
Fabian Sinz

Neural Intelligence Group, Uni Tübingen
soon Uni Göttingen

@sinzlab

NICE 2021

Inductive bias transfer
between brains and machines

Success of deep learning
T

O
P
 1

 A
C

C
U

R
A

C
Y

SIFT + FVsSIFT + FVs

AlexNetAlexNet

SPPNetSPPNet

Inception V3Inception V3

NASNET-A(6)NASNET-A(6)

FixResNeXt-101 32x48dFixResNeXt-101 32x48d

Meta Pseudo Labels (EfficientNet-L2)Meta Pseudo Labels (EfficientNet-L2)

Other models State-of-the-art models

2012 2014 2016 2018 2020

40

50

60

70

80

90

100

Deep Learning

https://paperswithcode.com/sota/image-classification-on-imagenet

Current state-of-the-art is brittle

BA
“cat”

adversarial
perturbation

“moped”

=

+

super-human
performance

super-human
performance

chance
performance

D
“cat”

style transfer

90% 80%

“elephant”

=

+

Deep network performance

train noise = test noise

Train Test

train noise ≠ test noise

keep texture onlyC original
Geirhos et al. 2018. “Generalisation in Humans and Deep Neural Networks.”

Szegedy et al. 2013. “Intriguing Properties of Neural Networks.”
Sinz et al 2019. “Engineering a Less Artificial Intelligence.” Neuron.

Human visual system is robust

Accuracy

Colour

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

colour greyscale

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● participants (avg.)
GoogLeNet
VGG−19
ResNet−152

● ●

(a) Colour vs. greyscale

Entropy

Colour

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

colour greyscale

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Accuracy

Colour

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

true opponent

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

(b) True vs. false colour

Entropy

Colour

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

true opponent

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Uniform noise width

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●

●

●

●

●

(c) Uniform noise
Uniform noise width

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 0.2 0.4 0.6 0.8 1

0.
0

1.
0

2.
0

3.
0

4.
0

●●●● ● ●
●

●

Filter standard deviation

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 3 5 10 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

(d) Low-pass
Filter standard deviation

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 3 5 10 40

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
● ●

●

●

Log10 of contrast in percent

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

2 1.5 1 0.5 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
●

●

●

●

●

(e) Contrast
Log10 of contrast in percent

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

2 1.5 1 0.5 0

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ● ● ●
●

●

Filter standard deviation

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Inf 3 1.5 1 0.7 0.45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●●

●

(f) High-pass
Filter standard deviation

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

Inf 3 1.5 1 0.7 0.45

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ●
●

●

●●

●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
●

●

●

●
●

(g) Eidolon I
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
●

●
● ●

Phase noise width [°]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 30 60 90 120 150 180

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

● ●

(h) Phase noise
Phase noise width [°]

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 30 60 90 120 150 180

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
●

● ●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

●
● ●

(i) Eidolon II
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●

●
● ● ●

Power spectrum

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

original equalised

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

(j) Power equalisation
Power spectrum

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

original equalised

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●
● ● ●

(k) Eidolon III
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ●
●

●
● ● ●

Rotation angle [°]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 90 180 270

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
● ● ●

(l) Rotation
Rotation angle [°]

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 90 180 270

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●

Figure 3: Classification accuracy and response distribution entropy for GoogLeNet, VGG-19 and
ResNet-152 as well as for human observers. ‘Entropy’ indicates the Shannon entropy of the re-
sponse/decision distribution (16 classes). It here is a measure of bias towards certain categories: using
a test dataset that is balanced with respect to the number of images per category, responding equally
frequently with all 16 categories elicits the maximum possible entropy of four bits. If a network
or observer responds prefers some categories over others, entropy decreases (down to zero bits in
the extreme case of responding with one particular category all the time, irrespective of the ground
truth category). Human ‘error bars’ indicate the full range of results across participants. Image
manipulations are explained in Section 2.3 and visualised in Figures 10, 11, 12, 13 and 14.

5

Accuracy

Colour

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

colour greyscale

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● participants (avg.)
GoogLeNet
VGG−19
ResNet−152

● ●

(a) Colour vs. greyscale

Entropy

Colour
R

es
po

ns
e

di
st

r.
en

tro
py

 [b
its

]
colour greyscale

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Accuracy

Colour

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

true opponent

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

(b) True vs. false colour

Entropy

Colour

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

true opponent

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Uniform noise width

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●

●

●

●

●

(c) Uniform noise
Uniform noise width

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 0.2 0.4 0.6 0.8 1

0.
0

1.
0

2.
0

3.
0

4.
0

●●●● ● ●
●

●

Filter standard deviation

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 3 5 10 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

(d) Low-pass
Filter standard deviation

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 3 5 10 40

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
● ●

●

●

Log10 of contrast in percent

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

2 1.5 1 0.5 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
●

●

●

●

●

(e) Contrast
Log10 of contrast in percent

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

2 1.5 1 0.5 0

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ● ● ●
●

●

Filter standard deviation

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Inf 3 1.5 1 0.7 0.45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●●

●

(f) High-pass
Filter standard deviation

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

Inf 3 1.5 1 0.7 0.45

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ●
●

●

●●

●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
●

●

●

●
●

(g) Eidolon I
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
●

●
● ●

Phase noise width [°]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 30 60 90 120 150 180

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

● ●

(h) Phase noise
Phase noise width [°]

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 30 60 90 120 150 180

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
●

● ●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

●
● ●

(i) Eidolon II
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●

●
● ● ●

Power spectrum

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

original equalised

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

(j) Power equalisation
Power spectrum

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

original equalised

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●
● ● ●

(k) Eidolon III
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ●
●

●
● ● ●

Rotation angle [°]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 90 180 270

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
● ● ●

(l) Rotation
Rotation angle [°]

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 90 180 270

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●

Figure 3: Classification accuracy and response distribution entropy for GoogLeNet, VGG-19 and
ResNet-152 as well as for human observers. ‘Entropy’ indicates the Shannon entropy of the re-
sponse/decision distribution (16 classes). It here is a measure of bias towards certain categories: using
a test dataset that is balanced with respect to the number of images per category, responding equally
frequently with all 16 categories elicits the maximum possible entropy of four bits. If a network
or observer responds prefers some categories over others, entropy decreases (down to zero bits in
the extreme case of responding with one particular category all the time, irrespective of the ground
truth category). Human ‘error bars’ indicate the full range of results across participants. Image
manipulations are explained in Section 2.3 and visualised in Figures 10, 11, 12, 13 and 14.

5

Geirhos et al. 2018. “Generalisation in Humans and Deep Neural Networks.”

