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Neuromorphic Started in a still very 
active group that meets every year in 
Telluride for hands on projects and 
talks…



Sensors



Sensors

Processors



Data deluge
• In 2010 the world generated more than 1.2 Zetta bytes (10^21) of new data
• Equivalent of 300000km of DVD stack (distance between the earth and the moon)
• The amount of data increases faster than the computing power
• Quest for Local computation
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Why Neuromorphic?

• Low Power & Low Latency
• High Temporal resolution
• Light independent
• Real time processing beyond 1KHz

• Low Power Inference
• Go beyond processor-memory 

bottleneck
• Real time processing beyond 1KHz



Data Space of Events

• Amplitude sampling
• Information is sent when it happens
• When nothing happens, nothing is sent or

processed
• Sparse information coding
• Time is the most valuable information

They can however be reconstructed, when needed, at fre-
quencies limited only by the temporal resolution of the pixel
circuits (up to hundreds of kiloframes per second) (Fig.2
top). Static objects and background information, if required,
can be recorded as a snapshot at the start of an acquisition
henceforward moving objects in the visual scene describe
a spatio-temporal surface at very high temporal resolution
(Fig.2 bottom).

Fig. 2 (Lower part) The spatio-temporal space of imaging events:
Static objects and scene background are acquired first. Then, dynamic
objects trigger pixel-individual, asynchronous gray-level events after
each change. Frames are absent from this acquisition process. Sam-
ples of generated images from the presented spatio-temporal space are
shown in the upper part of the figure.

4 Event based shape registration algorithm

The event based visual acquisition does not rely on fixed-
frequency sampling, but it is intrinsically asynchronous. The
generated events form a spatio-temporal space that pertains
important properties that will be formulated mathematically
in the first part of this section and subsequently used in the
proposed method. In a second stage we will introduce the
novel event-based shape registration algorithm making full
use of the ”continuous” space-time representation of acquired
data.

4.1 Properties of spatio-temporal acquisition

A stream of visual events can be mathematically defined as
follows: let e(p, t) = (p, t, l)T a quadruplet giving the pixel
position p = (x,y)T , the time t of the event and l, its gray-
level. We can then define the function Se that maps to each
location p, the time t of the last event generated by that pixel:

Se : R2 ! R
p 7! Se(p) = t. (1)

Time being an increasing function, Se is then a monotoni-
cally increasing surface. We then set the first partial deriva-
tives with respect to the parameters as: Sex = ∂Se

∂x and Sey =
∂Se
∂y . We can then write Se as:

Se(p+Dp) = Se(p)+—S T
e Dp+o(||Dp||), (2)

with —Se = (Sex ,Sey)
T .

The partial functions of Se are functions of a single vari-
able whether x or y. Time being strictly increasing, Se is a
nonzero derivatives surface at any point.

It is then possible to use the inverse function theorem,
around p = [x,y]T to rewrite the gradient vector —Se as:

—Se = (
1
vx

,
1
vy

)T , (3)

which provides the inverse of the pixel velocity of events.
∂Se
∂x and ∂Se

∂y provide the measurement of the rate and direc-
tion of change of time according to space namely s/pixels.
Locally around an active pixel the tangent plane to the sur-
face relates to the motion flow and velocity of the moving
object in the focal plane.
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Fig. 3 Local time surface of active events of a moving object over a
period of Dt approximated locally by a plane Pi where ni is its normal
and gi its gravity center. An event e(p, t) belonging to Pi with an inverse
velocity —Se shown in a local coordinate system of Pi.

Let us look at a tracked object. The surface area formed
by pixels actived by the object over a time period D t can be
approximated locally by a plane Pi as shown in Fig.3, where
ni is its normal and gi the gravity center of active pixels. Fol-
lowing Equation(3), the slope of Pi relates to the velocity of
the tracked object. An event e(p, t) belonging to Pi has lo-
cally the same velocity —Se (its inverse) with the object and
can therefore be considered as being part of it. The compu-
tation of the velocity is not ”token-based”, in the sense that



Generate frames (binary, grey level,…)

Figure 2: Block diagram of the proposed approach. The output of the event camera is collected into frames over a specified
time interval T , using a separate channel depending on the event polarity (positive and negative). The resulting synchronous
event frames are processed by a ResNet-inspired network, which produces a prediction of the steering angle of the vehicle.

without resorting to partitioning the solution space; the an-
gles produced by our network can take any value, not just
discrete ones, in the range [�180�,180�]. Moreover, in con-
trast to previous event-based vision learning works which
use small datasets, we show results on the largest and most
challenging (due to scene variability) event-based dataset to
date.

3. Methodology
Our approach aims at predicting steering wheel com-

mands from a forward-looking DVS sensor [1] mounted on
a car. As shown in Fig. 2, we propose a learning approach
that takes as input the visual information acquired by an
event camera and outputs the vehicle’s steering angle. The
events are converted into event frames by pixel-wise accu-
mulation over a constant time interval. Then, a deep neural
network maps the event frames to steering angles by solving
a regression task. In the following, we detail the different
steps of the learning process.

3.1. Event-to-Frame Conversion
All recent and successful deep learning algorithms are

designed for traditional video input data (i.e., frame-based
and synchronous) to benefit from conventional processors.
In order to take advantage of such techniques, asynchronous
events need to be converted into synchronous frames. To
do that, we accumulate the events1 ek = (xk,yk, tk, pk) over
a given time interval T in a pixel-wise manner, obtaining
2D histograms of events. Since event cameras naturally
respond to moving edges, these histograms of events are
maps encoding the relative motion between the event cam-
era and the scene. Additionally, due to the sensing principle
of event cameras, they are free from redundancy.

