L. .
training computation over 6 years

VGG _ 2

¥ osiiots ... versus 8x provided by Moore’s Law

AlexNet -
® @

3.4-month doubling

Deep Belief Nets and
layer-wise pretraining% ~
DQN
[}

TD-Gammon v2.1® °
BiLSTM for Speech

9
LeNet-5

: Not on a trajectory to close the
- efficiency gap with naturel!

le-12 2-year doubling (Moore’s Law)

le-14 Perceﬁptron « First Era  Modern Era >

1960 1970 1980 1990 2010 2020

Source: OpenAl https://openai.com/blog/ai-and-compute/
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https://openai.com/blog/ai-and-compute/

Deep learning is fundamentally limited in other
respects

Deep Learning

= Slow generalization with massive data

Natural Learning

Fast generalization with few examples

Online and incremental = Offline and batched

Automatic abstraction

= “Curve fitting”

NCL  Neuromorphic Computing Lab intel labs



Our Approach: Look to the brain, co-design the
architecture and algorithms

Neuro-Inspired Silicon

Pursue neuro No
. . . _.
inspiration?
l Yes
Compute-memory | No
integrated?
l Yes
No

Temporal neurcn
models?

Conventional computing and traditional
Al approaches

Traditional accelerator-based
architectures
GPUs, TPU, Movidius

Tradlitional neural network algorithms
and other connectionist approaches
Cerebras, Berkeley (Rabaey)

l Yes (SNNs + derivatives)

Standard CMOS | New
or new devices?

l CMOS

Asynchronous No
design style?

l Yes

Integrate analog | Yes
circuits?

lNo

Experimental small-scale designs
RRAMcrossbar chips, IBM (A. Sebastian’'s
PCM-based spiking heurons), Rain
Neuromorphics

Fully standard design methodologies
Tsinghua U (Tianjic), Zheijiang Labs
(Darwin), Human Brain Project (SpiNNaker
2), BrainChip, GrAl Matter Labs, IMEC

“Tradiitional” neuromorphic engineering

— Examples: Stanford (BrainDrop),

SynSense/ETHz(DynapSE), Human
Brain Project (BrainscaleS)

Co-design

Conventional Deep Networks

Category

Novel Neuro-Inspired Algorithms

Example applications

Deep learning: backprop-trained event-based DNNs

Deep learning: DNNs with online adaptation
Vector Symbolic Architectures (VSA), aka
Hyperdimensional Computing (HDC)

Neural Engineering Framework (NEF)
Dynamic Neural Fields (DNF)

Neural sampling e.g. spiking Boltzmann machines

Oscillatory computation

Recurrent Excitation/Inhibition-balanced networks
Event-based networks with temporally coded

Neuromorphic Networks

information

U; =Z]lef(uj) +bl

feature maps

pooled
featuremaps  foature maps

Fully-connected 1

Object and gesture recognition for event-based
vision sensors, slip detection for event-based
tactile sensors, ANNs with sparsely changing
input data

Few-shot new gesture learning, Adaptive control,
Semantic factorization, relational reasoning,
symbolic and analogical reasoning

Adaptive control systems, state machines

SLAM, object tracking, dynamic control, attention
Constraint satisfaction, probabilistic inference
Optimization, event-based spectral transforms,
optic flow, audio spectral normalization

LASSO regression, sparse feature coding

Graph search, similarity search

(D=3, wi; (850 * 2, () + by
0 (0)= (—vi(0) + ui(£)) — Vienr6i (1)

modular — temporal state

/,O — multiple
inputs

Support plasticity? | “°, 5y truenorh) e 0o0 O™
(+ other novel features) \
lv CI?\./ent \O‘\\%/ multiple
es Outputs r|Ven
outputs
Intel Labs (Loihi) input output © \ utpu
feedback recurrent
N[&B® Neuromorphic Computing Lab inter labs




Motivates a fundamentally different kind of computing

Parallel Computing Batched + Vectorized Processing Vector-valued Functions

P N

f (x) learned with backprop

Memory

EEEEEN
EEEEEEE
EEEEENEE
EREENEN
-EEEEEN
FEEEEN

EEEEEE

0
1
1
1
0
1
0
0
1
0
0
1
0
0

Neuromorphic Computing Unbatched + Sparse Processing Event-Driven Dynamical Systems

Function self-organizes
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Our Loihi chip

KEY PROPERTIES

Compute and memory integrated
to spatially embody programmed networks

Temporal neuron models (LIF)
to exploit temporal correlation

Spike-based communication
to exploit temporal sparsity

Sparse connectivity
for efficient dataflow and scalability

On-chip learning
without weight movement or data storage

Digital asynchronous implementation
for power efficiency, scalability, and fast prototyping

