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Outline

▪ Problem Statement : 
▪ Interest in emerging memory for efficient inference engines

▪ Early results on recurrent neural networks

▪ Future steps and summary
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Realizing physical matrix kernels
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Challenges for adaptive analog accelerators

▪ Emerging ReRAM : far from ideal , 
floating-point ‘weights’

▪ Several key problems:
▪ Limited resolution

▪ Read and write noise

▪ Device stochasticity

▪ Device non-linearity

▪ Device asymmetry

▪ Preliminary analysis: most severe impact 
from asymmetric non-linearity

▪ How can we get around this??
▪ A) Increase bio-realism of learning accelerators 

▪ B) Focus on implementation of pre-trained 
networks, and use on-chip fine-tuning

▪ Seeking natural computing: efficient combination of 
physical properties and algorithms
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▪ Focus implementation around highly analog devices with linearity for 
updating/fine-tuning , if still needed

▪ Remaining serious issues:
▪ Physical limits exist on minimal cycle-to-cycle noise (combination of generic [thermal/Johnson-

Nyquist] and device specific [RTN])

▪ Retention failure and drift in floating-gate, charge-trapping and ReRAM are real concerns

▪ Possibility to do mixed-computing using low-precision devices and high 
precision CMOS - > we explore limits of this using highly analog weights
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Major opportunity:
Emerging devices to implement neural network inference 

Source: Fuller , Agarwal, et al, IEEE/Science 

SONOS

IFG

Source: Sun, et al , IEEE Source: Nandakumar et al, Frontiers
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NVM inference systems- overemphasis on CNNs
▪ Kernel-wise multiplication can result in 

massive crossbar requirements

▪ Issues with energy and parasitics in large 
crossbars 

▪ ISAAC design: 40mW + /tile, 20W for chip. 

▪ 10-50x what we need for true low power 
computation (<1pJ per MAC)

▪ Massive opportunity for efficient synapse 
and neuron activation multiplexing  -
“Mosaics” framework 

▪ We focus on time-multiplexed activations 
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Source: Bennett .. Aimone, et al 

Source: Shafiee et al, ISCA 2016 
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Machine learning tasks
▪ In increasing order of difficulty: 

▪ MNIST: small images
▪ 60k training, 10k test

▪ MLP typical result: 96%+ 

▪ CNN typical result: 98%+

▪ F-MNIST: small images
▪ 60k training, 10k test

▪ MLP typical result: 83%+ 

▪ CNN typical result: 91%+

▪ Presentation style for recurrent networks
▪ Standard image presentation is subdivided into pixel-wise 

partitions that correspond to number of time steps, T

▪ T must therefore be a natural divisor of Num_pixels

Fashion-MNIST Task

MNIST Task
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Methodology I 
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▪ Networks were trained upfront using Keras/Tensorflow 2.2

▪ MNIST, Fashion-MNIST

▪ Neural networks were pre-trained with, and without, a gaussian injected regularization term 
applied at pre-activation of neurons

▪ Applied to activations in both convolutional filter crossbars and dense-layer crossbars

▪ During test-time, synaptic noise applied to all synapses (devices) in crossbars

▪ Equivalence between these effects given by:

Inference

noise

train

• Physical noise

• Drift
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▪ We propose a novel design for recurrent neural networks 
exploiting natural time re-use in a dense NVM crossbar
▪ Less peripheral overhead than complex software RNN schemes such as Gated Recurrent Unit 

(GRU)  , Long Short Term Memory (LSTM)

▪ Only Rectified Linear Units (ReLU)-- > less complex circuit than tanh() etc

▪ We consider both normal and noise injected cases 
▪ As in CNN case, Gaussian noise injected before the ReLU activation
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Methodology II 

• Physical noise

• Drift
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Methodology III
▪ Test-set noise added on top of internal (synaptic ) noise

▪ Gaussian:  test_set + test_set_noise(mean=0,std = sigma). 

▪ Additive = more info loss

▪ Speckle: test_set*test_set_noise(mean=0,std=sigma) 

▪ Scaled = less  info loss

▪ Salt and pepper noise (random_noise from sklearn); proportion of total pixels pushed 
to max/min vals .

