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Focus of our research in Graz:
Getting attractive Al-performance into
spike-based neuromorphic hardware

Options for that:
1. Train an ANN, and use its weights for an SNN on the chip

2. Train an SNN off-chip, and use its weights on the chip
3. Train spiking DNNs on the chip.

| will present biologically inspired methods for each of these three
options.

We propose that this as a generally fruitful research strategy for
neuromorphic hardware (NMH):

Combine the best of two worlds: ML/AI and brain science.



1. Train an ANN, and use its weights for the SNN on the chip

Question: If one needs to use offline training, why should one first train an ANN
offline, rather than training an SNN offline?

Answer: E.g. for image classification the industrial standard dataset ImageNet is
so large (1.2 million training examples) and the best performing ANNSs are so large
(250 million neurons) that this training process can only be carried out by a few
cr?mpanies (such as Google or Facebook) which have the computing resources for
that.

Fortunately, Google has made the weights of the best performing trained ANNs for
ImageNet (EfficientNet) public. Hence we can use them also in SNNs. But the
question is how?

Obstacles for common ANN2SNN conversion methods:

. . . | SiLU
1. With a rate-coding conversion one cannot expect an

energy advantage NMH. " f(2)

2. The best performing ANNs (EfficientNet) use the SiLU
activation function, which poses additional obstacles for

rate coding, since it outputs both positive and negative _ (
values.




Methods for ANN-to-SNN conversions

Our new method:
* Few spike (FS) coding.

Inspiration from biology:

Many neurons in the brain encode the
amplitude of an input current by a
spike-pattern with few spikes

Inspiration from mathematics:
Binary coding
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FS-coding requires a special type of spiking neuron:
a FS-neuron
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To induce encoding of analog values x with few spikes within a short time
window of K time steps (e.g., K= 16), we endow the FS-neuron with an
internal dynamics during these K time steps (biological neurons actually also
have such internal dynamics on a slower time scale).

This internal dynamics is determined by parameters T(t), h(t), d(t) for t=1, ..., K

These parameters are optimized to emulate specific ANN-neurons.



Example: Internal parameters of a FS-neuron that is
optimized to emulate an ANN neuron with the SiLU
activation function from EfficientNet
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parameter optimization uses the
fewest spikes for the most frequently
occurring values of x:

number of spikes
+ [=2] [s2]
Ayisuap Ayjigeqoud

[he]

(=]



SNN performance on ImageNet that
results from this new ANN2SNN conversion

4

baseball seal

ImageNet dataset:
o 1,281,167 training images
o 50,000 test images
o 1000 categories
=« among them for example 59 types of birds

ANN accuracy of the
Model ceUrac SNN produced | # params | # layers | # neurons | # spikes

Y by FS-conversion

ImageNet2012

3 85% 83.57% : C
EfficientNet-B7 (97.2 %) (96.7%) 66 M 218 259M 554.9M
75.22% 75.10% C ,‘ .
ResNet50 (92.4%) (92.36%) 26M 50 9.6M 14.045M

Previous SNN record for ImageNet: 74.6% (Rueckauer et al., 2017)
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Summary of section 1 of my talk

* FS conversion enables by far the best performance of SNNs on ImageNet.

 Since each layer of the SNN spends after FS-conversion just K (e.g., K= 16)
time steps, the network can start to classify a new image every 2K time steps.
Hence the resulting throughput is substantially higher than for rate-based
ANNZ2SNN conversion.

« Discussions with several NMH designers lead to the conclusion that FS-neurons
can be implemented at moderate cost in NMH. They will compete with new
efforts to implement ANN neurons with ReLU activation functions directly in
digital ,NMH". Not clear whether one can also implement the SiLU activation
function efficiently directly in NMH.

- The option to encode information in spike patterns with few
spikes seems to be under-researched (but used by nature)

« The paper on our approach appeared last week in print:

Christoph Stockl, Wolfgang Maass. (2021). Optimized spiking
neurons can classn‘y images with high accuracy through
temporal coding with two spikes. Nature Machine Intelligence.




2. Train an SNN off-chip for on-chip inference

* Results in this direction were so far not encouraging for DNNSs.

« But actually, one had focused on just one type of DNN: CNNs, where the
problem is to get into a regime where the SNN achieves high accuracy with
energy-efficient low firing rates.

Question: What is the situation for other DNNs that are important for Al?

| will focus here on Relational Networks (RelNets)., which have been developed
in Al for reasoning about relations between items in a story, an image, a video, but
can also be used for online reasoning about relations between items in
simultaneously presented videos and stories.

For implementing RelNets in SNNs, we first have to emulate LSTM units in
neuromorphic hardware (for encoding sentences).



One can emulate LSTM units on Loihi via AHP-currents
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First performance test:
Time series classification (sequential MNIST) on Loihi

A Spike-encoding of sequentially scanned pixels B General recurrent spiking neural network
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We achieved via spiking neurons with AHP currents on Loihi almost the
same classification accuracy as LSTM networks, but with an
Energy-Delay-Product that was by several orders of magnitude smaller.