Fundamental to
deep learning hardware

No off-chip DRAM

. Neuromorphic Computing Lab

intel labs



Intel Neuromorphic Research Community

logitech

Collaborating to

Accelerate the
Research

INRC includes

over 120

groups

| —

Other names and brands may be claimed as the property of others

NCL

Neuromorphic Computing Lab

€ Drexel

ING'S
College
LONDON

Graz University of Technology

UNIVERSITAT
BIELEFELD

RNERS:DE&?& ARCH
>y

Berkeley

UNIVERSITATS
S KLINIKUM s =

UTSA

The University of Texas
at San Antonio™

HITACHI

Inspire the Next

u MACQUARIE
University

@ RUTGERS
UNIVERSITY OF CALIFORNIA
MERCED

UNIVERSITE DE
B SHERBROOKE

USCViterbi

UC SANTA BARBARA

MANCHESTER

WASHINGTON STATE

G UNIVERSITY
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Efficient Sensing

other Gesture recognition + learning

Loihi + DAVIS 240C camera

G. Orchard and SB Shrestha,
with K. Stewart, E. Neftci (UCI)

Visual-Tactile Sensing

45x lower power

20% faster vs GPU [Task¢]
\ T. Taunyazov et al (NUS)

Audio keyword spotting

>100x lower energy per inference vs GPU [Tesk1]
P.Blouw et al (ABR)

NCL  Neuromorphic Computing Lab

60 mW total power, 15 mW dynamic [Tesk®]

Olfactory
Bulb

Olfactory
Cortex

Limbic System

Entorhinal

Cortex
Eae 1 el .
nature March 2026,
machine 4
intelligence § wpin®
s o e

Olfaction-inspired odor

recognition and learning
3000x more data efficient learning
than a deep autoencoder

Nabil Imam and Thomas Cleland,
Nature Machine Intelligence, March 2020

[ s [
. © o 9 Neuromorphic olfaction

See backup for references and configuration details.
Results may vary.
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Compelling results for robotic and drone workloads

Adaptive robotic arm control

40x lower power, 50% faster vs GPU [Task8l
Applied Brain Research

” ) \ iCub scene understanding

Integrated behaviors: Object

recognition, tracking, learning
with A. Glover, C. Bartolozzi (IIT)

@A)

Head Direction

- Localization and Learning Micro Aerial Vehicle Landing
* 100x lower power vs CPU [Task10] Evolutionary design of a 35-neuron network that
G. Tang, K. Michmizos (Rutgers) achieves smooth MAV landings with Loihi on board

See backup for references and configuration details.

Y. Sandamirskaya et al (Intel/ETHz/INI) J. Dupeyroux et al, arXiv:2011.00534v1(TU Delft) Results may vary.

. Neuromorphic Computing Lab intel labs


https://arxiv.org/abs/2011.00534v1

Even greater gains for sparse computational studies

Sudoku Solver

Combinatorial optimization

(CSP, SAT, sudokuy, train scheduling)
2,000x lower energy and 40x faster vs CPU [Task13]

- T -
B B B
[ | B
- | -] ]
Graph Search = — —
With temporally coded spike wavefronts
100x faster vs CPU [Task12]

imone et al (Sandia)

Source: Wikipedia, H. Schmeling, Uni Frankfurt

See backup for references and configuration details. Results may vary.

NCL  Neuromorphic Computing Lab

Heat diffusion modeling
Scaled to 100+ chips and 300k mesh points

Hear more at the Loihi tutorial!

LASSO / sparse reconstruction

Similarity Search
24x faster and 30x lower energy (vs CPU) [Tesk Tl

Inhibitory
connectivity

One neuron per

(Locally Competitive Algorithm) , A feature/atom

Input image and

'|O3X faster, '|O4X Iower energy VS CPU RES convolutional patches

intel labs



For the Right Workloads, Loihi Provides Orders of
Magnitude Gains in Latency and Energy

1000 -
Reference

architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

Solution Time Ratio (vs Loihi)

(WorseonLoihi) 7 | |

(Better on Loihi)

10 100 1000
Energy Ratio (vs Loihi)

See backup for references and configuration details. Results may vary.
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[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DVS gesture recognition vs TrueNorth
[Task 6] Visual-tactile sensing [SLAYER)
[Task 7] Seq MNIST (batch size 1)

[Task 7] Seq MNIST (batch size 64)

[Task 8] Adaptive arm controller [PES)
[Task 9] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 13] Constraint Satisfaction

Unit energy delay product (EDP) ratio
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Standard feed-forward deep neural networks give the
compelling gains (if gains at all)

