Neuromorphic Complexity Theory
Johan Kwisthout & Nils Donselaar, Donders Institute
Towards neuromorphic complexity analysis

• What kind of problems are efficiently solvable on a neuromorphic computer? Which are not? Are these problems different / the same as the problems efficiently solvable on a Von Neumann architecture?

• Given the nature of neuromorphic architectures, energy seems to be a vital resource (not only time)

• Our current models of computation (viz., Turing machines) capture only time and space as relevant resources for computation – not energy!
New computational model is needed

- DoE 2016 workshop report, p. 29:
 “…likely that an **entirely new computational theory paradigm** will need to be defined in order to encompass the computational abilities of neuromorphic systems”

Goal: To describe what sort of **problems** can and cannot be solved **energy-efficiently** on neuromorphic hardware

Needed: New branch of complexity theory with:

1) Formal notion of “computation” in neuromorphic architectures
2) Complexity classes based on resource constraints
3) Hardness criteria and a means to *translate* problems into each other while keeping resources invariant
4) Algorithms to show that a problem is in a specific class
Proposed computational framework

Spiking neural network model

• Key neuromorphic aspects are there:
 • Co-located memory & computation
 • Spiking behavior \rightarrow energy efficiency
 • Stochastic or deterministic spikes

• Underlying principle of Loihi (& SpiNNaker)

Neuronal model: basically simple LIF model

- Specific **input** and **readout** neurons to inject / extract information
- Stochasticity or determinism
- Discrete time steps

$x_1(t)$

$x_2(t)$

$x_3(t)$

$x_m(t)$

$u_k(t)$

$\rho(t)$

τ_k

$x_i(t + d_{ki})$

\[
u_k(t) = \begin{cases}
R_k, & \text{if } u_k(t-1) \geq T_k; \\
0, & \text{if } u_k(t-1) \leq 0; \\
m_k u_k(t-1) + \sum_j w_{jk} x_j(t - d_{jk}), & \text{otherwise.}
\end{cases}
\]

$R_k =$ reset voltage, $T_k =$ threshold, $m_k =$ leakage constant

$\rho_{\text{det}}(t) = \begin{cases}
1, & \text{if } u_k(t-1) \geq T_k; \\
0, & \text{otherwise.}
\end{cases}$

$\rho_{\text{stoc}}(t) \propto f(u_k(t))$

$x_k(t) = \begin{cases}
1, & \text{if a spike was released in } (t - \tau_k, t]; \\
0, & \text{otherwise.}
\end{cases}$
Beyond Turing

- **Turing Machine** M_L
 - Input I encoded (in binary) on the tape
 - State machine M_L implements algorithm
 - Formally: recognizes languages $L \subset \{0,1\}^*$
 - Canonical question: Does M_L accept $I \in L$ using resources (time/space) at most R?

- **Family of Boolean Circuits** $C_{L,|I|}$
 - Input I encoded as special input gates
 - Circuit (different circuit per input size $|I|$) implements algorithm
 - Formally: recognizes languages $L \subset \{0,1\}^*$
 - Canonical question: Does, for every I, the corresponding circuit $C_{L,|I|}$ accept $I \in L$ using resources (time/space) at most R?
Beyond Turing

- In SNNs, input I and algorithm A are **co-located**!
- We take the circuit idea *to the extreme*…

Collection of SNNs $S_{L,I}$

- *One* network for *every* input I (or set of inputs $\{I\}$)
- Input and ‘algorithm’ operating on it are encoded in the network structure
- Formally: recognizes languages $L \subseteq \{0,1\}^*$
- Accept / reject by special neurons firing
- Canonical question: Is there a resource-bounded Turing machine M_L that, given I, generates $S_{L,I}$ which decides I using resources at most R_S?