Inspired by [18], we use separate histograms for positive

1An event ek consists of the spatiotemporal coordinates (xk,yk, tk) of a
relative brightness change of predefined magnitude together with its polar-
ity pk 2 {�1,+1} (i.e., the sign of the brightness change).

and negative events. The histogram for positive events is

h+(x,y) .
= Â

tk2T, pk=+1
d (x� xk,y� yk), (1)

where d is the Kronecker delta, and the histogram h� for
the negative events is defined similarly, using pk =�1. The
histograms h+ and h� are stacked to produce a two-channel
event image. Events of different polarity are stored in dif-
ferent channels, as opposed to a single channel with the bal-
ance of polarities (h+� h�), to avoid information loss due
to cancellation in case events of opposite polarity occur in
the same pixel during the integration interval T .

3.2. Learning Approach
3.2.1. Preprocessing. A correct normalization of input
and output data is essential for reliably training any neural
network. Since roads are almost always straight, the steer-
ing angle’s distribution of a driving car is mainly picked in
[−5�,5 �]. This unbalanced distribution results in a biased
regression. In addition, vehicles frequently stand still be-
cause they are exposed, for example, to traffic lights and
pedestrians. In those situations where there is no motion,
only noisy events will be produced. To handle those prob-
lems, we pre-processed the output variable (i.e. steering an-
gles) to allow successful learning. To cope with the first is-
sue, only 30 % of the data corresponding to a steering angle
lower than 5� is deployed at training time. For the latter we
filtered out data corresponding to a vehicle’s speed smaller
than 20km h−1. To remove outliers, the filtered steering an-
gles are then trimmed at three times their standard devia-
tion and normalized to the range [�1,1]. At testing time,
all data corresponding to a steering angle lower than 5� is
considered, as well as scenarios under 20km h−1. The re-
gressed steering angles are denormalized to output values
in the range [�180�,180�]. Finally, we scaled the network
input (i.e., event images) to the range [0,1].

3.2.2. Network Architecture. To unlock the power of
convolutional architectures for our study case, we first have

Figure 2: Block diagram of the proposed approach. The output of the event camera is collected into frames over a specified
time interval T , using a separate channel depending on the event polarity (positive and negative). The resulting synchronous
event frames are processed by a ResNet-inspired network, which produces a prediction of the steering angle of the vehicle.

without resorting to partitioning the solution space; the an-
gles produced by our network can take any value, not just
discrete ones, in the range [�180�,180�]. Moreover, in con-
trast to previous event-based vision learning works which
use small datasets, we show results on the largest and most
challenging (due to scene variability) event-based dataset to
date.

3. Methodology
Our approach aims at predicting steering wheel com-

mands from a forward-looking DVS sensor [1] mounted on
a car. As shown in Fig. 2, we propose a learning approach
that takes as input the visual information acquired by an
event camera and outputs the vehicle’s steering angle. The
events are converted into event frames by pixel-wise accu-
mulation over a constant time interval. Then, a deep neural
network maps the event frames to steering angles by solving
a regression task. In the following, we detail the different
steps of the learning process.

3.1. Event-to-Frame Conversion
All recent and successful deep learning algorithms are

designed for traditional video input data (i.e., frame-based
and synchronous) to benefit from conventional processors.
In order to take advantage of such techniques, asynchronous
events need to be converted into synchronous frames. To
do that, we accumulate the events1 ek = (xk,yk, tk, pk) over
a given time interval T in a pixel-wise manner, obtaining
2D histograms of events. Since event cameras naturally
respond to moving edges, these histograms of events are
maps encoding the relative motion between the event cam-
era and the scene. Additionally, due to the sensing principle
of event cameras, they are free from redundancy.

Inspired by [18], we use separate histograms for positive

1An event ek consists of the spatiotemporal coordinates (xk,yk, tk) of a
relative brightness change of predefined magnitude together with its polar-
ity pk 2 {�1,+1} (i.e., the sign of the brightness change).

and negative events. The histogram for positive events is

h+(x,y) .
= Â

tk2T, pk=+1
d (x� xk,y� yk), (1)

where d is the Kronecker delta, and the histogram h� for
the negative events is defined similarly, using pk =�1. The
histograms h+ and h� are stacked to produce a two-channel
event image. Events of different polarity are stored in dif-
ferent channels, as opposed to a single channel with the bal-
ance of polarities (h+� h�), to avoid information loss due
to cancellation in case events of opposite polarity occur in
the same pixel during the integration interval T .

3.2. Learning Approach
3.2.1. Preprocessing. A correct normalization of input
and output data is essential for reliably training any neural
network. Since roads are almost always straight, the steer-
ing angle’s distribution of a driving car is mainly picked in
[−5�,5 �]. This unbalanced distribution results in a biased
regression. In addition, vehicles frequently stand still be-
cause they are exposed, for example, to traffic lights and
pedestrians. In those situations where there is no motion,
only noisy events will be produced. To handle those prob-
lems, we pre-processed the output variable (i.e. steering an-
gles) to allow successful learning. To cope with the first is-
sue, only 30 % of the data corresponding to a steering angle
lower than 5� is deployed at training time. For the latter we
filtered out data corresponding to a vehicle’s speed smaller
than 20km h−1. To remove outliers, the filtered steering an-
gles are then trimmed at three times their standard devia-
tion and normalized to the range [�1,1]. At testing time,
all data corresponding to a steering angle lower than 5� is
considered, as well as scenarios under 20km h−1. The re-
gressed steering angles are denormalized to output values
in the range [�180�,180�]. Finally, we scaled the network
input (i.e., event images) to the range [0,1].

3.2.2. Network Architecture. To unlock the power of
convolutional architectures for our study case, we first have
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CCAM sensors provide frame-free visual information

CCAM is generating 70 times 
less events than a resolution 
equivalent 1000 fps frame-
based camera

the number of events depends on the 
dynamics of the scene. For standard 
cameras this amount is constant. 