Back to RelNets,
and the implementation challenge for large DNNs on Loihi

We developed a spike-based variation of the ANN-RelNet of

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P., &
Lillicrap, T. (2017). A simple neural network module for relational reasoning. arXiv preprint
arXiv:1706.01427.

They had tested their RelNet on answering questions about
» relations between visual objects in an image (CLEVR dataset), and

« relations between objects, persons, and actions in stories, given as
sequences of sentences in natural language (bAbl tasks).

We focused on the application to natural language, since that requires no CNN
for preprocessing.



Examples for 6 bAbl tasks (Weston et al., 2016)

} Task 5: Three Argument Relations

| Mary gave the cake to Fred.

 Fred gave the cake to Bill.
Jeff was given the milk by Bill.
Who gave the cake to Fred? A: Mary
Who did Fred give the cake to? A: Bill

Task 13: Compound Coreference

Daniel and Sandra journeyed to the office.
Then they went to the garden.

Sandra and John travelled to the kitchen.
After that they moved to the hallway:.
Where is Daniel? A: garden

| Task 7: Counting
| Daniel picked up the football.
' Daniel dropped the football.
Daniel got the milk.
Daniel took the apple.

How many objects is Daniel holding? A: two

Task 15: Basic Deduction

Sheep are afraid of wolves.

Cats are afraid of dogs.

Mice are afraid of cats.

Gertrude is a sheep.

What is Gertrude afraid of? A:wolves

Task 19: Path Finding
The kitchen is north of the hallway.
The bathroom is west of the bedroom.
The den is east of the hallway.
The office 1s south of the bedroom.

How do you go from den to kitchen? A: west, north
How do you go from office to bathroom? A: north, west

Task 20: Agent’s Motivations

John 1s hungry.

John goes to the kitchen.

John grabbed the apple there.

Daniel is hungry.

Where does Daniel go? A:kitchen

Why did John go to the kitchen? A:hungry

A task is considered solved if there are at most 5% errors on new test stories from the task.




Structure of the spike-based RelNet

Example:
Application of the spiking RelNet to
a Basic Deduction task:

wolves are afraid of mice
sheep are afraid of mice =

Task 15: Basic Deduction

Sheep are afraid of wolves.

Cats are afraid of dogs.

Mice are afraid of cats.

Gertrude is a sheep.

What 1s Gertrude afraid of? A:wolves

winona is a sheep
mice are afraid of cats
cats are afraid of wolves
jessica is a mouse
emily is a cat
gertrude is a wolf
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Relational Reasoning

on Loihi

wolves are afraid of mice
sheep are afraid of mice -

winona is a sheep

mice are afraid of cats
cats are afraid of wolves

jessica is a mouse
emily is a cat
gertrude is a wolf
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« More than 95% of RelNet consists of feedforward modules

* Hence we needed to make activity in the feedforward modules extremely sparse in
order to be energy-efficient

* Note that the size of module C grows quadratically with the number of sentences in a
story. This allowed us to measure energy consumption for several effective RelNet sizes

« Animportant step for enforcing event based computing was to insist that the SNN
output is given at a single time step:
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Bringing the spiking RelNet into an event based
activity regime

r100

In fact, the activity became sparser for S 30 ! "

larger RelNets (their size grows roughly £
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% 1.0- 'LM—’ o

Likely explanation: the number of = o0l o

0 50k 100k 150k 200k
Number of neurons in the network

.interesting relations” that the network
extracts does not grow equally fast

We introduced in addition a generally A
useful tool for sparsening firing activity in
gradient descent training:

Membrane voltage regularization B Without voltage regularization

17000}
It allows us to use strong spike-rate 5 o
regularization without locking neurons With voliage regulerization

into an ineffective strongly hyperpolarized |

State: : 4 3 -2 -1 0 1

Scaled membrane voltage

No penalty

Voltage
regularization loss
o ~

Number of
time steps

Number of
time steps

Percentage of Feed-Forward
Spiking Neurons



Implementation on 22 Loihi chips

A few tricks (and many
additional cores) were
needed to overcome
constraints on fan-out
and number of
synapses of a core.