Human visual system is robust
Accuracy

Colour

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

colour greyscale

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● participants (avg.)
GoogLeNet
VGG−19
ResNet−152

● ●

(a) Colour vs. greyscale

Entropy

Colour

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

colour greyscale

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Accuracy

Colour

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

true opponent

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

(b) True vs. false colour

Entropy

Colour

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

true opponent

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Uniform noise width

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●

●

●

●

●

(c) Uniform noise
Uniform noise width

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 0.2 0.4 0.6 0.8 1

0.
0

1.
0

2.
0

3.
0

4.
0

●●●● ● ●
●

●

Filter standard deviation

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 3 5 10 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

(d) Low-pass
Filter standard deviation

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 3 5 10 40

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
● ●

●

●

Log10 of contrast in percent

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

2 1.5 1 0.5 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
●

●

●

●

●

(e) Contrast
Log10 of contrast in percent

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

2 1.5 1 0.5 0

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ● ● ●
●

●

Filter standard deviation

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Inf 3 1.5 1 0.7 0.45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●●

●

(f) High-pass
Filter standard deviation

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

Inf 3 1.5 1 0.7 0.45

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ●
●

●

●●

●

Log2 of 'reach' parameter
C

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
●

●

●

●
●

(g) Eidolon I
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
●

●
● ●

Phase noise width [°]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 30 60 90 120 150 180

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

● ●

(h) Phase noise
Phase noise width [°]

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 30 60 90 120 150 180

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
●

● ●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

●
● ●

(i) Eidolon II
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●

●
● ● ●

Power spectrum

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

original equalised

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

(j) Power equalisation
Power spectrum

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

original equalised

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●
● ● ●

(k) Eidolon III
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ●
●

●
● ● ●

Rotation angle [°]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 90 180 270

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
● ● ●

(l) Rotation
Rotation angle [°]

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 90 180 270

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●

Figure 3: Classification accuracy and response distribution entropy for GoogLeNet, VGG-19 and
ResNet-152 as well as for human observers. ‘Entropy’ indicates the Shannon entropy of the re-
sponse/decision distribution (16 classes). It here is a measure of bias towards certain categories: using
a test dataset that is balanced with respect to the number of images per category, responding equally
frequently with all 16 categories elicits the maximum possible entropy of four bits. If a network
or observer responds prefers some categories over others, entropy decreases (down to zero bits in
the extreme case of responding with one particular category all the time, irrespective of the ground
truth category). Human ‘error bars’ indicate the full range of results across participants. Image
manipulations are explained in Section 2.3 and visualised in Figures 10, 11, 12, 13 and 14.

5

Accuracy

Colour

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

colour greyscale

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● participants (avg.)
GoogLeNet
VGG−19
ResNet−152

● ●

(a) Colour vs. greyscale

Entropy

Colour
R

es
po

ns
e

di
st

r.
en

tro
py

 [b
its

]
colour greyscale

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Accuracy

Colour

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

true opponent

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

(b) True vs. false colour

Entropy

Colour

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

true opponent

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Uniform noise width

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●

●

●

●

●

(c) Uniform noise
Uniform noise width

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 0.2 0.4 0.6 0.8 1

0.
0

1.
0

2.
0

3.
0

4.
0

●●●● ● ●
●

●

Filter standard deviation

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 3 5 10 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

(d) Low-pass
Filter standard deviation

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 3 5 10 40

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
● ●

●

●

Log10 of contrast in percent

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

2 1.5 1 0.5 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
●

●

●

●

●

(e) Contrast
Log10 of contrast in percent

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

2 1.5 1 0.5 0

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ● ● ●
●

●

Filter standard deviation

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Inf 3 1.5 1 0.7 0.45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●●

●

(f) High-pass
Filter standard deviation

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

Inf 3 1.5 1 0.7 0.45

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ●
●

●

●●

●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
●

●

●

●
●

(g) Eidolon I
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
●

●
● ●

Phase noise width [°]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 30 60 90 120 150 180

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

● ●

(h) Phase noise
Phase noise width [°]

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 30 60 90 120 150 180

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●
●

● ●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

●
● ●

(i) Eidolon II
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●

●
● ● ●

Power spectrum

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

original equalised

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

(j) Power equalisation
Power spectrum

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

original equalised

0.
0

1.
0

2.
0

3.
0

4.
0

● ●

Log2 of 'reach' parameter

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●
● ● ●

(k) Eidolon III
Log2 of 'reach' parameter

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ●
●

●
● ● ●

Rotation angle [°]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 90 180 270

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
● ● ●

(l) Rotation
Rotation angle [°]

R
es

po
ns

e
di

st
r.

en
tro

py
 [b

its
]

0 90 180 270

0.
0

1.
0

2.
0

3.
0

4.
0

● ● ● ●

Figure 3: Classification accuracy and response distribution entropy for GoogLeNet, VGG-19 and
ResNet-152 as well as for human observers. ‘Entropy’ indicates the Shannon entropy of the re-
sponse/decision distribution (16 classes). It here is a measure of bias towards certain categories: using
a test dataset that is balanced with respect to the number of images per category, responding equally
frequently with all 16 categories elicits the maximum possible entropy of four bits. If a network
or observer responds prefers some categories over others, entropy decreases (down to zero bits in
the extreme case of responding with one particular category all the time, irrespective of the ground
truth category). Human ‘error bars’ indicate the full range of results across participants. Image
manipulations are explained in Section 2.3 and visualised in Figures 10, 11, 12, 13 and 14.

5

Geirhos et al. 2018. “Generalisation in Humans and Deep Neural Networks.”

Inductive Bias - Implicit Assumptions

Inductive Bias - Implicit Assumptions

Inductive Bias - Implicit Assumptions

Inductive Bias - Implicit Assumptions

Inductive Bias - Implicit Assumptions

Inductive Bias - Implicit Assumptions

Inductive Bias - Implicit Assumptions

Inductive Bias - Implicit Assumptions

Differences in extrapolation between two
algorithms given the same training data.

Inductive Bias - Implicit Assumptions

Inductive Bias is Essential for Generalization

No inductive bias

No generalization

No free lunch

Inductive Bias
moreless

bias

Levels of Inductive Bias Transfer

can be trained on each single type of noise distortion, suggesting
that network capacity is not the limit. Thus, there is probably a
very large group of networks, our visual system included, that
can solve single tasks such as ImageNet, but they might use
vastly different solution strategies and exhibit quite different
robustness and generalization properties. This implies that our
current datasets, even though they contain millions of examples,
simply do not provide enough constraints to direct us toward a
solution that is similar enough to our visual system to exhibit its
desirable robustness and generalization properties. Therefore,
the challenge is to come up with learning strategies that single
out those well-generalizing networks among the many networks
that can fit a particular dataset. Oneway to do that is to constrain
the class of networks to narrow it down to solutions that gener-
alize well. In other words, we need to add more bias to the class
of models.
It is helpful to distinguish two types of bias, which we will call

‘‘model bias’’ and ‘‘inductive (or learning) bias’’. Model bias
works like a prior probability in Bayesian inference: given some
input that is inevitably ambiguous, a ‘‘fixed’’ network will favor
certain interpretations over others or may exclude some inter-
pretations entirely. ‘‘Inductive or learning bias’’ determineswhich
fixed network is picked by the learning algorithm from the class
ofmodels given the set of training data. By ‘‘class of models,’’ we
mean a set of functions from inputs to predictions. A learning
algorithm picks one function from that set of functions (also
called ‘‘hypothesis space’’). For instance, for a given network ar-
chitecture, all networks with different values for their synaptic
weights constitute a model class. Once the weights are fixed,
we get a single model from that class, with its own model
bias—that is, its own way of interpreting new inputs. However,
the model class could be much bigger and also include models
with different network architectures. Which weights are learned