Why Event Based sensors?
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Figure 4: (A) Storing events into dense image-like representations like features maps, like in CNNs. (B) Instead it is possible
to store events into a list in order to preserve the sparseness of the stream of events.

taking the best of both worlds such as [56] [57] [8]. However,
using frame-based algorithms on purely event-based data
automatically results in several drawbacks:

• it re-introduces redundancy when frames are built from
temporally overlapping batches of events;

• generating frames from events is computationally ex-
pensive and contradicts the founding principles of en-
ergy efficiency of neuromorphic hardware;

• the increase of latency and/or the loss of temporal accu-
racy by binning batches of events;

• the spatially dense representation that is traded for when
events are turned into frames, resulting in more convo-
lutions than needed as will be shown in this paper;

• the memory use is increased as the dense image matrix
representation must be stored instead of a sparse stream
of events, as we also show in this paper.

A sensible approach is to store incoming events in compact
dynamic structures as shown in Fig. 4(B). List based are
surely the most adequate structures to store this type of sparse
information.

Incoming events can be stored as a triplet with location x,
polarity p and timestamp t. A chained list allows to adapt
the constant changing number of valuable events as it has no
predefined size. Instead, two criteria can be used to remove
older events:

• a temporal criterion, noted T , used to remove older
events. Events with a timestamp t | t  tnow � T are
purged from the memory;

• event uniqueness: if two events have the same address x

and polarity p, only the most recent event is kept.
As events are stored as they are received, by ascending

timestamp. To remove older events that do not meet the
temporal criteria any longer, the memory simply needs to be
shifted, by updating the memory pointer to the next available
memory address. This is an iterative process where older
events are removed until the oldest event meets the temporal
criteria.
Perhaps the most adequate practical approach is to use
content-addressable memory (CAM) also known as associa-
tive memory or associative storage [58]. These are partic-
ularly adapted to the Address Event Representation format

used by event based sensors [59]. Local neighborhoods can
be extracted in one clock cycle by comparing input search
data against a table of stored data, that then returns the
address of matching data.

VI. TEMPORAL DYNAMICS AND DATA LOAD IN
EXISTING EVENT-BASED DATABASES
We analyse the content of four event-based datasets that
provide different stimuli and spatial resolutions. The scope
is to compare the memory footprint based on the content
of these databases when considering a static frame based
allocation vs a dynamic scene-driven approach. Three of
the used databases (PokerDVS [60], N-MNIST [61] and
DvsGesture [11]) are widely used as benchmark references
by the neuromorphic community. The fourth, NavGesture,
was recently introduced in [10].
The details of each database are:

• PokerDVS features cropped poker cards pips displayed
at very high-speed in front of the camera. Each clip is 5
to 10ms long. Pips are cropped to a 35 ⇥ 35 pixel array.
The Mean Event Rate (MER) is 170.4 kev/s (kilo-
events per second), which results in an Individual Pixel
Mean Firing Rate (IPMFR) of 138 kev/s, the highest of
all presented datasets, two orders of magnitude higher
than non-cropped datasets;

• N-MNIST features 0-9 digits with a sensor size of
28⇥28. Digits are acquired using a moving event-based
camera in front of a computer screen displaying the
original MNIST dataset as explained in [61]. N-MNIST
performs 3 small displacements of 2-3 pixels, with a
pause of 100ms between each movement. Each clip has
a duration of around 300ms. The dataset has a MER of
13.6 kev/s, the smallest of all four datasets. The IPMFR
is 17 kev/s;

• DvsGesture features hand gestures recorded using a
fixed DVS, centered at the upper body in front of a
static background. Hence, it features no background.
The sensor array size is 128 ⇥ 128. In most sequences,
the upper body is almost static and does generate very
few events; only the arms and hands are usually visible.
It results that most pixels at the periphery of the sensor
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Figure 6: Comparison in memory usage when using a dy-
namic list memory instead of a static matrix memory with
when extracting time-surfaces. The red line represents the
total allocated memory when using a image-like frame-based
representation while the orange line represents only the ac-
tual memory use. The blue line represents the memory con-
sumption when using a dynamic, time-windowed memory.
The dynamic memory has a temporal window of 10 ms. Note
that memory use is computed for 64-bit events, with 32 bits
for the timestamp. The clip is a "home" gesture (a hello-
waving hand) from the NavGesture-walk database and has
a duration of around 1300ms. It can be observed that image-
like representations lead to memory footprint up one order of
magnitude in this example.

out at the native elementary temporal step of event based
cameras (1µ s)

• allow for sparse and adaptive memory allocation follow-
ing the scene driven properties of event based cameras
and temporal requirements of the used incremental al-
gorithms.

•

The ideal memory structure addressing these requirements
are CAM. This type of memory structure allows for entire
high-speed memory searches in a single clock cycle. As-
sociative memories have been extensively used for several
applications [63] including neural networks [64]. They are
particularly adapted for event based processing as unlike ran-
dom access memory (RAM) they are content based. Events
stored on content addressable can be accessed by performing
a query for the content itself, and the memory retrieves the
addresses where that data can be found. This query is parallel
nature by construction an therefore order of magnitude faster
than conventional RAM. They are expensive to build because
of the necessity of internal comparators and registers, that
require larger power consumptions. However, in the case
of event based sensing the required footprint is extremely
reduced and fast memory access is an absolute requirement,
thus making this type of memory particularly adapted to
event based processing.

We will introduce in this section a generic architecture for

event based processing in the context of machine learning
using the context of a classification task using deep temporal
networks. These networks process events incrementally as
they are output by the sensor [21]. We will first introduce the
concept of deep temporal time surface networks, in a second
stage we will present the generic architecture followed by an
implementation study of its hardware costs on FPGA.

A. DEEP TEMPORAL MACHINE LEARNING USING
TIME-SURFACES
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Figure 7: Principle of Temporal Context Representation. Five
lines on information conveyed temporal events at differ-
ent time locations tr, ty, ..., tb. A temporal context T is
computed for each incoming event (here at time t) as a
vector expressing temporal delays between events as a value
between 0 and 1..

