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Problem Statement :

= [Interest in emerging memory for efficient inference engines

Early results on recurrent neural networks
Future steps and summary
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Realizing physical matrix kernels

Sandia

 Ideal Vector-Matrix Mulitply :
» Electrically realisable using
Kirchoff’'s + Ohm’s laws

 Programmable resistors - e.qg.
ReRAM/MRAM devices- key
component

« Small voltages to read (inference)
« Large voltages to program
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Challenges for adaptive analog accelerators ) s

= Emerging ReRAM : far from ideal ,

Asymmetric Nonlinearity
T T T

. . Ly . ,
floating-point ‘weights o [
= Several key problems: S
= Limited resolution 8
= Read and write noise g
= Device stochasticity S \
. . . Ginin Positive Pulses | Negative Pulses |
= Device non-linearity 0 0.5 1 05 0
. Normalized Pulse Number
= Device asymmetry
. . . . . Asymmetric Nonlinearity
- Prellmlnary analy5|s: most severe impact 99 L B
from asymmetric non-linearity 3
= How can we get around this?? g 907 Sl ]
bt arge Images
= A) Increase bio-realism of learning accelerators < p FileTypes .
= B) Focus on implementation of pre-trained D; — ¢
networks, and use on-chip fine-tuning Nonlinearity (v)
= Seeking natural computing: efficient combination of Agarwal et al, IJCNN 2016

physical properties and algorithms
I —————




Major opportunity:

Emerging devices to implement neural network inference
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= Focus implementation around highly analog devices with linearity for
updating/fine-tuning, if still needed

= Remaining serious issues:

= Physical limits exist on minimal cycle-to-cycle noise (combination of generic [thermal/Johnson-
Nyquist] and device specific [RTN])

= Retention failure and drift in floating-gate, charge-trapping and ReRAM are real concerns
= Possibility to do mixed-computing using low-precision devices and high
precision CMOS - > we explore limits of this using highly analog weights

SONVOS Possible Retention Failure Modes Computational memory unit High-precision digital unit
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Source: Fuller , Agarwal, et al, IEEE/Science Source: Sun, et al , IEEE Source: Nandakumar et al, Frontiers




NVM inference systems- overemphasis on CNNs () i
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= Kernel-wise multiplication can result in
massive crossbar requirements

= |ssues with energy and parasitics in large .
|
= |SAAC design: 40mW + /tile, 20W for chip. . H ls ols <
= 10-50x what we need for true low power o o o o °
computation (<1pJ per MAC)
: : .. b
=  Massive opportunity for efficient synapse
and neuron activation multiplexing - ®
“Mosaics” framework "1: S
L
=  We focus on time-multiplexed activations e
C
16 Input filters B » d=3
0 - E .
32 ()_?ht?ut filters- 32 Output filters > &
(@) E"a"]f'e La;eri: Iconvolutionwith Layer i+1: "
Gyl ' 9 0 u 2
H-.. .’E s os;m.lmm Source: Bennett .. Aimone, et al
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Source: Shafiee et al, ISCA 2016
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= |nterest in emerging memory for efficient inference engines

Early results on recurrent neural networks
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Machine learning tasks ) i
7 Laboratories
= |nincreasing order of difficulty: MNIST Task
_ . J<bgdbgay
= MNIST: small images 2202856557
= 60k training, 10k test RE¥Bolrd /5
= MLP typical result: 96%+ Alasosiof\
ypiearrest Zeldr3%xvsg/
= CNN typical result: 98%+ 3313932b72y¥7
=  F-MNIST: small images 385144744349
= 60k training, 10k test g i ig g :‘;l g‘; i f;
= MLP typical result: 83%+ 047 \264070
= CNN typical result: 91%+
= Presentation style for recurrent networks Fashion-MNIST Task
= Standard image presentation is subdivided into pixel-wise TETRYRTERT ¢
partitions that correspond to number of time steps, T fTNTNNARGATD
= T must therefore be a natural divisor of Num_pixels CARE ACMAS
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Methodology |
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= Networks were trained upfront using Keras/Tensorflow 2.2

= MNIST, Fashion-MNIST
= Neural networks were pre-trained with, and without, a gaussian injected regularization term

applied at pre-activation of neurons

= Applied to activations in both convolutional filter crossbars and dense-layer crossbars

= During test-time, synaptic noise applied to all synapses (devices) in crossbars

Equivalence between these effects given by:

; Tpen |
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Methodology Il )
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= We propose a novel design for recurrent neural networks
exploiting natural time re-use in a dense NVM crossbar

= Less peripheral overhead than complex software RNN schemes such as Gated Recurrent Unit
(GRU) , Long Short Term Memory (LSTM)

= Only Rectified Linear Units (ReLU)-- > less complex circuit than tanh() etc

= We consider both normal and noise injected cases

= Asin CNN case, Gaussian noise injected before the ReLU activation
0 N Time Slice Recurrent cell Rizo Ry IRt=T
" A ﬂk ﬁ ﬁ S (mand [oanyinan
. r— — SERA I ?‘\'\'I'w‘\' hy
2 | 1 % N Y

Logit Cell

Osyn = Physical noise
+ Drift
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= Test-set noise added on top of internal (synaptic ) noise
= Gaussian: test_set + test_set _noise(mean=0,std = sigma).
= Additive = more info loss
= Speckle: test_set*test_set_noise(mean=0,std=sigma)
= Scaled = less info loss

= Salt and pepper noise (random_noise from sklearn); proportion of total pixels pushed
to max/min vals .