- **Agnostic** about how $S_{L,I}$ is generated (trained / programmed / configured)
Towards neuromorphic complexity analysis

• No **cheating**: constructing / configuring / training the network should be part of the computational model and count for towards resource usage
Towards neuromorphic complexity analysis

- Traditional **Machine-Learning view** (e.g. train a network for pattern recognition)
Towards neuromorphic complexity analysis

- **Configuration view** (e.g. construct a ‘generic’ network for solving graph optimization problems)
Towards neuromorphic complexity analysis

- **Programming view** (on the basis of input, construct a network that computes [more efficiently] on that input, e.g. shortest path in a graph)
Beyond Turing: preprocessing + computation

Hierarchy of complexity classes defined by choices for $R_A(time, space)$ and $R_S(time, space, energy)$

- E.g., $R_A(poly time, log space)$, $R_A(poly time, space, energy)$
- TM-preprocessing-then-SNN-computation-model: $[M \circ S]$
Trade-off network generality vs efficiency

Deciding whether array A[n] contains integer i (O(n) on CPU)

\[\leq |N| + 2 \text{ spikes} \]
\[i + 1 \text{ time steps} \]
Computing with neuromorphic oracle

- More powerful alternative: use S as co-processor
- Formally: S is an oracle for Turing machine M_L
- TM-using-SNN-oracle-model: $[M^S]$
Some first theoretical results

- **“Porting”** of traditional complexity apparatus

- Resource-preserving *reductions* from problem A to problem B (like polynomial many-one reductions)

- Limiting resources: clock, ruler → also *meter*

- **Classes** based on resources for TM and SNN

- **Canonical hard** problems relative to constraints on time, energy, and space
Some first theoretical results

- Canonical complete problems for deterministic Turing Machines:
 - **Time-constrained halting:**
 Given a TM, an input i for that machine, and a number T, does that machine halt on that input within the first T steps? (P-completeness if TM is deterministic and T in unary notation; if T is in binary: EXP-completeness)

- Canonical complete problem for SNNs [$M \circ S$]
 - **$M \circ S$-Halting**
 Given an $M \circ S$-machine, an input i for that machine, and resource limits t and e in unary notation; in the network S_i constructed by M on input i, does N_{acc} fire before time step t using energy at most e?

- For oracle machines [M^S] proving a complete problem is more difficult (needs generic Cook-like reduction)!
 - Describe behaviour of M as a satisfiability variant and include in the formula the string of actual oracle answers (the “oracle prophesy”)

• Canonical complete problems for deterministic Turing Machines:
 • **Time-constrained halting:**
 Given a TM, an input i for that machine, and a number T, does that machine halt on that input within the first T steps? (P-completeness if TM is deterministic and T in unary notation; if T is in binary: EXP-completeness)

• Canonical complete problem for SNNs [$M \circ S$]
 • **$M \circ S$-Halting**
 Given an $M \circ S$-machine, an input i for that machine, and resource limits t and e in unary notation; in the network S_i constructed by M on input i, does N_{acc} fire before time step t using energy at most e?

• For oracle machines [M^S] proving a complete problem is more difficult (needs generic Cook-like reduction)!
 • Describe behaviour of M as a satisfiability variant and include in the formula the string of actual oracle answers (the “oracle prophesy”)
A more natural problem

Max network flow problem

This problem is P-complete, meaning that it cannot be efficiently parallelized (use only logarithmic space) on traditional machines!

Max Network Flow
is in $L^{\text{SNN}(O(n), O(n), O(n))}$

It can be solved in Logspace when allowed to use a neuromorphic co-processor!

Threshold Network Flow with Reservoirs
is $O(1) \circ \text{SNN}(O(1), O(n), O(n))$-hard.

But not efficiently on a neuromorphic system alone!

MSc project
Abdullahi Ali

https://arxiv.org/abs/1911.13097
Relevance for NICE research field

• Contribute formal apparatus / theory helps neuromorphic systems to **mature**

• Examples of **programming** (rather than training) SNNs, temporal computation design patterns, in the future: abstraction to programming paradigm

• Provide a formal means of assessing **hardness** or **tractability** of problems (in addition to benchmarks)

• Show the relation (or mismatch...) between formal **theory and practice**! (e.g. keeping a neuron at sub-threshold potential is not free...)
Future work

• Build a bigger arsenal of motifs / examples for basic building blocks (searching, sorting, selecting etc.)

• New problems: genetic algorithms, dominating set

• Outreach to programming education / learning how to design network circuits, “think temporally”

• Investigate stochastic models of computation
• Investigate amortized costs (create-and-use)
• Investigate ‘local changes’ in the network

• Include costs of silence, communication / readout, and compare theory with hardware implementation