Reference
architecture

CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

F 3

i
b4 % e

Solution Time Ratio (vs Loihi)

Feed-forward

.0 DNNs

&
(WorseonLoihi) 7 |

(Better on Loihi)

10 100 1000
Energy Ratio (vs Loihi)

See backup for references and configuration details. Results may vary.
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[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size » 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DVS gesture recognition vs TrueNorth
[Task 6] Visual-tactile sensing [SLAYER)
[Task 7] Seq MNIST (batch size 1)

[Task 7] Seq MNIST [batch size 64)

[Task 8] Adaptive arm controller (PES)
[Task 2] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 13] Constraint Satisfaction

Unit energy delay product (EDP) ratio

intel labs




Recurrent networks with novel bio-inspired properties

give the gains

Reference
architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

Recurrent
Networks

(Better on Loihi)

=
o
ol
vl
=
o
2
©
o
W
£
|_
c
5]
=
=
o
LF5 |

(Worse onlLoihi) 7 | |

10 100 1000 10000

Energy Ratio (vs Loihi)

See backup for references and configuration details. Results may vary.
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100000

Directly trained  Converted with rate coding

[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DWS gesture recognition vs TrueMorth
[Task 6] Visual-tactile sensing [SLAYER)
[Task 7] Seq MNIST (batch size 1)

[Task 7] Seq MNIST (batch size 64)

[Task 8] Adaptive arm controller [PES)
[Task 9] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 13] Constraint Satisfaction

Unit energy delay product (EDP) ratio

intel labs




NCL

Compelling scaling trends:
Larger networks give greater gains

Reference
architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

Solution Time Ratio (vs Loihi)

(WorseonLoihi) 7 | |

(Better on Loihi)

See backup for references and configuration details. Results may vary.

Neuromorphic Computing Lab

10 100 1000

Energy Ratio (vs Loihi)
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[Task 1] Keyword Spotter DNMN

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DWS gesture recognition vs TrueNorth
[Task 6] Visual-tactile sensing [SLAYER)
[Task 7] Seq MNIST (batch size 1)

[Task 7] Seq MNIST (batch size 64)

[Task 8] Adaptive arm controller [PES)
[Task 9] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 13] Constraint Satisfaction

Unit energy delay product [ EDP) ratio

intel labs




Deep Learning on Loihi

ANNs converted with rate coding g |
- Low energy but high latency =
'l — Poor scaling =
— Not very promising E
i 0.1
Blue + purple: Offline backprop-trained E Training Method
oL M PES

spike timing -
— Low energy and low latenc

ISTDB (DNN)
- Computeintensive to train Xand scale)

M BPTT (LSNN+DNN)

M BPTT (LSNN) Offline |
B SLAYER (DNN)

B Conversion

Hear more about SLAYER in the Loihi tutorial

Online backprop 1 1 10 100 1000 10000
- Well suited for continuous adaptation Energy Ratio (vs Loihi)
Reference Architecture Batch Size
v ® ntel CPU A Intel Movidius Neural Compute Stick B 1

& Nvidia GPU [ IBM'’s TrueNorth O »>1

See backup for references and configuration details. Results may vary.
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oihi shows order of magnitude gains are possible

" |[n energy efficiency

" |n speed of processing data — ﬂ T ——
. . . . ' satisfaction, LCA. [Tasks 9,12,13.]
especially signals arriving in real
time
" |n the data efficiency of learning
and adaptation

Precision
= \With programmability to span a

wide range of workloads and

scales

= |_ong term, we will need to reduce ONeuromorphic
cost with process technology s B Conventional (unbatched)
nnovations T oty cote

NCL  Neuromorphic Computing Lab intel labs

See backup for references and configuration details.
Results may vary.




Computing with Collective Dynamics

Gradient Descent Non-Gradient Based Approaches
2 I .
Té‘ Backprop (CHEE) Olfaction-inspired learning
% Associative learning (e.g. SLAM)
'4(-'58 Online Backprop approximations
o Graph Search

Locally Competitive Algorithm
M 2 £ Combinatorial optimization

Winner Take All
Nearest Neighbor Search

Dynamic Neural Fields

NCL  Neuromorphic Computing Lab intel labs



Neuromorphic Learning Perspectives

Gradient-Based Learning Non-Gradient Based Learning
’ DNN scaling possible®, not yet proven No ‘deep” examples to date
Data hungry — slow to learn Fast to learn from few examples
Data samples need to be uniformly Networks mostly need to be hand
distributed during learning engineered and tuned
L earning activity is not sparse L earning activity is sparse
Limited today to shallow networks that Limited today to interesting examples,
run relatively slowly but with narrow scope
Examples: feedback alignment, e-prop, delta Example: olfactory model
Good for Good for