(i.e., which inductive bias comes to bear) is affected by many
aspects, such as the architecture, the learning rule or optimiza-
tion procedure, the order in which data are presented, and the
initial condition of the system. A good learning system for a
particular problem will have an inductive bias that chooses net-
works that generalize well. Importantly, the inductive bias is ulti-
mately problem specific. Mathematically, there is no universal
inductive bias that works well on all problems (Wolpert andMac-
ready, 1995, 1997). In the following, we are mainly discussing
ideas for how neuroscience can be used to influence the induc-
tive bias of artificial systems.
Biological systems can provide a source for inductive biases in

several ways (Figure 3). First, biological organisms need to learn
continually with the same neural network and thus critically rely
on generalization across different tasks and domains (Rebuffi
et al., 2017; van de Ven and Tolias, 2019). The more tasks to
be solved with a single network, the fewer networks that can
solve all of them and thus the stronger the resultant inductive
bias on the class of models. The challenge is to define a good se-
lection of tasks that can synergistically lead to a better bias and
on which a single network can achieve a high generalization per-
formance on all tasks (see Zamir et al., 2018 for a comparison of
tasks in transfer learning). Because humans and other biological
systems already solve a number of tasks with one brain, they can
be a good source of inspiration to select tasks. Second, neuro-
physiological data provide a window into the evolved represen-
tations of a strongly generalizing network: the brain. By con-
straining an artificial network to match those representations
(for example, by predicting the neural responses), we may bias
the network toward reproducing the encoded latent variables
that facilitate brain-like generalization. Third, the structure of a
specific network introduces a particular inductive bias. This
structure may be specified at a coarse scale, like the number,

A

B

Figure 3. Improving Deep Networks at Three
Levels
(A) Instead of training networks on narrow tasks
like object classification, it will be better to use
‘‘multi-task training,’’ where the network is re-
warded for correct performance on diverse low- and
high-level tasks involving latent variables across
scales and complexity. Networks can be trained to
generate latent representations that are similar to
those observed in functioning brains. Finally, net-
works can be endowed with biological structure at
the implementational level, matching architectural
and/or microcircuit features. These types of im-
provements relate to Marr’s three levels of analysis
(Marr, 1982).
(B) These different levels provide complementary
constraints on the space of possible solutions.
Many network architectures are so expressive that
they can not only learn to provide natural images
with appropriate labels but can even learn to match
randomly permuted labels (Zhang et al., 2016). Such
networks generalize weakly within their training set
but perform poorly outside of that set. Multi-task
training for the same network provides additional
restrictions (blue). We get additional constraints by
enforcing that hidden layers in artificial networks
can predict neural responses, thereby pulling rep-
resentations toward those of a successful strong
generalization machine, the brain (red). Finally, by

constraining network structures and operations to mimic those measured in the brain, canonical operations (green), We expect that the intersection of these
constraints will produce networks that have stronger generalization performance.

Neuron 103, September 25, 2019 971

Neuron

Perspective

Sinz et al 2019. “Engineering a Less Artificial Intelligence.” Neuron.

How can we transfer good inductive biases?

can be trained on each single type of noise distortion, suggesting
that network capacity is not the limit. Thus, there is probably a
very large group of networks, our visual system included, that
can solve single tasks such as ImageNet, but they might use
vastly different solution strategies and exhibit quite different
robustness and generalization properties. This implies that our
current datasets, even though they contain millions of examples,
simply do not provide enough constraints to direct us toward a
solution that is similar enough to our visual system to exhibit its
desirable robustness and generalization properties. Therefore,
the challenge is to come up with learning strategies that single
out those well-generalizing networks among the many networks
that can fit a particular dataset. Oneway to do that is to constrain
the class of networks to narrow it down to solutions that gener-
alize well. In other words, we need to add more bias to the class
of models.
It is helpful to distinguish two types of bias, which we will call

‘‘model bias’’ and ‘‘inductive (or learning) bias’’. Model bias
works like a prior probability in Bayesian inference: given some
input that is inevitably ambiguous, a ‘‘fixed’’ network will favor
certain interpretations over others or may exclude some inter-
pretations entirely. ‘‘Inductive or learning bias’’ determineswhich
fixed network is picked by the learning algorithm from the class
ofmodels given the set of training data. By ‘‘class of models,’’ we
mean a set of functions from inputs to predictions. A learning
algorithm picks one function from that set of functions (also
called ‘‘hypothesis space’’). For instance, for a given network ar-
chitecture, all networks with different values for their synaptic
weights constitute a model class. Once the weights are fixed,
we get a single model from that class, with its own model
bias—that is, its own way of interpreting new inputs. However,
the model class could be much bigger and also include models
with different network architectures. Which weights are learned

(i.e., which inductive bias comes to bear) is affected by many
aspects, such as the architecture, the learning rule or optimiza-
tion procedure, the order in which data are presented, and the
initial condition of the system. A good learning system for a
particular problem will have an inductive bias that chooses net-
works that generalize well. Importantly, the inductive bias is ulti-
mately problem specific. Mathematically, there is no universal
inductive bias that works well on all problems (Wolpert andMac-
ready, 1995, 1997). In the following, we are mainly discussing
ideas for how neuroscience can be used to influence the induc-
tive bias of artificial systems.
Biological systems can provide a source for inductive biases in

several ways (Figure 3). First, biological organisms need to learn
continually with the same neural network and thus critically rely
on generalization across different tasks and domains (Rebuffi
et al., 2017; van de Ven and Tolias, 2019). The more tasks to
be solved with a single network, the fewer networks that can
solve all of them and thus the stronger the resultant inductive
bias on the class of models. The challenge is to define a good se-
lection of tasks that can synergistically lead to a better bias and
on which a single network can achieve a high generalization per-
formance on all tasks (see Zamir et al., 2018 for a comparison of
tasks in transfer learning). Because humans and other biological
systems already solve a number of tasks with one brain, they can
be a good source of inspiration to select tasks. Second, neuro-
physiological data provide a window into the evolved represen-
tations of a strongly generalizing network: the brain. By con-
straining an artificial network to match those representations
(for example, by predicting the neural responses), we may bias
the network toward reproducing the encoded latent variables
that facilitate brain-like generalization. Third, the structure of a
specific network introduces a particular inductive bias. This
structure may be specified at a coarse scale, like the number,

A

B

Figure 3. Improving Deep Networks at Three
Levels
(A) Instead of training networks on narrow tasks
like object classification, it will be better to use
‘‘multi-task training,’’ where the network is re-
warded for correct performance on diverse low- and
high-level tasks involving latent variables across
scales and complexity. Networks can be trained to
generate latent representations that are similar to
those observed in functioning brains. Finally, net-
works can be endowed with biological structure at
the implementational level, matching architectural
and/or microcircuit features. These types of im-
provements relate to Marr’s three levels of analysis
(Marr, 1982).
(B) These different levels provide complementary
constraints on the space of possible solutions.
Many network architectures are so expressive that
they can not only learn to provide natural images
with appropriate labels but can even learn to match
randomly permuted labels (Zhang et al., 2016). Such
networks generalize weakly within their training set
but perform poorly outside of that set. Multi-task
training for the same network provides additional
restrictions (blue). We get additional constraints by
enforcing that hidden layers in artificial networks
can predict neural responses, thereby pulling rep-
resentations toward those of a successful strong
generalization machine, the brain (red). Finally, by

constraining network structures and operations to mimic those measured in the brain, canonical operations (green), We expect that the intersection of these
constraints will produce networks that have stronger generalization performance.

Neuron 103, September 25, 2019 971

Neuron

Perspective

Sinz et al 2019. “Engineering a Less Artificial Intelligence.” Neuron.

Neural co-training on monkey V1

Shahd Safarani

Arne Nix

Konstantin Willeke
Andreas Tolias, PhD

In collaboration with:

Neural co-training hypothesis

Sinz et al 2019. “Engineering a Less Artificial Intelligence.” Neuron.

Do we expect it to work?
classi!cation similarity prediction

loss = lossclassi!cation + loss similarity

ResNet18

Figure 3: Joint training schematic. We trained a ResNet18 model to both classify CIFAR10 images
and predict neural similarity of ImageNet images used in our scan. The network takes either one
image or a pair of images as inputs, with a same convolutional core. If the input is one image with
the right size, the model outputs class prediction with an additional fully connected layer. If the input
is a pair of images, the model first calculate the convolutional features for both, and calculate the
similarity for a few selected layers (Eq. 10). Similarity predictions from different layers are summed
up by a trainable normalized weight to produce a final prediction, which is trained to match neural
similarity (Eq. 6). Two losses are summed with a coefficient ↵ as the regularization strength.

in experiments, calculating the similarity loss Lsimilarity with respect to the pre-computed Sneural

matrix. The gradient of the full loss can affect the CNN kernel weights through both loss terms.

4 Results

4.1 Robustness against random noise

The similarity loss plays the role of a regularizer, and it biases the original CNN towards a more
brain-like representation. We observed that the CNN model becomes more robust to random noise
when neural regularization is used. Compared to a ResNet18 [1] trained without any regularization
(‘None’ in Fig. 4A), the same architecture equipped with the neural regularizer (‘Neural (model)’ in
Fig. 4) had substantially better performance on noisy input images (⇠50% v.s. ⇠20% at the highest
noise level). In other words, models whose features are more neural are less vulnerable to random
noise in inputs. To strengthen this conclusion, we also regularized the model with shuffled Sneural

matrix (‘Shuffle’ in Fig. 4) or the feature similarity matrix of the conv3-1 layer in a VGG19 model
pretrained on ImageNet (‘VGG’ in Fig. 4). This VGG layer has been reported to be most similar to
animal V1 [16]. Both regularizers improve the model robustness to some degree but neither as much
as using the neural regularizer.

Finally, we also regularized the model with a similarity matrix from the actual data directly (‘Neural
(data)’ in Fig. 4), using Sdata (Eq. 2) instead of Smodel (Eq. 6). We did not observe the same boost in
robustness. We think that this is caused by the high variability of the neural responses, highlighting
the need for a well trained predictive model. In addition, if we see the matrix in ‘Shuffle’ control as
the feature similarity of a poorly trained predictive model, the difference between ‘Neural (model)’
and ‘Shuffle’ again shows the importance of having a well trained one. Only with a strong predictive
system identification model as a denoiser were we able to reveal the underlying representational
structure hidden in the noisy neural data.

We observed the same results when training ResNet34 models on grayscale CIFAR100 datasets
(Fig. 4B). In addition, we also tested how different regularization strength will affect the model perfor-
mance, and observed a continuous increase of model robustness when we tuned up the regularization.
More details are included in the supplementary materials.

6

0 0.02 0.04 0.06 0.08
Gaussian noise level

20

40

60

80

ac
cu

ra
cy

 (%
)

None
Neural (model)
Neural (data)
Shuffle
VGG

Regularization

0 0.02 0.04 0.06 0.08
0

10

20

30

40

50

60

70

None
Neural (model)
Shuffle

Gaussian noise level

ResNet18 on grayscale CIFAR10 ResNet34 on grayscale CIFAR100A B

Figure 4: Performance robustness to Gaussian noise. (A) We tested CIFAR10 classification perfor-
mance under different levels of Gaussian noises on input images (examples below the plot) for our
jointly trained ResNet model, and compared with models with no regularization and some other
regularization. Compared to the vanilla network with no regularization (‘None’), all regularized
model have higher classification accuracy when discernible noise is added. In particular, the model
regularized with model neural similarity outperforms others on noisy images, only with a small
sacrifice on clean image performance. The error bars here are standard error of mean (SEM), with 5
random seeds used for each regularizer. The reduced improvement from ‘Neural (data)’ emphasizes
the need for a good predictive model for denoising, so that the actual neural representation structure
can be exploited. (B) Results for ResNet34 on grayscale CIFAR100 dataset are shown for ‘None’,
‘Neural (model)’ and ‘Shuffle’.

All models are trained by stochastic gradient descent for 40 epochs with batch size 64. Learning
rate starts at 0.1 and decays by 0.3 every 4 epochs, but resets to 0.1 after the 20th epoch. Mean
classification accuracy for CIFAR10/100 test set over 5 random seeds is reported in Fig. 4. In our
current setting, the same number of images are passed in the classification pathway and neural
pathway, hence the time cost approximately doubles comparing to normal training. It takes about 4.5
hours on a single TITAN RTX GPU to train one model. We used PyTorch [25] for model training.

4.2 Robustness against adversarial attack

We are also interested in whether neural regularization provides robustness to adversarial attacks.
Since adversarial examples and their innocent counterparts elicit the same percept by definition, it is
highly possible that their measured neural representations are also close to each other. Hence a model
with neural representation will be more invariant to adversarial noise. We evaluated model robustness
following a recently published guideline [26] and using the well-tested attack implementations
provided by Foolbox [27].

Our evaluation metric follows [28]. In a nutshell, we strive to find adversarial perturbations (i.e.

perturbations that flip the label to any but the ground-truth class) with the minimum norm (either L2

or L1) for each of 1000 test samples. We then compute the median perturbation distance across all
samples as the final robustness score (higher is better).

Besides the current state-of-the-art attacks on L2 [26] and L1 [29], we also deployed a recently
developed gradient-based version of the decision-based boundary attack [30], which surpasses [26]
in terms of query efficiency and the size of the minimal adversarial perturbations. In short, [30] starts
from a natural input sample that is classified as different from the original image (for which we aim to
generate an adversarial example). The algorithm then performs a line search between the two images

7

C. Federer, H. Xu, A. Fyshe et al. / Neural Networks 131 (2020) 103–114 109

Fig. 6. Training CORNet-Z networks with corrupted labels. (A) Test set accuracy on networks trained with (red) and without (black) neural data, with different
fractions of corrupted training labels. Labels for the test set were not corrupted. (B) Generalization error (training loss–testing loss) on networks trained with (red)
and without (black) neural data, and 0.1 fraction corrupt training labels. (C) Test set accuracy for networks trained with 0.1 fraction corrupt training labels. The
networks were trained with the real monkey V1 RSM (dark red); V1 shuffled RSM (light red); RSM from random Gaussian vectors drawn with the same mean and
standard deviation as the V1 data (Gaussian V1-stats in purple); RSM from random Gaussian vectors drawn with different mean than the neural data (Gaussian non
V1-stats in blue); and no neural data (black). Error bars in A, C and shaded areas in B are +/� SEM over 10 different random initializations of each model. For A, C:
Double asterisks (**) indicate significantly different results from no neural data, r = 0, at p < 0.001 on a one-tailed t-test. Single asterisks (*) indicate significantly
higher results from networks trained with no neural data, r = 0, at p < 0.05 on a one-tailed t-test. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Accuracy in categorizing previously-unseen CIFAR100 images for the VGG-16 architecture trained on the composite task using monkey V1 representational
similarity. (A) Testing accuracy for each epoch of training for several values of r . Chance accuracy is indicated by the dashed black line. (B) Test accuracy plotted
(same as in A) as a function of the emphasis on neural representation similarity (controlled by r). Single asterisks (*) indicate significantly higher results from no
neural data, r = 0, at p < 0.05 on a one-tailed t-test. (C) Test set accuracy on networks trained with (red) and without (black) neural data, with different fractions
of corrupted labels in the training set. Labels for the test set were not corrupted. Shaded areas and error bars on the plots are +/� SEM over 10 different random
initializations of each model. (D) Generalization error (training loss–testing loss) on networks trained with (red) and without (black) neural data and 0.1 fraction
corrupted training labels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the VGG-16 architecture (Simonyan & Zisserman, 2015) instead
of CORNet-Z. We applied the monkey V1 representational sim-
ilarity cost at the third convolutional layer of the VGG-16 (see
Methods). We found that, with the VGG-16 architecture, the
monkey V1 teacher signal improves categorization performance,
increases robustness to corrupted labels in the training set, and
reduces generalization error, similar to what was observed with
the smaller CORNet-Z architecture (Fig. 7).

4. Discussion

Training the early layers of convolutional neural networks
to mimic the image representations from monkey V1 improves
those networks’ ability to categorize previously-unseen images.

Moreover, networks trained using monkey V1 as a representation
‘‘teacher’’ made errors that were more often within the correct
superclass than that did networks without the ‘‘teacher’’ signal.
While the performance gains were modest, they were remarkably
robust: we observed similar performance gains on large and small
architectures (CORNet-Z and VGG-16), using different optimizers
(Adam and gradient descent), using different activation functions
(ELU and ReLu). This robustness suggests that our method could
generalize well to other networks.

We focused on feedforward convolutional neural networks,
however, the mammalian visual system (MVS) has substantial
recurrent connectivity (Lamme, Super, & Spekreijse, 1998). Inter-
esting future work would be to implement our same approach

is computationally expensive [60, 61], known to impact clean performance [62], and overfits to
the attack constraints it is trained on [63, 64]. Other defenses involve adding noise either during
training [59], inference [65, 19], or both [15, 66, 67]. In the case of stochasticity during inference,
Athalye et. al. demonstrated that fixing broken gradients or taking the expectation over randomness
often dramatically reduces the effectiveness of the defense [68]. In a promising demonstration that
biological constraints can increase CNN robustness, Li et. al. showed that biasing a neural network’s
representations towards those of the mouse V1 increases the robustness of grey-scale CIFAR [69]
trained neural networks to both noise and white box adversarial attacks [40].

2 Adversarial Robustness Correlates with V1 Explained Variance

The susceptibility of current CNNs to be fooled by imperceptibly small adversarial perturbations
suggests that these CNNs rely on some visual features not used by the primate visual system. Are
models that better explain neural responses in the macaque V1 more robust to adversarial attacks?
We analyzed an array of publicly available neural networks with standard ImageNet training [70]
including AlexNet [1], VGG [3], ResNet [4], ResNeXt [71], DenseNet [72], SqueezeNet [73],
ShuffleNet [74], and MnasNet [75], as well as several ResNet50 models with specialized training
routines, such as adversarial training with L1 (k�k1 = 4/255 and k�k1 = 8/255) and L2

(k�k2 = 3) constraints [76], and adversarial noise combined with Stylized ImageNet training [59].

For each model, we evaluated how well it explained the responses of single V1 neurons evoked by
given images using a standard neural predictivity methodology based on partial least square regression
(PLS) [31, 32]. We used a neural dataset with 102 neurons and 450 different 4deg images, consisting
of naturalistic textures and noise samples [77]. Explained variance was measured using a 10-fold
cross-validation strategy. Similarly to other studies, we considered the field-of-view of all models
to span 8deg [31, 30] (see Supplementary Section A for more details). To evaluate the adversarial
robustness of each model in the pool, we used untargeted projected gradient descent (PGD) [17],
an iterative, gradient-based white box adversarial attack with L1, L2, and L1 norm constraints of
k�k1 = 1/1020, k�k2 = 0.15, and k�k1 = 40, respectively. For each norm, the attack strength was
calibrated to drive variance in performance amongst non-adversarially trained models, resulting in
perturbations well below the level of perceptibility (see Supplementary Section B.1 for more details).

We found that accuracy under these white box adversarial attacks has a strong positive correlation
with V1 explained variance (Fig. 1, r=0.85, p=2.1E-9, n=30). Notably, adversarially trained ResNet50
models [76], which were hardly affected by these attacks, explained more variance in V1 neural
activations than any non-adversarially trained neural network. The correlation was not driven by
the CNNs’ clean ImageNet performance since it was even more pronounced when the white box
accuracy was normalized by the clean accuracy (r=0.94, p=7.4E-15, n=30) and was also present
when removing the adversarially trained models (r=0.73, p=1.78E-5, n=27). While increasing
the perturbation strength rapidly decreases the accuracy of non-adversarially trained models, the
described correlation was present for a wide range of attack strengths: when the perturbation was
multiplied by a factor of 4, greatly reducing the variance of non-adversarially trained models, white
box accuracy was still significantly correlated with explained variance in V1 (r=0.82, p=1.17E-8,
n=30).

0.24 0.32 0.40
V1 explained variance

0.2

0.4

0.6

W
hi

te
 b

ox
 a

cc
ur

ac
y

Non-adv. trained
Adv. trained
VOneResNet50

Figure 1: CNNs’ robustness to white box attacks corre-
lates with explained response variance in primate V1.
Comparison of top-1 accuracy under white box attacks of
low perturbation strengths (average of 3 PGD constraints:
k�k1 = 1/1020, k�k2 = 0.15, and k�k1 = 40) against
fraction of explained variance of V1 responses (using
PLS regression) for a pool of CNN models. Perturba-
tion strength was chosen to drive variance across model
performance. White box accuracy and V1 explained vari-
ance are significantly correlated (r=0.85, p=2.1E-9, n=30
CNNs, linear fit shown in gray line). Gray circles, non-
adversarially trained trained CNNs (n=27); red circles,
adversarially trained ResNet50 models (n=3); blue circle,
VOneResNet50 (not included in correlation).

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.06.16.154542doi: bioRxiv preprint

Li et al. 2019. “Learning From Brains How to Regularize Machines.” NeurIPS

Dapello 2020. “Simulating a Primary Visual Cortex at the
Front of CNNs Improves Robustness to Image Perturbations.” bioRxiv

Federer et al.2020. “Improved Object Recognition Using Neural
Networks Trained to Mimic the Brain’s Statistical Properties.” Neural Networks.

Multi-Task-Learning with monkey V1

max-Pooling

Gaussian Readout

Convolution Shared Layers

Neural Prediction

Image Classification

Per neuron
spike count

Class label

How do we test inductive bias?

V1 co-training yields benefits

Under review as a conference paper at ICLR 2021

1
�2
c
LCE(✓, c) +

1
2�2

n
LMSE(✓, n) + log �c + log �n where ✓ are the shared parameters and c, �c

and n, �n are the task-specific parameters for classification and neural prediction, respectively.
The classification objective LCE is the standard cross-entropy, analogous to the single-task case.
For MTL on neural data, we use mean-squared error LMSE because the targets are predictions from
the network trained on neural data and not the original noisy neural responses. For optimization,
we accumulate the gradients over the different losses to optimize the shared parameters ✓ in a sin-
gle combined gradient step. By definition, the two loss components will contribute equally to the
learning process. However, we can manually steer the focus towards either task via the proportion
(batch-ratio) of neural to classification batches accumulated for each optimization step.

We standardize all pixel values with the mean and standard deviation of the training set, and augment
the images by random cropping, horizontal flipping, and rotations in a range of 15� for classification.
We use stochastic gradient descend with momentum in all classification-related cases, and Adam for
single task neural prediction (Kingma & Ba, 2015). We use a batch-size of 128 and weight decay
with a factor of 5 · 10�4 throughout all our experiments, as well as a batch-ratio of 1:1 during
MTL. The initial learning rate is determined for each task individually and reduced by a (task-
specific) factor via an adaptive learning schedule. The schedule reduces the learning rate depending
on the validation performance – classification performance in the case of MTL – when the rate of
improvement is not above a 10�4 for 5 consecutive epochs. The training is stopped when we reach
either five learning rate reduction steps or a maximum number of epochs, that we define for each
task. We repeat every experiment with five different random initializations. Error bars were obtained
by bootstrapping (250 repetitions).

3 RESULTS

Our main goal is to find evidence for improved extrapolation abilities. To this end, we evaluate our
model’s robustness on distorted copies of the TIN validation set – used as a test set in our experiments
– following the corruption paradigm in (Hendrycks & Dietterich, 2019). We reproduce the distor-
tions with an on-the-fly implementation (Michaelis et al., 2019), drop glass blur because it is com-
putationally expensive, and refer to our resulting test set as TIN-TC. We quantify the robustness for
each of the remaining 14 noise types and five levels of corruption severity separately, and compute a
summary robustness score adopted from Hendrycks & Dietterich (2019): 1

14

P14
c=1 A

robust
c /A

baseline
c ,

where Ac =
1
5

P5
l,s=1 Al,c,s denotes the mean accuracy on corruption c across levels l and seeds s.

Since co-training only affects the shared representation up to layer conv-3-1, we cannot expect
the network to be as robust as a network where all layers are trained on data augmented with the
image distortions. To explore the limits on robustness resulting from sharing lower layers only, we
train a classification model with a 1:1 mixture of clean and distorted images drawn from the pool
of 14 IN-C corruptions, freeze all layers up to conv-3-1, and re-train the remaining network on
clean data only. To push the robustness to the frozen part, we add a second loss that penalizes the
Euclidean distance between the outputs of layer conv-3-1 for the same image augmented with
different corruptions – similar to Chen et al. (2020). We refer to this model as the oracle since it has
access to the image distortions during training – unlike our MTL models.

1 2 3 4 5
Corruption Severity

0

20

40

A
cc

ur
ac

y
[%

]

Pixelate

1 2 3 4 5
Corruption Severity

0

20

40
Impulse Noise

1 2 3 4 5
Corruption Severity

0

20

40
Contrast

Baseline MTL-Monkey MTL-Shuffled MTL-Oracle Oracle

Figure 2: Exemplary classification results on TIN-TC, showing 3 corruption types with the best
(left), median (center) and worst (right) robustness score for MTL-monkey across 5 increasing levels
of severity each.

3

V1 co-training yields benefits

Under review as a conference paper at ICLR 2021

1
�2
c
LCE(✓, c) +

1
2�2

n
LMSE(✓, n) + log �c + log �n where ✓ are the shared parameters and c, �c

and n, �n are the task-specific parameters for classification and neural prediction, respectively.
The classification objective LCE is the standard cross-entropy, analogous to the single-task case.
For MTL on neural data, we use mean-squared error LMSE because the targets are predictions from
the network trained on neural data and not the original noisy neural responses. For optimization,
we accumulate the gradients over the different losses to optimize the shared parameters ✓ in a sin-
gle combined gradient step. By definition, the two loss components will contribute equally to the
learning process. However, we can manually steer the focus towards either task via the proportion
(batch-ratio) of neural to classification batches accumulated for each optimization step.

We standardize all pixel values with the mean and standard deviation of the training set, and augment
the images by random cropping, horizontal flipping, and rotations in a range of 15� for classification.
We use stochastic gradient descend with momentum in all classification-related cases, and Adam for
single task neural prediction (Kingma & Ba, 2015). We use a batch-size of 128 and weight decay
with a factor of 5 · 10�4 throughout all our experiments, as well as a batch-ratio of 1:1 during
MTL. The initial learning rate is determined for each task individually and reduced by a (task-
specific) factor via an adaptive learning schedule. The schedule reduces the learning rate depending
on the validation performance – classification performance in the case of MTL – when the rate of
improvement is not above a 10�4 for 5 consecutive epochs. The training is stopped when we reach
either five learning rate reduction steps or a maximum number of epochs, that we define for each
task. We repeat every experiment with five different random initializations. Error bars were obtained
by bootstrapping (250 repetitions).

3 RESULTS

Our main goal is to find evidence for improved extrapolation abilities. To this end, we evaluate our
model’s robustness on distorted copies of the TIN validation set – used as a test set in our experiments
– following the corruption paradigm in (Hendrycks & Dietterich, 2019). We reproduce the distor-
tions with an on-the-fly implementation (Michaelis et al., 2019), drop glass blur because it is com-
putationally expensive, and refer to our resulting test set as TIN-TC. We quantify the robustness for
each of the remaining 14 noise types and five levels of corruption severity separately, and compute a
summary robustness score adopted from Hendrycks & Dietterich (2019): 1

14

P14
c=1 A

robust
c /A

baseline
c ,

where Ac =
1
5

P5
l,s=1 Al,c,s denotes the mean accuracy on corruption c across levels l and seeds s.

Since co-training only affects the shared representation up to layer conv-3-1, we cannot expect
the network to be as robust as a network where all layers are trained on data augmented with the
image distortions. To explore the limits on robustness resulting from sharing lower layers only, we
train a classification model with a 1:1 mixture of clean and distorted images drawn from the pool
of 14 IN-C corruptions, freeze all layers up to conv-3-1, and re-train the remaining network on
clean data only. To push the robustness to the frozen part, we add a second loss that penalizes the
Euclidean distance between the outputs of layer conv-3-1 for the same image augmented with
different corruptions – similar to Chen et al. (2020). We refer to this model as the oracle since it has
access to the image distortions during training – unlike our MTL models.

1 2 3 4 5
Corruption Severity

0

20

40

A
cc

ur
ac

y
[%

]

Pixelate

1 2 3 4 5
Corruption Severity

0

20

40
Impulse Noise

1 2 3 4 5
Corruption Severity

0

20

40
Contrast

Baseline MTL-Monkey MTL-Shuffled MTL-Oracle Oracle

Figure 2: Exemplary classification results on TIN-TC, showing 3 corruption types with the best
(left), median (center) and worst (right) robustness score for MTL-monkey across 5 increasing levels
of severity each.

3
max-Pooling

Gaussian Readout

Convolution Shared Layers

Neural Prediction

Image Classification

Per neuron
spike count

Class label

V1 co-training yields benefits

No all distortions show the same effect
Under review as a conference paper at ICLR 2021

Noise
Blur

Weather

Digital

50

75

100

125

150
R

ob
us

tn
es

s
Sc

or
e

[%
] A

Total

B

0.8 0.9

Neural Prediction [corr]

100

120

R
ob

us
tn

es
s

Sc
or

e
[%

] C

44

46

48

C
lean

A
ccuracy

[%
]

Baseline MTL-Monkey MTL-Shuffled MTL-Oracle OracleBaseline MTL-Monkey MTL-Shuffled MTL-Oracle Oracle

Figure 3: A Robustness scores for each model grouped by corruption category, as defined in
Hendrycks & Dietterich (2019). B Overall robustness scores for our 5 different models. C Single-
seed robustness and neural prediction for MTL-monkey correlate positively across 12 different batch
ratios and 5 seeds (grey line: linear regression from robustness to neural performance). A darker
color indicates higher accuracy on the clean TIN test set.

MTL can successfully transfer robustness. To demonstrate that MTL can in principle transfer
robustness properties without showing distorted images in training, we generate neural responses
from our oracle model for all images of the clean TIN dataset by freezing the oracle model and
training a Gaussian readout on top of layer conv-3-1 for 10 epochs to predict V1 data. Then, we
train a model on the resulting neural responses alongside clean image classification using MTL. We
call this model MTL-oracle. Comparing the robustness of this model on TIN-TC to the robustness
of the single-task baseline model trained on clean TIN only, we see clear signs of successful transfer
(Fig. 2 and Fig. 3A,B) although the MTL network has never seen the image distortions of TIN-TC.
In fact, the MTL-oracle performs close to the oracle model in most cases.

Co-training with monkey V1 increases robustness. The results on MTL-oracle show that MTL
on neural responses predicted from a robust network on undistorted images successfully transfers
robustness properties. For our main experiment, we use MTL on neural responses from the single
task monkey V1 model (see section 2), and refer to it as MTL-monkey. This model has never seen
distorted images at any point. We call the corresponding control model trained on the same neural
data but shuffled across images MTL-shuffled. Similar to the MTL-oracle model, MTL-monkey
generalizes better to the TIN-TC image distortions than the baseline model, although it has not seen
distorted images at any stage during the training process. We find increased robustness for 9/14
image corruptions. This improvement is mainly observed across 3 groups of distortions: Noise,
Blur and Digital (Fig. 3A), whereas MTL-monkey did not exceed the baseline performance for the
Weather group. The shuffled control did not provide any benefits (Fig. 2 and Fig. 3A,B).

The more ”brain-like” the neural network, the better it generalizes to image distortions. If
features in the neural data affect the robustness, we would expect that the robustness correlates pos-
itively with the neural prediction performance in MTL-monkey. To test this hypothesis, we create
a pool of MTL-monkey models with varying neural performance by altering the amount of neu-
ral data introduced during co-training through the batch-ratio hyperparameter. We find that both
the model accuracy on clean images and neural prediction improves the network’s robustness (Fig-
ure 3C; p < 10�5 (t-test) for both factors in a 2-factor linear regression). Analysis for MTL-shuffled
shows no connection between robustness and neural performance (p > 0.5 for neural prediction and
p < 10�13 for clean accuracy). Overall, our results are consistent with previous work finding a
positive correlation between model robustness and brain-likeness (Dapello et al., 2020).

Conclusion and Outlook To the best of our knowledge, this work is the first that investigates the
neural co-training hypothesis, adding further evidence to existing literature that useful representa-
tional inductive biases can be transferred from neural data. By carefully controlling the amount of
neural data and robustness in the neural data for MTL through the batch ratio parameter and the
MTL-oracle model respectively, we were able to show that robustness correlates with neural pre-
diction performance and that the MTL-monkey model is close to the expected ideal performance in
many cases. In the future, we hope to include higher brain areas for neural co-training to achieve
stronger effects and robustness against more complex distortions.

4

Under review as a conference paper at ICLR 2021

Noise
Blur

Weather

Digital

50

75

100

125

150

R
ob

us
tn

es
s

Sc
or

e
[%

] A

Total

B

0.8 0.9

Neural Prediction [corr]

100

120
R

ob
us

tn
es

s
Sc

or
e

[%
] C

44

46

48

C
lean

A
ccuracy

[%
]

Baseline MTL-Monkey MTL-Shuffled MTL-Oracle OracleBaseline MTL-Monkey MTL-Shuffled MTL-Oracle Oracle

Figure 3: A Robustness scores for each model grouped by corruption category, as defined in
Hendrycks & Dietterich (2019). B Overall robustness scores for our 5 different models. C Single-
seed robustness and neural prediction for MTL-monkey correlate positively across 12 different batch
ratios and 5 seeds (grey line: linear regression from robustness to neural performance). A darker
color indicates higher accuracy on the clean TIN test set.

MTL can successfully transfer robustness. To demonstrate that MTL can in principle transfer
robustness properties without showing distorted images in training, we generate neural responses
from our oracle model for all images of the clean TIN dataset by freezing the oracle model and
training a Gaussian readout on top of layer conv-3-1 for 10 epochs to predict V1 data. Then, we
train a model on the resulting neural responses alongside clean image classification using MTL. We
call this model MTL-oracle. Comparing the robustness of this model on TIN-TC to the robustness
of the single-task baseline model trained on clean TIN only, we see clear signs of successful transfer
(Fig. 2 and Fig. 3A,B) although the MTL network has never seen the image distortions of TIN-TC.
In fact, the MTL-oracle performs close to the oracle model in most cases.