Time-surfaces introduced in [21] are local descriptors of
the temporal activity in the spatial neighbourhood of an
event. They allow a compact representation of both spatial
and temporal information. They have been used in a variety
of tasks and have been recently revisited and studied in sev-
eral works such as [65] [20] [66] [52]. In this paper we use the
model presented in [10] that extends [21] to operate on low
power processors in the context of mobile phones. We use a
deep temporal convolution network relying on time surfaces
[21] to study how event-based algorithms could benefit from
a dynamic, adaptive and sparse memory structure.
The general principle of a time surface is shown in Fig.7
in the context of 1D input (thus generating a time vector).
Five temporal events are shown, each appearing at a par-
ticular time t. The notion of an event here is general, to
introduce simply the basic concept behind time surfaces.
An event signals the presence of a particular activity at a
precise location in time. The principle behind the method
is to convert the relative timing between events occurring at
different lines of information into normalized features that
are invariant to the actual timing and emphasize only the
temporal interval between past events and the last event that
happens at the current time t, shown in purple in Fig.7.
This method is event driven in the sense that if no event
happens, nothing is computed. However if an event occurs on
a line of information at the current time, its time becomes the
reference time from which we measure a temporal context,
namely, how far in the past something happened on the other
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Dataset
(Mean Event Rate

& Sensor Size)

PokerDVS
170.4 ev/ms

35x35

N-MNIST
13.6 ev/ms

28x28

DvsGesture
56.9 ev/ms
128x128

NavGesture-walk
188.6 ev/ms

304x240
1. Time Window (ms) 1 10 100 1 10 100 1 10 100 1 10 100
2. Mean Number of events in TW
(percentage of active pixels)

101
(8%)

390
(32%)

486
(40%)

22
(3%)

84
(11%)

229
(29%)

53
(<1%)

340
(2%)

1751
(11%)

285
(<1%)

2818
(4%)

13279
(18%)

3. Max Number of events in TW
(percentage of active pixels)

356
(29%)

848
(69%)

1052
(86%)

223
(28%)

312
(40%)

597
(76%)

467
(3%)

2056
(13%)

9191
(56%)

2599
(4%)

18296
(25%)

68128
(93%)

4. Working Memory Size (kB)
Dynamic - Average case 0.8 3.1 3.9 0.2 0.7 1.8 0.4 2.7 14.0 2.3 22.5 106.2

5. Working Memory Size (kB)
Dynamic - Worst case 2.8 6.8 8.4 1.8 2.5 4.8 3.7 16.4 73.5 20.8 146.3 545.0

6. Allocated Memory Size (kB) 9.8 9.8 9.8 6.3 6.3 6.3 131 131 131 584 584 584
7. Memory ratio dynamic/static
(Average Case) 8% 32% 40% 3% 11% 29% 1% 2% 11% 1% 4% 18%

8. Memory ratio dynamic/static
(Worst Case) 29% 69% 86% 28% 40% 76% 3% 13% 56% 4% 25% 93%

Table 1: This table shows, for 4 event-based datasets, and for 3 different time-window sizes (Line 1), ranging from 1 to 100
ms, the mean (Line 2) and maximum (Line 3) number of events. Using events of size 64 bits (32 bits for timestamp + 32 bits
for spatial location and polarity), it shows the needed memory for the dynamic memory (Lines 4-5) and the corresponding
allocated memory needed for the image-like representation (Line 6). Static memory usage is increased relatively to dynamic
memory usage by factors ranging from 2 to 100 when considering short time-windows (< 10 ms, resp. high frame-rates > 100
FPS). For time-windows of 100 ms (10 FPS equivalent), this memory need in average half the capacity of a static memory, but
worst-cases can go up to the same level. (Lines 7-8). However the use of event-based sensor at such low temporal resolutions
is questionable.
These datasets where chosen because they are widely used and because they present very different characteristics in terms of
sensor array size and rate of events.
Memory usage factors are closely linked to the time-window size, which can be linked to the frame-rate for conventional frame-
based cameras. It is also dependent on the sensor array size. It shows that willing to achieve a temporal precision of 1 to 10 ms
(which corresponds to frame-rates of 100 to 1000 Hz), the image-like representation requires 25 to 100 times more memory
capacity. This means that is also requires faster memory buses to transmit the data.

are located in the sensor. Nevertheless, because of the frame-
based computation, the bottleneck of the system is the
memory interface, what made to relay its performance on
the selected memory ones. NullHop was tested with the
VGG16 on ImageNet with a 67.5% top-1 accuracy using
quantized weights and activations to 16bits. It was also
tested with a relative small CNN trained to classify hand
symbols for the RoShamBo game, beating human opponents
by recongnizing the player’s symbol with over 99% accuracy
in less than 10ms and a peak performance of 203 Gop/s/W
using LPDDR3 memory. Perhaps a fair comparison is to
consider a recent work from IBM research that introduced a
fully neuromorphic pipeline made of an IBM TrueNorth chip
and a DVS [11] to perform a real-time gesture recognition.
The system has been evaluated on the DvsGesture 10-
class dataset, which was recorded using the DVS. However,
if the hardware is fully neuromorphic, the processing is
frame-based, as they introduced a stochastic events-to-frame
conversion to feed a CNN. This CNN performs around 1
billion convolutions per second (1 million convolution per
tick, 1000 ticks per second). This results in one classification
per tick, which are then averaged using a majority vote with
a sliding window, for a final classification score of 96.49%.
On the other hand, the 2-layers event-based architecture we
presented in [10] performs around 250 millions convolutions
for a whole clip (clips have a duration of 6-8 seconds), while

achieving similar results in accuracy at 96.59% over the 10-
class dataset with a single classification at the end of the clip.
Moreover, IBM’s stochastic frames are generated using a
cascade of six temporal filters delaying events. The resulting
output frame is the concatenation of all six filters outputs,
which is nothing more but a stochastic integration of events
over 81 ms. These frames are generated every millisecond.
This automatically introduces a delay that corresponds to
the integration time needed to generate a frame, plus the
need to store an image-like representation for each filter.
On the other hand, if one processes events in an event-based
manner, the delay can be minimal, and the memory needed to
dynamically store events greatly reduced, as shown in section
VI.