Additional relay cores
(green) turned out to
be useful for reducing
inter-chip
communication.

wolves are afraid of mice ~ \/‘P

sheep are afraid of mice — ‘—' - e — 90—
winona is a sheep . (" ) . :
nice are afraid of cats e . 7]
:ats are afraid of wolves 2 L -_ \
essica is a mouse e : parn) FF LIF Linear
- | = = Softmax f-Output

amily is a cat /_,’/;,_'.{\_- - — etwork  Readout

oy s

jJertrude is a wolf

. Aggregation

what is emily afraid of? 1 _G_- Relational Function  Function  Final Readout Function fy(-)
gO(Oi(t)v Oj(t)v Q(t))

Sentence Embedding

Nahuku board C utilization of the neuromorphic chips
: 0710 000 5= gyy @ EELL

.u;

3 -
5 -
Bl - -~

PN R

2ihi chip on

> & 2 '.-. " } R B RS S B E LSNN cores E

e front sld A Fa : i : =H !H;:‘H ﬁ_—:l—ﬁ:;?:l.’ . : Relay cores H
. e Lolhichlpon *; :T i R E Emgcms H
m T i o [ regation cores |1

the back side | 11 112320 cores on 22 chips +— H{ @l Final readout cores [

""" e i T oty frore ] A e oo




Energy consumption of ANN RelNets on GPUs relative
to spiking RelNets on Loihi

Relational reasoning
GPU
# cores on Loihi 124 332 700 1552 2320
# sentences (RR) 9 6 10 16 20 All ratios shown against Loihi (=1).
. RelN lve 17 of the 20
Energy ratio 16.49x  11.92x 7.78x 5.32x 4.36x bAbI taske. in addition Tack 19
was excluded because it takes
Latency ratio 0.73x  0.56x 0.44x 0.33x 0.38x tLOthuch computation time on
oihi.
EDP ratio 12.10x  6.73x  3.41x 1.73x 1.67x

Results:
» Loihi needs for relational reasoning 4-12 time less energy than a GPU

« Loihi is somewhat slower than the GPU (apparently due to interchip
communication and the larger number of computation steps needed on Loihi)

* Nevertheless, Loihi had for all problem sizes a lower EDP (6 times lower in the
most frequently occurring range of stories with up to 6 sentences)



Summary of section 2 of my talk

 LSTM units can be efficiently emulated on Loihi with AHP-currents

» This makes emulations of LSTM networks on Loihi substantially more
energy efficient than LSTM networks on GPUs

* RelNets use LSTM units in a small submodule, but still can be implemented
more energy efficiently on Loihi

* One reason for that is intrinsic to this type of Al task: salient
relations between items tend to be grow slowly with problem size

(use attention for vision tasks?)

« Paper in preparation: - Andreas
Y wild
Arjun Rao, Philipp Plank, Andreas Wild, §
Wolfgang Maass. A long short-term
memory for implementing Al in

neuromorphic hardware



3. Train spiking DNNs on the chip

E-prop can be implemented on SpiNNaker and Loihi2 for on-chip
learning

But software simulations suggest that e-prop learns slower than
BPTT

Hence we need variations of e-prop that enable fast learning.



One slide on e-prop (,€ligibility trace forward Propagation®)

Combines insight from neuroscience and theory:

« From neuroscience: Role of local eligibility traces and top down learning signals
(third factors)

« From theory: Gradient descent for the network loss E can be written rigorously in the

form:
dE y

learning eligibility
signal trace

This suggests the following online learning rule for the synapse from neuron i to j:

modify Wj attime t by -Lf-ef;



ldeal learning signals L]t- usually require knowledge of the

future, and need to be replaced for online learning
by online approximations

The ideal learning signal L§ for neuron j at time

dE .
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D. Salaj, R. Legenstein, and W. Maass. A ot B — ® AUF
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Communications, 2020. !
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Biological inspiration:

Learning signals are generated in the brain by
specialized brain structures, such as VTA

Hypothesis: The production of learning signals
(such as DA) in the brain has been optimized
by evolution in special brain structures, such as
VTA, to support fast learning of tasks that are
Important for survival.

So lets do the same with our SNNSs!

Rather than approximating ideal learning
signals based on gradients, focus on

generating learning signal that enable
directly fast learning for more limited

ranges F of learning tasks.
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Example: Define the target range F of learning tasks
as capability to reproduce any given arm movement

Single weight
Movement update using Movement
demonstration in learning signals replicated using
cartesian provided by the the two-joint arm
coordinates error-module

>




Result: first trial second trial
One-shot learning of

new arm movements
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Summary of part 3

* By optimizing the generation of learning signals via a special SNN
(that can easily be implemented in NMH) one can substantially
speed up on-chip learning via e-prop for specific families of
learning tasks.

« Other applications that we explored: One-shot learning of new
(Omniglot) symbols, and of new spoken words

First draft of a paper:
F. Scherr, C. Stoeckl, and W. Maass.

One-shot learning with spiking
neural networks. bioRxiv, 2020.



https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20

Summary of my talk

| have demonstrated three biologically inspired methods for enhancing the
performance and energy efficiency of spike-based Al tools

We have shown that one can achieve in this way a classification
performance of SNNs on ImageNet that is very close to the best CNN
performance (using on average less than 2 spikes per neuron)

We have also shown that in contrast to CNNSs, large Relnets can be
implemented efficiently in NMH

Finally, fast and efficient variants of e-prop are on the way, enabling in some
cases even one-shot learning by SNNs

| view these as examples of a generally fruitful research strategy for NMH:
To integrate the best of two worlds: ML/AI and brain science.