= Direct info loss, but localized

Increasing s&p noise

2207

Increasmg gaussian noise




Result | )

= Given training optimization (best optimizer and learning rates
chosen for each system),

= CNN systems, deployed with realistic (2.5%) internal noise, outperform RNN
and MLP on both tasks

= RNN systems, achieve near parity when test-set noise is applied, and beat
CNN system on harder task if effects combined

= RNN systems perform best at a lower number of time-steps

= |nternal system noise is sub-linearly additive over temporal cycles (some
cancellation exists)

Architecture Noise Scenario

o
(o]

Internal (osyn*)  External (o*) Both Effects

7

r4

2

06
MLP- MNIST 96.8% 94.1% 93.1% 8
RNN - MNIST 97.4% 95.1% 94.9% B o
CNN-MNIST 98.5% 96.7% 96.05% 8

<
MLP- f-MNIST 82.2% 69.91% 62.35% §02
RNN - f-MNIST 86.3% 84.22% ST.11%
CNN-f-MNIST* 85.1% 57.91% 42.35% 00 0.1 02

T Synapse Dispersion (Osyn)



Result |l

= Broader sweeps conducted on both effects

= Regularization is useful in both deployed CNN, RNN systems

= On easier task (MNIST), RNN does not show much benefit , but shines on
fMNIST - > CNN like results with less complexity
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Results || ) &

= Broader sweeps of RNN networks to test set noise were also conducted

=  Without regularization, the NVM optimized RNN collapses in performance for gaussian &
s&p cases (most info lost).

= The resilience provided by small injected noise (level 1=0.1) in Speckle , Gaussian is
impressive !!

RNN Impact of Noised Input: S&P
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Results IV

= Same sweeps conducted on trained sma

Il CNN networks

= Appropriate levels of noise extend usable margin of the networks in

adversarial/noisy environments

= Only fMNIST results shown but results nearly equivalent for mNIST
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Training energy estimates il

= Simple python benchmarking script used to estimate energy
estimates of online NVM learning for considered systems

= Dominated by VMM (crossbar charging) and neuron activation
= Maxpool, softmax operations are negligible

= While all systems use RelLU activations, due to time multiplexing,
RNN systems benefit expend ~15-40x less energy than CNN

= MLP systems are still least energy expensive overall, but suffer accuracy penalty

Noise Mode Synapse Type
Total Energy/Op VMM Op  Neuron Activation Op
> MLP ReRAM* 4.24 nJ 4.22n] 15p]
RNN ReRAM* 7 35.6nl) 35.5n] 66p)J
‘ CNN ReRAM* 480 nJ 479 nJ 358 pJ
| | > MLP SONOS* 6.04 nJ 6.02n) 15pJ
e RNN SONOS* § 42.7n] 42.7n) 66p]

= CNN SONOS* 2.084 pnJ 2.084uJ 358 plJ
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Further analysis of RNN systems &

= Vanishing gradient issues must be further investigated in stacked
simple RNN-NVM blocks

= At inference stage, the problem will be far less of a problem than in training

=  But, may limit ultimate application of the approaches to relatively simple tasks
(LSTM/GRU better to capture short + long term correlations)

= Temporal skip connections are an additional method to explore
for further regularization + better generalization
= Has been explored in LSTM, but not vanilla RNNs yet
= Natural attraction basins of RNNs can be analytically shown to
help explain ergodic behavior (especially to test-set noise)

Figure 3: Sample usage examples for the Skip LSTM with A = 10~* on the test set of MNIST. Red
pixels are used, whereas blue ones are skipped.

Source: Campos et al, ICLR 2018




Demonstrations of RNN learning

m
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= Recently, 3x3 outer-product-learning was conducted with an array
of ECRAM devices, and larger array is now being fabricated

= |deal platform to implement RNN inference and learning

= High device resistance -> low parasitics in demonstrator crossbar

= Extreme analog capability

= Low cycle to cycle noise (<0.5%) has been demonstrated -> good for large T
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Take away points

= Time-multiplexing is a promising approach to implement energy efficient inference

= A new efficient RNN design has been proposed and simulated that:
= Can approach or even exceed CNN performance given certain noise conditions
= Exceeds a standard MLP in accuracy on standard ML tasks
= Can pave the way to more energy efficient inference (10x or greater energy efficiency)
= Noise regularization at train time is a promising method to resist internal and
external noise when deployed

= Approach works on all considered neural networks, though most important/effective in
CNN structures

Next Steps
= Algorithmic explorations of sources and limits of natural RNN noise resilience

=  Benchmarking of RNN scheme on more state-of-art tasks
= Demonstration of ideas in crossbar prototype(s)
= New version of CrossSim released: supporting inference + RNN

ZROSS SIM

https://cross-sim.sandia.qovVv



https://cross-sim.sandia.gov/

Thank you! Questions? .

Contact me at chennet@sandia.gov if you want to ask at a later time.



mailto:cbennet@sandia.gov