▪ Direct info loss, but localized
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Increasing gaussian noise

Increasing s&p noise
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Result I 
▪ Given training optimization (best optimizer and learning rates 

chosen for each system),
▪ CNN systems , deployed with realistic (2.5%) internal noise, outperform RNN 

and MLP on both tasks

▪ RNN systems, achieve near parity when test-set noise is applied, and beat
CNN system on harder task if effects combined

▪ RNN systems perform best at a lower number of time-steps
▪ Internal system noise is sub-linearly additive over temporal cycles (some 

cancellation exists)
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Result II
▪ Broader sweeps conducted on both effects

▪ Regularization is useful in both deployed CNN, RNN systems

▪ On easier task (MNIST), RNN does not show much benefit , but shines on 
fMNIST - > CNN like results with less complexity  

14

Internal noise Internal + test noise
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Results III
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▪ Broader sweeps of RNN networks to test set noise were also conducted 
▪ Without regularization, the NVM optimized RNN collapses in performance for gaussian & 

s&p cases (most info lost).
▪ The resilience provided by small injected noise (level 1= 0.1) in Speckle , Gaussian is 

impressive !!
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Results IV
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▪ Same sweeps conducted on trained small CNN networks
▪ Appropriate levels of noise extend usable margin of the networks in 

adversarial/noisy environments

▪ Only fMNIST results shown but results nearly equivalent for mNIST
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Training energy estimates

▪ Simple python benchmarking script used to estimate energy 
estimates of online NVM learning for considered systems
▪ Dominated by VMM (crossbar charging) and neuron activation

▪ Maxpool , softmax operations are negligible

▪ While all systems use ReLU activations , due to time multiplexing, 
RNN systems benefit expend ~15-40x less energy than CNN
▪ MLP systems are still least energy expensive overall, but suffer accuracy penalty
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Further analysis of RNN systems
▪ Vanishing gradient issues must be further investigated in stacked 

simple RNN-NVM blocks
▪ At inference stage, the problem will be far less of a problem than in training

▪ But, may limit ultimate application of the approaches to relatively simple tasks 
(LSTM/GRU better to capture short + long term correlations)

▪ Temporal skip connections are an additional method to explore
for further regularization + better generalization
▪ Has been explored in LSTM, but not vanilla RNNs yet

▪ Natural attraction basins of RNNs can be analytically shown to 
help explain ergodic behavior (especially to test-set noise)
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Source: Campos et al, ICLR 2018
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Demonstrations of RNN learning

▪ Recently, 3x3 outer-product-learning was conducted with an array 
of ECRAM devices, and larger array is now being fabricated

▪ Ideal platform to implement RNN inference and learning
▪ High device resistance -> low parasitics in demonstrator crossbar

▪ Extreme analog capability

▪ Low cycle to cycle noise (<0.5%) has been demonstrated -> good for large T

20

Source: Li, Xiao, Bennett, Fuller, Marinella, Talin, et al, Frontiers , 2021 (Accepted) 
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Summary

▪ Time-multiplexing is a promising approach to implement energy efficient inference

▪ A new efficient RNN design has been proposed and simulated that:

▪ Can approach or even exceed CNN performance given certain noise conditions

▪ Exceeds a standard MLP in accuracy on standard ML tasks

▪ Can pave the way to more energy efficient inference (10x or greater energy efficiency)

▪ Noise regularization at train time is a promising method to resist internal and 
external noise when deployed

▪ Approach works on all considered neural networks, though most important/effective in 
CNN structures

▪ Algorithmic explorations of sources and limits of natural RNN noise resilience

▪ Benchmarking of RNN scheme on more state-of-art tasks

▪ Demonstration of ideas in crossbar prototype(s)

▪ New version of CrossSim released: supporting inference  + RNN 
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https://cross-sim.sandia.gov

Next Steps  

Take away points

https://cross-sim.sandia.gov/
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Thank you! Questions?
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Contact me at cbennet@sandia.gov if you want to ask at a later time.
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