NCL  Neuromorphic Computing Lab intel labs



Outlook to Commercialization

Control Assistive robotics
q Manufacturing
’ir ‘. BC| Delivery
/ Structural inspections
flpgech recogni.tion Agriculture, Mining
oise suppression

I& 7‘&‘\ * Y~

¢ : :

A Design Surveillance, Security
Gesture recognition Saiees

Human-computer interfaces —

System OEMs Smart sensors q
Supplier \
Ecosystem H H
ﬁ Infotainment

S InCar __— Safety
Developer Community ShEeCar Autonomy

AR/VR

Anomaly dete
Recommendation systems

NCL  Neuromorphic Computing Lab intel labs



L egal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Perf results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for

etails. No product or component can be absolutely secure.

results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
claimed as the property of others.
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NCL Neuromorphic Computing Lab

Thank Youl!

Intel.

| earn more at the Loihi tutorial tomorrow

24



References and System Test Configuration Details

[Task 1] P Blouw et al, 2018. arXiv:1812.01739
[Task 2] TY Liu et al, 2020, arXiv:2008.01380
[

Task 3] KP Patel et al, “A spiking neural network for image segmentation,”
submitted, in review, Aug 2020.

[ Task 4] Loihi: Nahuku system running NxSDK 0.95. CIFAR-10 image
recognltlon network trained using the SNN “Toolbox (code available at

st). CPU: Core i7-9700K with
32GB RAIVI GPU NV|d|a RTX 2070 W|th 8GB RAM. OS: Ubuntu 16.04.6
LTS, Python: 3.5.5, TensorFlow: 1.13.1. Performance results are based on
testing as of July 2020 and may not reflect all publicly available security
updates.

[Task 5] Loihi: Nahuku system running NxSDK 0.95. Gesture recognition
network trained using the SLAYER tool (code available at

). Performance results are
based on testmg as of July 2020 and may not reflect all publicly available
security updates. TrueNorth: Results and DVS Gesture dataset from A.
Amir et al, “A low power, fully event-based gesture recognition system,” in
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2017.

[Task 6] T. Taunyazov et al, 2020. RSS 2020

[Task 7] Bellec et al, 2018. arXiv:1803.09574. Loihi: Loihi: Wolf Mountain
system running NxSDK 0.85. CPU: Intel Core i5-/440HQ, with 16GB
running Windows 10 (build 18362), Python: 3.6.7, TensorFlow: 114.1. GPU:
Nvidia Telsa P100 with 16GB RAM. Performance results are based on
testing as of December 2018 and may not reflect all publicly available
security updates.

NCL  Neuromorphic Computing Lab

Results may vary.

[Task 8] T. DeWolf et al, “Nengo and Low-Power Al Hardware for Robust,
Embedded Neurorobotics,” Front. in Neurorobotics, 2020.

[Task 9] Loihi Lasso solver based on PTP Tang et al, “Sparse coding by
spiking neural networks: convergence theory and computational results,”
arXiv:1705.05475, 201/. Loihi: Wolf Mountain system running NxSDK
0.75. CPU: Intel Core i7-4790 3.6GHz w/ 32GB RAM running Ubuntu
16. O4 vvlth HyperThreadmg disabled, SPAMS solver for FISTA,

[Task ]O] G Tang et al, 2019. arXiv:1903.02504
[Task 11] EP Frady et al, 2020. arXiv:2004.12691

[Task 12] Loihi graph search algorithm based on Ponulak F.,, Hopfield J.J.
Rapid, parallel path planning by propagating wavefronts of spiking neural
activity. Front. Comput. Neurosci. 2013. Loihi: Nahuku and Pohoiki Springs
systems running NxSDK 0.97. CPU: Intel Xeon Gold with 384GB RAM,
running SLESIT, evaluated with Python 3.6.3, NetworkX library augmented
with an optimized graph search implementation based on Dial's
algorithm. See also

[Task 13] Loihi: constraint solver algorithm based on G.A. Fonseca Guerra
and S.B. Furber, Using Stochastic Spiking Neural Networks on SpiNNaker
to Solve Constraint Satisfaction Problems. Front. Neurosci. 2017. Tested on
the Nahuku 32-chip system running NxSDK 0.98. CPU Corei/- 9700|< with
SZGB RAM running Coin-or Branch and Cut (ht

). Performance results are based on testmg as of July 2020 and may
not reflect all publicly available security updates.
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https://snntoolbox.readthedocs.io/en/latest
https://github.com/bamsumit/slayerPytorch
http://spams-devel.gforge.inria.fr/
https://arxiv.org/abs/1903.02504
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf
https://github.com/coin-or/Cbc