VIII. GENERIC TIME ADAPTIVE MEMORY
ARCHITECTURE FOR EVENT BASED PROCESSING
An optimal architecture for event based computation must
address two main inter-winded requirements:

• allow for incremental processing ensuring a fast access
for each incoming event to local required resources
by reducing as much as possible the retrieval of rele-
vant local information around incoming events (access
times) to match the high temporal properties of event
based cameras and ensure computation can be carried

8 VOLUME 4, 2016

Generating Frames is
inadequate



Existing Neuromorphic Processing Hardware is
based on silicon neurons

Qualcomm Zeroth (2013) IBM TrueNorth (2014) Intel Loihi (2017) BrainChip (2019)

replicate

Existing hardware is based on the concept of replicating biological
neurons into silicon



This approach is limited:  No real theory available,
wastefull in silicon area, general computation limited (materials, 
theories, …). We still know so little of the Brain.

replicate

understand

Understanding rather than replicating

Replicating nature’s solutions is not always the optimal path to solve
an engineering problem. 



Neuromorphic Computing, an old story!
[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bull. Math. Biophysics, no. 5, pp. 115-133, 1943.

Warren McCulloch Walter Pitts



Perceptron: first neuromorphic engine

[1] F. Rosenblatt, “The perceptron: a probabilistic
model for information storage and organization
in the brain.,” Psychological Review, vol. 65, no. 
6, pp. 386-408, 1958.

(Robert Hecht-Nilsen: 
Neurocomputing, Addison-
Wesley, 1990)

Frank Rosenblatt



1980’s Neurocomputers...

• Siemens : MA-16 Chips (SYNAPSE-1 Machine)
• Synapse-1, neurocomputer with 8xM-A16 chips
• Synapse3-PC, PCI board with 2xMA-16 (1.28 Gpcs)

• Adaptive Solutions : CNAPS
• SIMD // machine based on a  64 PE chip.

• IBM : ZISC 
• Vector classifier engine

• Philips : L-Neuro (M. Duranton)
• 1st Gen 16PEs 26 MCps
• 2nd Gen 12 PEs 720 MCps

• + Intel (ETANN), AT&T (Anna), Hitachi (WSI), NEC, Thomson (now
THALES), etc…



How to encode numbers with neurons?
Necessity to find an alternative to binary



Silicon Neurons that Compute 3

Representation Transformation Dynamics
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Fig. 1. NEF’s three principles. Representation: Tuning curves map stimuli (x(t))
to spike rates (ai(x(t))). Transformation: Populations ai(t) and bj(t) connected by
weights wij transform x(t)’s representation into y(t)’s. Dynamics: Synapses’ spike
response, h(t), implement dynamics using neurally plausible matrices A′ and B′.

The second and third principles are realized by using the matrix A that
describes x(t)’s transformation or dynamics to specify the weight wij connecting
neuron i to neuron j [2]:

wij = 〈φ̃j ·Aφf(x)
i 〉 ⇒ Jj = αj

∑

i

wijai(x(t))+Jbias
j = 〈φ̃j ·Af̂(x(t))〉+Jbias

j (2)

where φf(x)
i is neuron i’s decoding vector and φ̃j is neuron j’s encoding vector

(Figure 1, middle, right). Neuron j will fire as if it received an input of y(t) =
Af̂(x(t)); hence decoding its firing rate will yield the desired result. This recipe
enables a computation specified in a low-dimensional space (A) to be solved in
a high-dimensional space (wij) using lower precision elements.

3 Hardware Elements

To support NEF in hardware, we need spiking silicon neurons, exponentially
decaying synapses and programmable interconnection weights. Neurogrid imple-
ments these elements as follows.

Silicon neurons are implemented with quadratic integrate-and-fire dynamics:

τmv̇ = −v + v2/2 + gsyn(erev − v) (3)

where τm is the membrane time-constant, v is the membrane potential (normal-
ized by the threshold voltage), gsyn is the total synaptic conductance (normalized
by the leak conductance), and erev is the reversal potential (also normalized by
the threshold voltage); v is reset to 0 when it exceeds 10. Integration yields the
inter-spike intervals and inversion yields the conductance-to-spike-rate function:

G(gsyn) =

(

τm
π + 2arccot(

√

2erev gsyn/(1 + gsyn)2 − 1)

(1 + gsyn)
√

2erev gsyn/(1 + gsyn)2 − 1
+ tref

)−1

(4)

2 Silicon Neurons that Compute

network [3]; and our weighted connections are packet-delivery probabilities [8].
While neuromorphic systems that combine some or all of these features of the
brain have been built previously, they only performed specific computations. In
contrast, we realize any desired mathematical computation by programming the
connections’ weights to exploit the silicon neurons’ heterogeneity.

Section 2 reviews a theoretical framework for mapping computations onto
heterogeneous populations of spiking neurons. Section 3 presents hardware el-
ements that support this framework. Section 4 describes Neurogrid, a sixteen-
chip, million-neuron neuromorphic system used as a testbed (proposed in [4]).
Section 5 presents implementations of static and dynamic computations. Section
6 discusses possible applications.

2 The Neural Engineering Framework

To program the connection weights among heterogeneous spiking neurons (in-
dexed by i), NEF follows three principles [2] (Figure 1):

Representation: Amulti-dimensional stimulus x(t) is nonlinearly encoded as a
spike rate ai(x(t))—represented by the neuron tuning curve—that is linearly
decoded to recover an estimate of x(t), x̂(t) =

∑

i ai(x(t))φ
x
i , where φx

i are
the decoding weights.

