
Neuromorphic Complexity Theory
Johan Kwisthout & Nils Donselaar, Donders Institute

Towards neuromorphic complexity analysis

• What kind of problems are efficiently solvable on a
neuromorphic computer? Which are not? Are these
problems different / the same as the problems
efficiently solvable on a Von Neumann architecture?

• Given the nature of neuromorphic architectures,
energy seems to be a vital resource (not only time)

• Our current models of computation (viz., Turing
machines) capture only time and space as relevant
resources for computation – not energy!

New computational model is needed

• DoE 2016 workshop report, p. 29:
“…likely that an entirely new computational theory
paradigm will need to be defined in order to encompass the
computational abilities of neuromorphic systems”

Goal: To describe what sort of problems can and cannot be
solved energy-efficiently on neuromorphic hardware

Needed: New branch of complexity theory with:

1) Formal notion of “computation” in neuromorphic architectures
2) Complexity classes based on resource constraints
3) Hardness criteria and a means to translate problems into

each other while keeping resources invariant
4) Algorithms to show that a problem is in a specific class

Proposed computational framework

Spiking neural network model

• Key neuromorphic aspects are there:
• Co-located memory & computation
• Spiking behavior  energy efficiency
• Stochastic or deterministic spikes

• Underlying principle of Loihi (& SpiNNaker)

Figure adapted from Habenschuss, S., Jonke, Z., & Maass, W. (2013). Stochastic Computations in
Cortical Microcircuit Models. PLoS computational biology, 9(11), e1003311-e1003311.

Neuronal model: basically simple LIF model

• Specific input and readout neurons
to inject / extract information

• Stochasticity or determinism

• Discrete time steps

Beyond Turing

• Turing Machine ML
• Input I encoded (in binary) on the tape
• State machine ML implements algorithm
• Formally: recognizes languages L ⊂ {0,1}*
• Canonical question: Does ML accept I ∈ L

using resources (time/space) at most R?

• Family of Boolean Circuits CL,|I|
• Input I encoded as special input gates
• Circuit (different circuit per input size |I|)

implements algorithm
• Formally: recognizes languages L ⊂ {0,1}*
• Canonical question: Does, for every I, the

corresponding circuit CL,|I| accept I ∈ L
using resources (time/space) at most R?

Beyond Turing

• In SNNs, input I and algorithm A are co-located!
• We take the circuit idea to the extreme…

• Collection of SNNs SL,I
• One network for every input I

(or set of inputs {I})
• Input and ‘algorithm’ operating on it are

encoded in the network structure
• Formally: recognizes languages L ⊂ {0,1}*
• Accept / reject by special neurons firing
• Canonical question: Is there a resource-

bounded Turing machine ML that, given I,
generates SL,I which decides I using
resources at most RS?

• Agnostic about how SL,I is generated
(trained / programmed / configured)

Towards neuromorphic complexity analysis

• No cheating: constructing / configuring / training the
network should be part of the computational model
and count for towards resource usage

Computation

Input Output

Towards neuromorphic complexity analysis

• Traditional Machine-Learning view
(e.g. train a network for pattern recognition)

Computation
Training Output

Test

Learning
algorithm

Resulting
network
config.

Amortized
resources Case-based

resources

Towards neuromorphic complexity analysis

• Configuration view (e.g. construct a ‘generic’
network for solving graph optimization problems)

Computation
Input
type OutputGeneric

Construction
algorithm

Resulting
network
config.

Amortized
resources

Input

Case-based
resources

Towards neuromorphic complexity analysis

• Programming view (on the basis of input, construct
a network that computes [more efficiently] on that
input, e.g. shortest path in a graph)

Computation

Input OutputSpecific
Construction
algorithm

Resulting
network
config.

Case-based
resources Case-based

resources

Beyond Turing: preprocessing + computation

Pre-processing step
taking resources RA

Computing step
taking resources RS

Computation

• Hierarchy of complexity classes defined by choices
for RA(time, space) and RS(time, space, energy)

• E.g., RA(poly time, log space), RA(poly time, space, energy)
• TM-preprocessing-then-SNN-computation-model: [M ° S]

Input Output

Trade-off network generality vs efficiency

≤ |N| + 2 spikes
i + 1 time steps

≤ 2|N| + 2 spikes
i + 1 time steps

Deciding whether array A[n] contains integer i (O(n) on CPU)

Computing with neuromorphic oracle

• More powerful alternative: use S as co-processor
• Formally: S is an oracle for Turing machine ML

• TM-using-SNN-oracle-model: [MS]

Computation on ML
taking resources RA

Computing on S
taking resources RS

Computation

Input Output

• “Porting” of traditional complexity apparatus

• Resource-preserving reductions from problem A to
problem B (like polynomial many-one reductions)

• Limiting resources: clock, ruler  also meter

• Classes based on resources for TM and SNN

• Canonical hard problems relative to constraints on
time, energy, and space

Some first theoretical results

• Canonical complete problems for deterministic Turing Machines:
• Time-constrained halting:

Given a TM, an input i for that machine, and a number T, does that
machine halt on that input within the first T steps?
(P-completeness if TM is deterministic and T in unary notation; if T
is in binary: EXP-completeness)

• Canonical complete problem for SNNs [M ° S]
• M ° S-Halting

Given an M ° S-machine, an input i for that machine, and resource
limits t and e in unary notation; in the network Si constructed by M
on input i, does Nacc fire before time step t using energy at most e?

• For oracle machines [MS] proving a complete problem is more
difficult (needs generic Cook-like reduction)!
• Describe behaviour of M as a satisfiability variant and include in the

formula the string of actual oracle answers (the “oracle prophesy”)

Some first theoretical results

Max network flow problem

A more natural problem

MSc project
Abdullahi Ali

https://arxiv.org/
abs/1911.13097

It can be solved in Logspace when allowed to
use a neuromorphic co-processor!

This problem is P-
complete, meaning that
it cannot be efficiently
parallellized (use only
logarithmic space) on
traditional machines!

But not efficiently on a neuromorphic system alone!

Relevance for NICE research field

• Contribute formal apparatus / theory helps
neuromorphic systems to mature

• Examples of programming (rather than training)
SNNs, temporal computation design patterns, in the
future: abstraction to programming paradigm

• Provide a formal means of assessing hardness or
tractability of problems (in addition to benchmarks)

• Show the relation (or mismatch...) between formal
theory and practice! (e.g. keeping a neuron at sub-
threshold potential is not free…)

Future work

• Build a bigger arsenal of motivs / examples for basic
building blocks (searching, sorting, selecting etc.)

• New problems: genetic algorithms, dominating set

• Outreach to programming education / learning how
to design network circuits, “think temporally”

• Investigate stochastic models of computation
• Investigate amortized costs (create-and-use)
• Investigate ‘local changes’ in the network

• Include costs of silence, communication / readout,
and compare theory with hardware implementation

	Dianummer 1
	Dianummer 2
	Dianummer 3
	Dianummer 4
	Dianummer 5
	Dianummer 6
	Dianummer 7
	Dianummer 8
	Dianummer 9
	Dianummer 10
	Dianummer 11
	Dianummer 12
	Dianummer 13
	Dianummer 14
	Dianummer 15
	Dianummer 16
	Dianummer 17
	Dianummer 18
	Dianummer 19

