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Cue integration is a fundamental
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Neurons with conductance-based synapses
naturally implement probabilistic cue integration
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Learning Bayes-optimal inference of
orientations from multimodal stimuli

The trained model approximates ideal observers
and reproduces psychophysical signatures of experimental data

[Nikbakht et al., 2018]
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Cross-modal suppression as

reliability-weighted opinion pooling

The trained model exhibits cross-modal suppression:

at low stimulus intensities, firing rate is larger bimodal condition
at high stimulus intensities, firing rate is smaller in bimodal condition
example prediction for experiments: strength of suppression
depends on relative reliabilities of the two modalities

[Ohshiro et al., 2017]
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Neuron models with conductance-based synapses
naturally implement computations required for
probabilistic cue integration
Our plasticity rules matches the somatic potential
distribution to a target distribution & weights pathways
according to reliability
A model trained in a multisensory cue integration tasks
reproduces behavioral and neuronal experimental data
The direct connection between normative and
mechanistic descriptions allows for predictions on the
systems as well as cellular level
Next: work out (new) detailed pre-/"post"dictions for
specific experimental setups
Analog neuromorphic systems present a fitting
substrate: non-linear differential eq. tricky to integrate

[blog-thebrain.org]

[Billaudelle et al., 2020] 9