Transformation: Transformations of x(t) into y(t) are mapped directly to
transformations of ai(x(t)) into bj(y(t)) using alternate decoding weights.
For example, y(t) = Ax(t) is represented by the spike rates bj(Ax̂(t)),
where neuron j’s input is computed directly from neuron i’s output using
Ax̂(t) =

∑

i ai(x(t))Aφx
i , an alternative linear weighting.

Dynamics: Dynamics are realized using the synapses’ spike response h(t). This
principle brings together the first two principles and adds the time dimension.
For example, for h(t) = τ−1e−t/τ , ẋ = Ax(t) + By(t) is realized as the
equivalent, neurally plausible dynamical system: x(t) = h(t) ∗ (A′x(t) +
B′y(t)), where convolution replaces integration, A′ = τA+ I, and B′ = τB.

The first principle is realized by assigning neuron i a randomly chosen pre-
ferred direction in the stimulus space, φ̃i:

ai(x(t)) = G(Ji(x(t))) where Ji(x(t)) = αi〈φ̃i · x(t)〉+ Jbias
i (1)

Here G is the neurons’ nonlinear current-to-spike-rate function. The dot prod-
uct converts the multi-dimensional stimulus, x(t), to a one-dimensional soma
current, Ji. αi is a gain or conversion factor and Jbias

i is a bias current. These
two parameters are chosen to uniformly distribute firing thresholds and maxi-
mum firing rates within specified ranges (Figure 1, left). For a one-dimensional
(1D) stimulus space, φ̃i = ±1 . In contrast, the linear decoding weights, φx

i ,
are obtained by minimizing the mean square error. This error may be computed
relative to the original stimulus x(t) or some nonlinear function thereof, f(x(t)),

yielding f̂(x(t)) =
∑

i ai(x(t))φ
f(x)
i .
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Beyond Bumps: Spiking Networks that Store Smooth

n-Dimensional Functions

Chris Eliasmith and Charles H. Anderson

Abstract

There are currently a number of models that use spiking neurons in recurrent net-
works to encode a stable Gaussian ‘bump’ of activation. These models successfully
capture some behaviors of various neural systems (e.g., storing a single spatial location
in parietal cortex). We extend this previous work by showing how to construct and ana-
lyze realistic spiking networks that encode smooth n-dimensional functions drawn from
a finite functional space. These new networks can capture additional experimentally
observed behavior (e.g., storing multiple spatial locations at the same time).

1 Introduction

Stable Gaussian shaped neuronal activities across a population of recurrently connected
neurons without external perturbation, or stable ‘bumps’, have been successfully mod-
eled by a number of researchers [8, 7, 6]. Bumps have been thought to be present in
various neural systems including the head direction system [5], frontal working memory
systems [8], parietal reach memory systems [4], and feature selective visual systems [3].
Many of these systems can store functions more complicated than a simple Gaussian
bump. For example, there is evidence that parietal areas can hold multiple saccade
targets in memory at the same time, suggesting that a multi-modal function is stored
[2].

In this paper, we extend previous work on single bump networks by showing how to
construct and analyze realistic spiking networks that can encode smooth n-dimensional
functions drawn from a finite functional space. We begin our analysis with a one-
dimensional network of simple rate-modeled neurons. We then show how it is possible
to generate useful analytical results about this simple network. We discuss important
extensions to the model, including how to implement the model in a spiking net-
work (e.g., using integrate-and-fire neurons), and how to construct higher dimensional
models. Notably, the approach we employ is a general one which can be applied to
constructing and analyzing many diãerent kinds of neural circuits [9, 10].

2 A simple rate model

We begin by representing the space of functions to be stored, f(x), as a standard basis
expansion:

f(x) =
DX

n=1

Anün(x). (1)

An = hünfi , (2)

1
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Table 1.  Examples of synaptic kernel or filter functions that can be used in the SKIM method.  
The graphs show the filter response for a single event at t = 0 (solid line) and a second event 
at t = 100 (dotted line); the events are shown in red.  For the alpha and damped resonances, 
time constants were chosen for maximum energy at t = 100 steps, and for those with delays 
(the lowest two), at t = 70 steps.    τ is the time constant for the various functions, ΔT is an 
explicit synaptic or dendritic delay, and ω the natural resonant frequency for a damped 
resonant synaptic function.  Apart from the leaky integrator, in which the nonlinearity is 
inherent, the functions would need to be followed by a compressive nonlinearity such as a 
tanh or logistic function, as shown in Figure 1. 
 
The SKIM network processes the input signals as follows: given a sequence of input 
events   ௧   ൈ  on L channels, where t is a time or series index and     ሼ   ሽ  
depending on whether there is an event at time t or not, the synaptic filter functions 
Δ(·) operate on the events as follows: 
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Variety of synaptic responses



Time and delays plays an important role

• Progresses in Neuroscience demonstrated the weaknesses of the perceptron approach and 
introduced LTP/LTD and STDP

from Markram et al. “A history of spike-timing-dependent plasticity,” in Frontiers in Synaptic neuroscience, Vol 3, 
August 2011
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STICK: Spike Time Interval Computational Kernel, a
Framework for General Purpose Computation Using
Neurons, Precise Timing, Delays, and Synchrony

Xavier Lagorce
xavier.lagorce@upmc.fr
Ryad Benosman
ryad.benosman@upmc.fr
Vision and Natural Computation Group, Institut National de la Santé et de la
Recherche Médicale, Paris F-75012, France; Sorbonne Universités, Institut de la
Vision, Université Paris 06, Paris F-75012, France; and Centre National de la
Recherche Scientifique, Paris F-75012, France

There has been significant research over the past two decades in de-
veloping new platforms for spiking neural computation. Current neural
computers are primarily developed to mimic biology. They use neural
networks, which can be trained to perform specific tasks to mainly solve
pattern recognition problems. These machines can do more than simulate
biology; they allow us to rethink our current paradigm of computation.
The ultimate goal is to develop brain-inspired general purpose compu-
tation architectures that can breach the current bottleneck introduced by
the von Neumann architecture. This work proposes a new framework
for such a machine. We show that the use of neuron-like units with
precise timing representation, synaptic diversity, and temporal delays al-
lows us to set a complete, scalable compact computation framework. The
framework provides both linear and nonlinear operations, allowing us to
represent and solve any function. We show usability in solving real use
cases from simple differential equations to sets of nonlinear differential
equations leading to chaotic attractors.