Co-training with monkey V1 increases robustness. The results on MTL-oracle show that MTL
on neural responses predicted from a robust network on undistorted images successfully transfers
robustness properties. For our main experiment, we use MTL on neural responses from the single
task monkey V1 model (see section 2), and refer to it as MTL-monkey. This model has never seen
distorted images at any point. We call the corresponding control model trained on the same neural
data but shuffled across images MTL-shuffled. Similar to the MTL-oracle model, MTL-monkey
generalizes better to the TIN-TC image distortions than the baseline model, although it has not seen
distorted images at any stage during the training process. We find increased robustness for 9/14
image corruptions. This improvement is mainly observed across 3 groups of distortions: Noise,
Blur and Digital (Fig. 3A), whereas MTL-monkey did not exceed the baseline performance for the
Weather group. The shuffled control did not provide any benefits (Fig. 2 and Fig. 3A,B).

The more ”brain-like” the neural network, the better it generalizes to image distortions. If
features in the neural data affect the robustness, we would expect that the robustness correlates pos-
itively with the neural prediction performance in MTL-monkey. To test this hypothesis, we create
a pool of MTL-monkey models with varying neural performance by altering the amount of neu-
ral data introduced during co-training through the batch-ratio hyperparameter. We find that both
the model accuracy on clean images and neural prediction improves the network’s robustness (Fig-
ure 3C; p < 10�5 (t-test) for both factors in a 2-factor linear regression). Analysis for MTL-shuffled
shows no connection between robustness and neural performance (p > 0.5 for neural prediction and
p < 10�13 for clean accuracy). Overall, our results are consistent with previous work finding a
positive correlation between model robustness and brain-likeness (Dapello et al., 2020).

Conclusion and Outlook To the best of our knowledge, this work is the first that investigates the
neural co-training hypothesis, adding further evidence to existing literature that useful representa-
tional inductive biases can be transferred from neural data. By carefully controlling the amount of
neural data and robustness in the neural data for MTL through the batch ratio parameter and the
MTL-oracle model respectively, we were able to show that robustness correlates with neural pre-
diction performance and that the MTL-monkey model is close to the expected ideal performance in
many cases. In the future, we hope to include higher brain areas for neural co-training to achieve
stronger effects and robustness against more complex distortions.

4

1
C

C

∑
c=1

Arobustc

Abaselinec

Ac = 1
5

5

∑
l,s=1

Al,c,s

Robustness correlates with “brain-likeness”
Under review as a conference paper at ICLR 2021

Noise
Blur

Weather

Digital

50

75

100

125

150

R
ob

us
tn

es
s

Sc
or

e
[%

] A

Total

B

0.8 0.9

Neural Prediction [corr]

100

120

R
ob

us
tn

es
s

Sc
or

e
[%

] C

44

46

48
C

lean
A

ccuracy
[%

]

Baseline MTL-Monkey MTL-Shuffled MTL-Oracle OracleBaseline MTL-Monkey MTL-Shuffled MTL-Oracle Oracle

Figure 3: A Robustness scores for each model grouped by corruption category, as defined in
Hendrycks & Dietterich (2019). B Overall robustness scores for our 5 different models. C Single-
seed robustness and neural prediction for MTL-monkey correlate positively across 12 different batch
ratios and 5 seeds (grey line: linear regression from robustness to neural performance). A darker
color indicates higher accuracy on the clean TIN test set.

MTL can successfully transfer robustness. To demonstrate that MTL can in principle transfer
robustness properties without showing distorted images in training, we generate neural responses
from our oracle model for all images of the clean TIN dataset by freezing the oracle model and
training a Gaussian readout on top of layer conv-3-1 for 10 epochs to predict V1 data. Then, we
train a model on the resulting neural responses alongside clean image classification using MTL. We
call this model MTL-oracle. Comparing the robustness of this model on TIN-TC to the robustness
of the single-task baseline model trained on clean TIN only, we see clear signs of successful transfer
(Fig. 2 and Fig. 3A,B) although the MTL network has never seen the image distortions of TIN-TC.
In fact, the MTL-oracle performs close to the oracle model in most cases.

Co-training with monkey V1 increases robustness. The results on MTL-oracle show that MTL
on neural responses predicted from a robust network on undistorted images successfully transfers
robustness properties. For our main experiment, we use MTL on neural responses from the single
task monkey V1 model (see section 2), and refer to it as MTL-monkey. This model has never seen
distorted images at any point. We call the corresponding control model trained on the same neural
data but shuffled across images MTL-shuffled. Similar to the MTL-oracle model, MTL-monkey
generalizes better to the TIN-TC image distortions than the baseline model, although it has not seen
distorted images at any stage during the training process. We find increased robustness for 9/14
image corruptions. This improvement is mainly observed across 3 groups of distortions: Noise,
Blur and Digital (Fig. 3A), whereas MTL-monkey did not exceed the baseline performance for the
Weather group. The shuffled control did not provide any benefits (Fig. 2 and Fig. 3A,B).

The more ”brain-like” the neural network, the better it generalizes to image distortions. If
features in the neural data affect the robustness, we would expect that the robustness correlates pos-
itively with the neural prediction performance in MTL-monkey. To test this hypothesis, we create
a pool of MTL-monkey models with varying neural performance by altering the amount of neu-
ral data introduced during co-training through the batch-ratio hyperparameter. We find that both
the model accuracy on clean images and neural prediction improves the network’s robustness (Fig-
ure 3C; p < 10�5 (t-test) for both factors in a 2-factor linear regression). Analysis for MTL-shuffled
shows no connection between robustness and neural performance (p > 0.5 for neural prediction and
p < 10�13 for clean accuracy). Overall, our results are consistent with previous work finding a
positive correlation between model robustness and brain-likeness (Dapello et al., 2020).

Conclusion and Outlook To the best of our knowledge, this work is the first that investigates the
neural co-training hypothesis, adding further evidence to existing literature that useful representa-
tional inductive biases can be transferred from neural data. By carefully controlling the amount of
neural data and robustness in the neural data for MTL through the batch ratio parameter and the
MTL-oracle model respectively, we were able to show that robustness correlates with neural pre-
diction performance and that the MTL-monkey model is close to the expected ideal performance in
many cases. In the future, we hope to include higher brain areas for neural co-training to achieve
stronger effects and robustness against more complex distortions.

4

Summary

• Mammalian visual systems have a better inductive bias
than deep networks

• Multi task learning can be one avenue to improve
inductive biases of models

• Co-training on monkey V1 yields improves robustness
classification models

• Brain-likeness correlates with robustness

Funding

Thanks for listening! Questions?

We are looking for PhD students!
 Check out: https://sinzlab.org/openpositions.html
 or scan code

http://www.apple.com