1 Introduction

More than fifty years after the first von Neumann single processor, it is
becoming more and more evident that this sequential power greedy archi-
tecture scales poorly to multiprocessors. Despite the increase in the size
of on-chip cache to stay away from RAM and put the data closer to the
processor, major processor manufacturers have run out of solutions to in-
crease performance. The current solutions to use multicore devices and
hyperthreading try to overcome the problem by allowing programs to run
in parallel. This parallelism is, however, limited as hyperthreaded CPUs,

Neural Computation 27, 2261–2317 (2015) c© 2015 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00783
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Figure 6: Comparison of memory usage when using a dy-
namic list memory instead of a static matrix memory when
extracting time-surfaces. The red line represents the total
allocated memory when using a image-like frame-based
representation while the orange line represents the actual
memory used. The blue line represents the memory con-
sumption when using a dynamic, time-windowed memory.
The dynamic memory has a temporal window of 10 ms.
Note that memory use is computed for 64-bit events, with
32 bits for the timestamp. The clip is a "home" gesture (a
hello-waving hand) from the NavGesture-walk database with
a duration of around 1300 ms. It can be observed that image-
like representations lead to memory footprint up one order of
magnitude in this example.

ming events (access times) to match the high temporal
properties of event-based cameras and ensure computa-
tion can be carried out at the native elementary temporal
step of event-based cameras (1µ s)

• allow for sparse and adaptive memory allocation follow-
ing the scene-driven properties of event-based cameras
and temporal requirements of the used incremental al-
gorithms.

The ideal memory structure that addresses these require-
ments are Conent-Addressable Memory (CAM), also called
Associative Memory. This type of memory structure allows
for entire high-speed memory searches in a single clock
cycle. Associative memory has been used extensively for
several applications [57] including neural networks [58], and
are particularly adapted for event-based processing. Unlike
Random Access Memory (RAM), associative memory is
content based, meaning events stored as content addressable
can be accessed by performing a query for the content itself,
and the memory retrieves the addresses where that data can
be found. This query is parallel in nature by construction,
and therefore orders of magnitude faster than conventional
RAM. They are however expensive to build because of the
necessity of internal comparators and registers that require
larger power consumption. However, in the case of event-
based sensing, the required footprint is significantly reduced
and fast memory access is an absolute requirement, thus

making this type of memory particularly adapted to event-
based processing.

We will introduce in this section a generic architecture for
event-based processing in the context of machine learning
using the context of a classification task for deep temporal
networks. These networks process events incrementally as
they are output by the sensor [22]. We will first introduce the
concept of deep temporal time surface networks, in a second
stage we will present the generic architecture followed by an
implementation study of its hardware costs on FPGA.

A. DEEP TEMPORAL MACHINE LEARNING USING
TIME-SURFACES
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Figure 7: Principle of Temporal Context Representation. Five
lines on information conveyed temporal events at different
time locations tr, ty, ..., tb. A temporal context T is com-
puted for each incoming event (here at time t) as a vector ex-
pressing temporal delays between events as a value between
0 and 1.

Time-surfaces introduced in [22] are local descriptors of
the temporal activity in the spatial neighbourhood of an
event. They allow a compact representation of both spatial
and temporal information. They have been used in a variety
of tasks and have been recently revisited and studied in
several works such as [59] [20] [60] [61]. In this paper,
we use the model presented in [10] that extends [22] to
operate on low power processors in the context of mobile
phones. We use a deep temporal convolution network relying
on time surfaces [22] to study how event-based algorithms
could benefit from a dynamic, adaptive and sparse memory
structure.
The general principle of a time surface is shown in Fig.7
in the context of 1D input (thus generating a time vector).
Five temporal events are shown, each appearing at a par-
ticular time t. The notion of an event here is generic, to
introduce simply the basic concept behind time surfaces.
An event signals the presence of a particular activity at a
precise location in time. The principle behind the method
is to convert the relative timing between events occurring at
different lines of information into normalized features that
are invariant to the actual timing and emphasize only the
temporal interval between past events and the last event that
happens at the current time t, shown in purple in Fig.7. This
method is event-driven in the sense that if no event happens,
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Event-based, 6-DOF Camera Tracking from
Photometric Depth Maps

Guillermo Gallego, Jon E.A. Lund, Elias Mueggler, Henri Rebecq, Tobi Delbruck, Davide Scaramuzza

Abstract—Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity

frames. These cameras do not suffer from motion blur and have a very high dynamic range, which enables them to provide reliable

visual information during high-speed motions or in scenes characterized by high dynamic range. These features, along with a very low

power consumption, make event cameras an ideal complement to standard cameras for VR/AR and video game applications. With

these applications in mind, this paper tackles the problem of accurate, low-latency tracking of an event camera from an existing

photometric depth map (i.e., intensity plus depth information) built via classic dense reconstruction pipelines. Our approach tracks the

6-DOF pose of the event camera upon the arrival of each event, thus virtually eliminating latency. We successfully evaluate the method

in both indoor and outdoor scenes and show that—because of the technological advantages of the event camera—our pipeline works

in scenes characterized by high-speed motion, which are still unaccessible to standard cameras.

Index Terms—Event-based vision, Pose tracking, Dynamic Vision Sensor, Bayes filter, Asynchronous processing, Conjugate priors,

Low Latency, High Speed, AR/VR.

!

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/iZZ77F-hwzs.

1 INTRODUCTION

THE task of estimating a sensor’s ego-motion has important

applications in various fields, such as augmented/virtual re-

ality (AR/VR), video gaming, and autonomous mobile robotics.

In recent years, great progress has been achieved using visual

information to fulfill such a task [1], [2], [3]. However, due to

some well-known limitations of traditional cameras (motion blur

and low dynamic-range), current visual odometry pipelines still

struggle to cope with high-speed motions or high dynamic range

scenarios. Novel types of sensors, called event cameras [4, p.77],

offer great potential to overcome these issues.

Unlike standard cameras, which transmit intensity frames at

a fixed framerate, event cameras, such as the Dynamic Vision

Sensor (DVS) [5], only transmit changes of intensity. Specifically,

they transmit per-pixel intensity changes at the time they occur,

in the form of a set of asynchronous events, where each event

carries the space-time coordinates of the brightness change (with

microsecond resolution) and its sign.

Event cameras have numerous advantages over standard cam-

eras: a latency in the order of microseconds, a very high dynamic

range (140 dB compared to 60 dB of standard cameras), and very

low power consumption (10 mW vs 1.5 W of standard cameras).

Most importantly, since all pixels capture light independently, such

sensors do not suffer from motion blur.

It has been shown that event cameras transmit, in principle,

all the information needed to reconstruct a full video stream

• The authors are with the Robotics and Perception Group, affiliated
with both the Dept. of Informatics of the University of Zurich and the
Dept. of Neuroinformatics of the University of Zurich and ETH Zurich,
Switzerland: http:// rpg.ifi.uzh.ch/ . This research was supported by the
National Centre of Competence in Research (NCCR) Robotics, the SNSF-
ERC Starting Grant, the Qualcomm Innovation Fellowship, the DARPA
FLA program, and the UZH Forschungskredit.

Fig. 1: Sample application: 6-DOF tracking in AR/VR (Aug-

mented or Virtual Reality) scenarios. The pose of the event camera

(rigidly attached to a hand or head tracker) is tracked from a

previously built photometric depth map (RGB-D) of the scene.

Positive and negative events are represented in blue and red,

respectively, on the image plane of the event camera.

[6], [7], [8], [9], which clearly points out that an event camera

alone is sufficient to perform 6-DOF state estimation and 3D

reconstruction. Indeed, this has been recently shown in [9], [10].

However, currently the quality of the 3D map built using event

cameras does not achieve the same level of detail and accuracy as

that of standard cameras.

Although event cameras have become commercially available

only since 2008 [11], the recent body of literature on these new

sensors1 as well as the recent plans for mass production claimed

by companies, such as Samsung and Chronocam2, highlight that

1. https://github.com/uzh-rpg/event-based vision resources

2. http://rpg.ifi.uzh.ch/ICRA17 event vision workshop.html

Motion Equivariant Networks for Event Cameras

with the Temporal Normalization Transform

Alex Zihao Zhu
1

Ziyun Wang
1

Kostas Daniilidis
1

Abstract

In this work, we propose a novel transformation
for events from an event camera that is equivari-
ant to optical flow under convolutions in the 3-D
spatiotemporal domain. Events are generated by
changes in the image, which are typically due to
motion, either of the camera or the scene. As a
result, different motions result in a different set of
events. For learning based tasks based on a static
scene such as classification which directly use the
events, we must either rely on the learning method
to learn the underlying object distinct from the mo-
tion, or to memorize all possible motions for each
object with extensive data augmentation. Instead,
we propose a novel transformation of the input
event data which normalizes the x and y positions
by the timestamp of each event. We show that this
transformation generates a representation of the
events that is equivariant to this motion when the
optical flow is constant, allowing a deep neural
network to learn the classification task without the
need for expensive data augmentation. We test
our method on the event based N-MNIST dataset,
as well as a novel dataset N-MOVING-MNIST,
with significantly more variety in motion com-
pared to the standard N-MNIST dataset. In all
sequences, we demonstrate that our transformed
network is able to achieve similar or better per-
formance compared to a network with a standard
volumetric event input, and performs significantly
better when the test set has a larger set of motions
than seen at training.

1. Introduction

Event-based cameras are a novel asynchronous sensing
modality that provides exciting benefits, such as the ability
to track fast moving objects with no motion blur and low

1University of Pennsylvania. Correspondence to: Alex Zihao
Zhu <alexzhu@seas.upenn.edu>.

Figure 1. Classical convolution layers would not be equivariant to
event motions on the left, since they are shear deformations of the
event volume. After transforming to canonical coordinates on the
right, the volume translates uniformly, resulting in equivariance
to the motion. Left: Raw input events. Right: Corresponding
transformed events.

latency, high dynamic range, and low power consumption.
These benefits provide a compelling reason to utilize these
cameras in traditional vision tasks such as image classifi-
cation, where they can operate in challenging conditions
beyond the capability of traditional cameras.

However, the data generated by these cameras, often rep-
resented as a stream of changes and their associated spa-
tiotemporal positions, do not directly fit into the traditional
paradigm for neural networks, which are designed to per-
form inference on 2D image frames. Recent works have
tried to adapt events into this paradigm by performing con-
volutions over either compressed 2D representations of the
events or discretized 3D volumes. However, due to the high
temporal resolution of the events, this voxel grid will natu-
rally embed the motion of the image, and so any given image
has a near infinite number of possible 3D representations,
depending on the motion of the camera and or scene.

In this work, we propose a novel coordinate transformation
for the 3D event data, which transforms the events into a
space that is equivariant to motion for convolutions. In par-
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Most Work in Neuromorphic Vision relies on 
computing Equations



• Allow to execute Learning and General Computation (equations)

• Allow for incremental processing ensuring a fast access for each incoming event
to local resources

• The retrieval of relevant local information around incoming events (access times) 
to match the high temporal properties of event-based cameras and ensure
computation can be carried out at the native elementary temporal step of event-
based cameras (1μs) 

• Allow for sparse memory use following the scene-driven properties of event-
based cameras and temporal requirements of the used incremental algorithms. 

• Meet the current urgent need to handle >5 Giga Events/second at few mW

The future is ours … but, we need:


