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Neuromorphic Engineering — Why?
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Neuromorphic Engineering — Why?
Efficiency of bio-inspired neuromorphic computing?
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Neuromorphic Engineering — How?
A design strategy toward efficiency and cognition?
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Neuromorphic Engineering — How?
A design strategy toward efficiency and cognition?
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Neuromorphic Engineering — How?
Unveiling roads to embedded cognition
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Outline

Part | — Bottom-up neuromorphic design
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Outline

Part | — Bottom-up neuromorphic design

* Building blocks

Neurons and synapses as adaptive processing and memory elements

_ [Frenkel, ISCAS, 2017]
* Integration [Frenkel, BioCAS, 2017]

Part || — Top-down neuromorphic design
e Algorithms
* |ntegration

Conclusion and perspectives
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Design strategy
Analog or digital?

Biophysical behavior
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Design strategy

What should we aim for and phenomenologically implement?

Neurons
* 20 Izhikevich behaviors of cortical spiking neurons Useful for time-to-first-spike
encodings
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Proposed phenomenological digital neuron
Tackling the versatility/efficiency tradeoff
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Design strategy

What should we aim for and phenomenologically implement? -

> perspectives
Neurons

e 20 Izhikevich behaviors of cortical spiking neurons
Synapses
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Proposed digital synapse
Tackling the versatility/efficiency tradeoff

Key challenge — Fan-in = 100-10000 synapses/neuron
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Outline

Part | — Bottom-up neuromorphic design
* Building blocks

* Integration

Proposed neuromorphic experimentation platforms

Part || — Top-down neuromorphic design
e Algorithms
* |ntegration

Conclusion and perspectives

[Frenkel, Trans. BioCAS, 2019a]
[Frenkel, Trans. BioCAS, 2019b]
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ODIN — A 256-neuron 64k-synapse Online-learning Digital Neurosynaptic core

Architecture of ODIN
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ODIN — Chip microphotograph and specifications
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WEST

Architecture of MorphlC

Chip-level architecture
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MorphlC — Chip microphotograph and specifications

1.87mm

CO0 neur SRAM

Core 1

synapse
SRAM

L3 neur SRAM

Core 3
synapse
SRAM
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Technology 65nm LP CMOS
Implementation Digital

3.5mm? (incl. pads)
Area 2.86mm? (excl. pads)
Number of cores 4
Total # neurons (type) 2048 (LIF)
Total # synapses (hier.) 1M (LO), 1M (L1), 64k (L2)
Fan-in (hier.) 512 (LO), 512 (L1), 32 (L2)
Fan-out (hier.) 512 (L0), 3x512 (L1), 4 (L2)
Online learning Stochastic SDSP, 1-bit weight
Time constant Biological to accelerated
Supply voltage 0.8V -1.2V
Max. clock frequency  55MHz (0.8V) — 210MHz (1.2V)
Leakage power (P..,) 45uW @0.8V
Idle power (Py.) 41.3uW/MHz @0.8V
Energy/SOP (Eqyp) 30p) @0.8V
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Comparison with SoA experimentation platforms

Author Schemmel [30] Benjamin [32] Ciao [27] Moradi |29 Park [26] Mayr [28] Painkras [31] Seo [25] Akopyan [33] Davies [34] Frenkel Frenkel
Publication ISCAS, 2010 PIEEE, 2014 Front. NS, 2015 TBioCAS, 2017 BioCAS, 2014 TBCAS, 2016 JSSC, 2013 CICC, 2011 TCAD, 2015 IEEE Micro, 2018 TBCAS, 2019a TBCAS, 2019b
Chip name HICANN Neurogrid ROLLS DYNAPs IFAT SpiNNaker TrueNorth Loihi ODIN MorphIC
Implementation Mixed-signal ~Mixed-signal ~ Mixed-signal Mixed-signal Mixed-signal ~ Mixed-signal Digital Digital Digital Digital Digital Digital
Technology 0.18um 0.18pm 0.18um 0.18um 90nm 28nm 0.13pum 45nm 501 28nm 14nm FimFET 28nm FDSOI 65nm LP
# cores” 1 16 1 4 32 1 18 1 4006 128 1 4
Neurosynaptic core area [mm?| 49 168 51.4 7.5 0.31 0.36 3.75 0.8 0.085 04 0.086 0.715
# Izhikevich behaviorst (20) N/A (20) (20} 3 3 Programmable 3 11 (3 neur: 20) (6) 20 3
# neurons per core 512 64k 256 256 2k 64 max. 1000° 256 256 max. 1024 256 512
Synaptic weight storage 4-bit (SRAM) Off-chip Capacitor 12-bit (CAM) Off-chip 4-hit (SRAM) Off-chip 1-bit (SRAM) I-bit (SRAM)  1- to 9-bit (SRAM) (3+1)-bit (SRAM) 1-bit (SRAM)
Embedded online learning STDP No SDSP No No SDsP Programmable S-STDP No Programmable SDSP §-SDSP
# Synapses per core 112k 128k 16k 8k 64k 64k IM to 114k (1-9 bits) 6k 528k
Time constant Accelerated Biological Biclogical Biological Biological Bio. to accel Bio. to accel. Biological Biological N/A Bio. to accel Bio. to accel
Flexibility routing Medium Medium Low Medium Medium Low High Low Medium High Low Medium
learning Low Low Low Low Low High Low Low
- ) g, Taw 10.5 390 5 34 6.5k 178 max. 2677 320 2.6k max. 2.5k 3.0k 716
Neuron core density [neur/mm-" max 5.8k 826 2.6k max. 1k 3.0k 3.0k
Synapse core density [syn. -"mm2|* Taw 2.3k 2.5k 2.1k 222k 80k 674k 2.5M to 282k 741k 738k
! TOTTI. 207k 674k 1M to 113k 741k aM
Supply voltage 1.8V 30V 1.8V 1.3V-18V 12V 0.75V, 1.0V 1.2V 0.53V-1.0V 0.7V-1.05V 0.5V-125V 0.55V-1.0V 0.8V-12V
raw . (941pJ)* >7rfl® 134614 /30pI4 (1.3V)  22p]4 =850pJ4  >11.3nJ%/26 6nJ% 26pJ* (0775V)  =236pJ% (075V)  84pl®/127pJ* (055V) 30pJ* /51pd* (0.8V)
Energy per SOP! 0 N/A >2.4nJ4 /5. 10+ N/A 26pJa (66.1pJ*) 24pJe/12.7pJ4 12.0pJ4 /22pJ4

© When chips are composed of several neurosynaptic cores, we report the density data associated to a single core. Care should be taken that, depending on the core definition in the different
chips, routing resources might be included (all single-core designs, IFAT, TrueNorth, Loihi and MorphIC) or excluded (Neurogrid, DYNAPs and SpiNNaker). As opposed to the other reported
designs, we consider the full Neurogrid system, which is composed of 16 NeuroCore chips, each one considered as a core; routing resources are off-chip. For DYNAPs and SpiNNaker, sharing
routing overhead among cores would lead to 28-% and 37-% density penalties compared to the reported results, respectively. The HICANN chip can be considered as a core of the BrainScaleS
wafer-scale system. Pad area is excluded from all reported designs.

U By its similarity with the Izhikevich neuron model, the AdExp neuron model is believed to reach the 20 Izhikevich behaviors [76], but it has not been demonstrated in HICANN, ROLLS and
DYNAPs. The neuron model of TrueNorth can reach 11 behaviors per neuron and 20 by combining three neurons together [85]. The neuron model of Loihi is based on a LIF model to which
threshold adaptation is added: the neuron should therefore reach 6 Izhikevich behaviors, although it has not been demonstrated.

® Experiment 1 reported in Table 111 from [31] is considered as a best-case neuron density: 1000 simple LIF neuron models are implemented per core, each firing at a low frequency.

* Neuron (resp. synapse) core densities are computed by dividing the number of neurons (resp. synapses) per neurosynaptic core by the neurosynaptic core area. Regarding the synapse core
density, Neurogrid, IFAT and SpiNNaker use an off-chip memory to store synaptic data. As the synapse core density cannot be extracted when off-chip resources are involved, no synapse core
density values are reported for these chips. Values normalized to a 28-nm CMOS technology node are provided for digital designs using the node factor, at the exception of the 14-nm FinFET
node of Loihi for which Intel data from [120] has been used.

* The synaptic operation energy measurements reported for the different chips do not follow a standardized measurement process. There are two main categories for energy measurements in
neuromorphic chips. On the one hand, incremental values (denoted with #) describe the amount of energy paid per each additional SOP computation, they are measured by subtracting the
leakage and idle power consumption of the chip, as in Eq. (2.2), although the exact power contributions taken into account in the SOP energy vary across chips. On the other hand, global
values (denoted with *) are obtained by dividing the total chip power consumption by the SOP rate, as in Eq. (2.3). Values normalized to a 28-nm CMOS technology node are provided for
digital designs using the node factor, including for the 14-nm FinFET node of Loihi in the absence of reliable data for power normalization in [120]. The conditions under which all of these
measurements have been done can be found hereafter. For Neurogrid, a SOP energy of 941pJ is reported for a network of 16 Neurocore chips (1M neurons, 8B synapses, 413k spikes/s): it
is a board-level measurement, no chip-level measurement is provided [32]. For ROLLS, the measured SOP energy of 77f] is reported in [163], it accounts for a point-to-point synaptic input
event and includes the contribution of weight adaptation and digital-to-analog conversion, it represents a lower bound as it does not account for synaptic event broadcasting. For DYNAPs,
the measured SOP energy of 134fJ at 1.3V is also reported in [163] while the global SOP energy of 30pJ can be estimated from [29] using the measured 800-pW power consumption with all 1k
neurons spiking at 100Hz with 25% connectivity (26.2MSOP/s), excluding the synaptic input currents. For IFAT, the SOP energy of 22pJ is extracted by measuring the chip power consumption
when operated at the peak rate of 73M synaptic events/s [26]. In the chip of Mayr et al., the SOP energy of 850pJ represents a lower bound extracted from the chip power consumption,
estimated by considering the synaptic weights at half their dynamic at maximum operating frequency [28]. For SpiNNaker, an incremental SOP energy of 11.3nJ is measured in [164], a global
SOP energy of 26.6nJ at the maximum SOP rate of 16.56 MSOP /s can be estimated by taking into account the leakage and idle power; both values represent a lower bound as the energy cost
of neuron updates is not included. For TrueNorth, the measured SOP energy of 26pJ at 0.775V is reported in [165], it is extracted by measuring the chip power consumption when all neurons
fire at 20Hz with 128 active synapses. For Loihi, a minimum SOP energy of 23.6pJ at 0.75V is extracted from pre-silicon SDF and SPICE simulations, in accordance with early post-silicon
characterization [34]; it represents a lower bound as it includes only the contribution of the synaptic operation, without taking into account the cost of neuron update and learning engine
update. For ODIN and MorphIC, the detailed measurement process is described in Sections 2.2.2 and 2.3.2, respectively.

Frenkel, NICE’21 keynote
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Comparison with SoA experimentation platforms
Digital

Mixed-signal

Author Schemmel Benjamin Qiao Moradi Painkras Akopyan Davies Frenkel Frenkel
Publication ISCAS, 2010 PIEEE, 2014 Front. NS, 2015 TBioCAS, 2017 JSBC, 2013 TCAD, 2015 IEEE Micro, 2018 TBCAS, 2019a TBCAS, 2019b
Chip name HICANN Neurogrid ROLLS DYNAP= SpiNNaker TrueNorth Loihi ODIN MorphIC
Implementation Mixed-signal ~ Mixed-signal ~ Mixed-signal Mixed-signal Digital Digital Diigital Digital Digital
Technology 0.18um 0.18pm 0.18um 0.18um 0.13pm 28nm 14nm FinFET 28nm FDSOI 65nm LP
# cores 1 16 1 4 18 4006 128 1 4
Neurosynaptic core area [mm?| 40 168 51.4 7.5 3.75 0.095 04 0.086 0.715
# lzhikevich behaviors (20) N/A (20) (20) Programmable | 11 (3 neur: 20) (6) 20 3
# neurons per core 512 G4k 256 256 max. 1000 256 max. 1024 256 512
Synaptic weight storage 4-bit (SRAM) Off-chip Capacitor 12-bit (CAM) Off-chip I-bit (SRAM) | 1- to 9-bit (SRAM) (3+1)-bit (SRAM) 1-bit (SRAM)
Embedded online learning STDP No SDSP No Programmable No Programmable SDSP 5-5DSP
L Bynapses per core 112k 128k 16k ik IM to 114k (1-9 bits) 64k 528k
Time constant Accelerated Biological Biological Biological Bio. to accel. Biological N/A Bio. to accel Bio. to accel
Flexibility routing Medinm Medium Low Medium High Medium High Low Medium
learning Low Low Low High Low Low

Neuron core density [ncu.r-"'mm2| Taw 105 390 5 34 max. 267 2.6k max. 2.5k 3.0k 716

! norm. max. 5.8k 2.6k max. 1k 3.0k 3.0k
Synapse core density [syn ""mm2| TAW 2.3k 2.5k 2.1k 674k 2.5M to 282k 741k 738k

! norm. 674k IM to 113k 741k 4M
Supply voltage 1.8V 3.0V 1.8V 1.3V-1.8V 1.2V 0.7V-1.05V 0.5V-1.25V 0.55V-1.0V 0.8V-1.2V

raw -, 041pJ)* >77E]A 134£14/30pJ* (1.3V) =>11.3nJ%/26.6nJ%| 26pJ* (0.775V) | =23.6pJ* (0.75V) |&.4pJ®/12.7pJ* (0.55V) | 30pJ* /51pJ* (0.8V)

Energy per S0P o N/A : : ~24nJ4 /5,704 26pJ* (66 lp{J“‘) 8.4pJa /12 7pJ4 12.0pJ* /22p]*

Most direct comparison: IBM TrueNorth core vs. ODIN (same technology node,
same number of neurons and synapses per neurosynaptic core, same area).

Synapses

Neurons

Energy/SOP
Connectivity

Frenkel, NICE’21 keynote
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Comparison with SoA experimentation platforms
Digital

Mixed-signal

Author Schemmel Benjamin Qiao Moradi Painkras Akopyan Davies Frenkel Frenkel
Publication ISCAS, 2010 PIEEE, 2014 Front. NS, 2015 TBioCAS, 2017 JSBC, 2013 TCAD, 2015 IEEE Micro, 2018 TBCAS, 2019a TBCAS, 2019b
Chip name HICANN Neurogrid ROLLS DYNAP= SpiNNaker TrueNorth Loihi ODIN MorphIC
Implementation Mixed-signal ~ Mixed-signal ~ Mixed-signal Mixed-signal Digital Digital Diigital Digital Digital
Technology 0.18um 0.18pm 0.18um 0.18um 0.13pm 28nm 14nm FinFET 28nm FDSOI 65nm LP
# cores 1 16 1 4 18 4006 128 1 4
Neurosynaptic core area [mm?| 40 168 51.4 7.5 3.75 0.005 04 0.086 0.715
# lzhikevich behaviors (20) N/A (20) (20) Programmable 11 (3 neur: 20) (6) 20 3
# neurons per core 512 G4k 256 256 max. 1000 256 max. 1024 256 512
Synaptic weight storage 4-bit (SRAM) Off-chip Capacitor 12-bit (CAM) Off-chip I-bit (SRAM)  1- to 9-bit (SRAM) (3+1)-bit (SRAM) 1-bit (SRAM)
Embedded online learning STDP No SDSP No Programmable No Programmable SDSP 5-5DSP
L Bynapses per core 112k 128k 16k 6k IM to 114k (1-9 bits) 64k 528k
Time constant Accelerated Biological Biological Biological Bio. to accel. Biological N/A Bio. to accel Bio. to accel
Flexibility routing Medinm Medium Low Medium High Medium High Low Medium
learning Low Low Low High Low Low

Neuron core density [Tl(:l].l’."l'lll'l12] Taw 10.5 300 5 34 max. 2{1'.7 2.6k max. 2.5k 3.0k 716

! norm. max. 5.8k 2.6k max. 1k 3.0k 3.0k
Synapse core density [s}fn.’mmg] Taw 2.3k 2.5k 2.1k 674k 2.5M to 282k 741k 738k

' norm. 674k 1M to 113k 741k AM
Supply voltage 1.8V 3.0V 1.8V 1.3V-1.8V 1.2V 0.7V-1.05V 0.5V-1.25V 0.55V-1.0V 0.8V-1.2V

raw - 041pJ)* >77E]A 134£14/30pJ* (1.3V) =>11.3nJ%/26.6nJ% 26pJ* (0.775V)  =23.6pJ* (0.75V)  &.4pJ*/12.7pJ* (0.55V) 30pJ*/51pJ* (0.8V)

Energy per S0P o N/A : : ~24nJ4 /5,704 26pJ* [GG.lp{J“‘) S4pJa /12 7pJ4 ) 12.0pJ* /22p]4

Area

ODIN and MorphlC have the highest neuron and synapse densities
among all SNNs with embedded synaptic weight storage

Frenkel, NICE’21 keynote
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Comparison with SoA experimentation platforms

Mixed-signal

Digital

Author Schemmel Benjamin Qiao Moradi Painkras Akopyan Davies Frenkel Frenkel
Publication ISCAS, 2010 PIEEE, 2014 Front. NS, 2015 TBioCAS, 2017 JSBC, 2013 TCAD, 2015 IEEE Micro, 2018 TBCAS, 2019a TBCAS, 2019b
Chip name HICANN Neurogrid ROLLS DYNAP= SpiNNaker TrueNorth Loihi ODIN MorphIC
Implementation Mixed-signal ~ Mixed-signal ~ Mixed-signal Mixed-signal Digital Digital Diigital Digital Digital
Technology 0.18um 0.18pm 0.18um 0.18um 0.13pm 28nm 14nm FinFET 28nm FDSOI 65nm LP
# cores 1 16 1 4 18 4006 128 1 4
Neurosynaptic core area [mm?| 40 168 51.4 7.5 3.75 0.005 04 0.086 0.715
# lzhikevich behaviors (20) N/A (20) (20) Programmable 11 (3 neur: 20) (6) 20 3
# neurons per core 512 G4k 256 256 max. 1000 256 max. 1024 256 512
Synaptic weight storage 4-bit (SRAM) Off-chip Capacitor 12-bit (CAM) Off-chip I-bit (SRAM)  1- to 9-bit (SRAM) (3+1)-bit (SRAM) 1-bit (SRAM)
Embedded online learning STDP No SDSP No Programmable No Programmable SDSP 5-5DSP
L Bynapses per core 112k 128k 16k 6k IM to 114k (1-9 bits) 64k 528k
Time constant Accelerated Biological Biological Biological Bio. to accel. Biological N/A Bio. to accel Bio. to accel
Flexibility routing Medinm Medium Low Medium High Medium High Low Medium
learning Low Low Low High Low Low

Neuron core density [ncu.r-"'mm2| Taw 105 390 5 34 max. 267 2.6k max. 2.5k 3.0k 716

! norm. max. 5.8k 2.6k max. 1k 3.0k 3.0k
Synapse core density [syn ""Inm2| TAW 2.3k 2.5k 2.1k 674k 2.5M to 282k 741k 738k

! norm. 674k IM to 113k 741k 4M
Supply voltage L8V 3.0V LEV 13V-18V 1.2V 0.7V-1.05V 0.5V-1.25V 0.5_5\’_—]_0\’_ 0.8V-1.2V

- raw - (941pJ)* >77E] 134£1%/30pJ* (1.3V)] >11.3nJ%/26.60J% 26pJ* (0.775V) >23.6pJ* (0.75V) | 8.4pJ®/12.7pJ* (0.55V) 30pJ®/51pJ* (0.8V)

Energy per SOP norm. N/A . . =2 4nJ4/5 TnJ4 26pJ4 (66.1pJ*) 8.4pJ* /12.7pJ* 12 OpJ*/22pJ*

Frenkel, NICE’21 keynote

Power

ODIN has the lowest energy per synaptic event among all digital SNNs,

MorphlC keeps a competitive energy efficiency.

They outperform subthreshold analog SNNs in accelerated time,
but not for biological-time processing.
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Results on the spiking EMG/DVS sensor fusion benchmark

[Ceolini, Frenkel, Shrestha et al., Front. Neurosci., 2020]

A Data collection setup B Spike streams C Neuromorphic systems D Gestures

DVS Gesture Myo

b1.DVS cl. Loihi

CH1 1 111
I 1

CH2 L1 II 11 1

CH3 Ll 1

CH4 | 11

CH6 L i1 I I
| | I

CH7 Illlll
TTTr 11 I

CHE Illliillll

Frenkel, NICE’21 keynote 23



Results on the spiking EMG/DVS sensor fusion benchmark

[Ceolini, Frenkel, Shrestha et al., Front. Neurosci., 2020]

a0
lSensor fusion
80 ~
£ 5. ODIN+MorphlC 89.4% /  37.41
5 o Loihi 96% / 1105u)
g Software 95.4% /32100
o 50 1\ ~ J
£ Accuracy / Energy tradeoff
4D -
30 - Neuromorphic designs are more
efficient than GPUs, as would be
o5 50 75 100 125 150 175 200 expected from dedicated hardware.
Inference time [ms] But are they more efficient than —
conventional accelerators? > perspectives

See the ODIN and MorphlC papers for more
Frenkel, NICE'21 keynote benchmarking, incl. online- and offline-trained MNIST. 24
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Outline

Part | — Bottom-up neuromorphic design
* Building blocks
* Integration

Part Il — Top-down neuromorphic design

* Algorithms

Minimizing the training cost of neural networks for adaptive edge computing

, [Frenkel & Lefebvre, Front. Neurosci., 2021]
* Integration

Conclusion and perspectives

25



Learning without feedback
Releasing the weight transport and update locking of backprop
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v

open source
initiative®
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Direct Random Target Projection (DRTP)

Ideal use cases?

Adaptive edge computing

= Very low power and area overheads can be expected
for an on-chip implementation.

= Datasets representative of the complexity associated to
autonomous smart sensors: MNIST or CIFAR-10.

- We'll verify these claims in silico.

Neuroscience
DRTP could come in line with recent findings in cortical areas that

reveal the existence of output-independent target signals in the
dendritic instructive pathways of intermediate-layer neurons.

Frenkel, NICE’21 keynote

[Magee & Grienberger,
Annual Review of
Neuroscience, 2020]
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Outline

Part | — Bottom-up neuromorphic design
* Building blocks
* Integration

Part Il — Top-down neuromorphic design
e Algorithms

* Integration

Neuromorphic accelerators [Frenkel, ISCAS, 2020]

Conclusion and perspectives

28
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Which bio-inspired elements?
Taking a step back with the top-down design strategy

NeUroscience Real-world Adaptive edee computin
application application P & puting
DRTP

Neuromorphic processors

sparse

Computation is event-driven

Neuroscience observation time-based
ut image Output
(splﬁlng retlna) Iabpel
1 11 1
/ (R fout
............. @ O
’11‘.:'_,\_ K . I
X FC,
| ) ing i d '
Convolutional Maxpooling Fully-connecte !
(event-driven) (frame-based) (frame-based + event-driven) DRTP'ena bled !
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Architecture of SPOON

SPOON — A Spiking Online-Learning Convolutional Neuromorphic Processor

4 N\
LABEL 1
TICK_EXT Local tick :
DATA_SYNC d_g generator DRTP weight update
INFER_REQ 1 T %
vy_ v Kernel RF R
Timestamp 8-bit weights
LCOU”ter (64-kB SRAM)
> i - .
1| = > - 4
X FIFO - »ADDR
ADDR E ® 8fout » &
REQ S = [ 16-bit psums buffer ] O 8 »REQ
16-kB SRAM
ACK < T ( ) Hidden  Output o |« ACK
< neuron neurons g
\Stride-4 maxpool/ buffer buffer
\ CONV core FC core /
(N=32, K=5, F=10, C=28, M=7) (FC,=128, FC,=10)
SCK > XL SPOON
MOS| ‘| SPlslaveand Clock
MISO < parameter bank generator 28nm eCNN
o 1 J

t

RST CLKG_EN CLK_EXT



SPOON — Chip microphotograph and specifications

> perspectives

Stay tuned for the
journal extension!

AR EY B R

(pre-silicon numbers, not yet updated)

Technology 28nm FDSOI CMOS

Implementation Digital

Area 0.32mm? (U.Eﬁmm2 excl. rails)

Topology C5x5@10-FC128-FC10

Online learning Stochastic DRTP, 8-bit weights

Time constant Biological to accelerated

Supply voltage 0.6V - 1.OV

Max. clock frequency 150MHz

Leakage power 6lpW at 0.6V

Energy for CONV core 1.7nJ/event at 0.6V DRTP can be

En for F I Snl/inferen v . .
I'Online learning overhead  16.8% in power, 11.8% in area] implemented on-chip

at a very low cost!

Benchmarking: [MNIST|and N-MNIST

Frenkel, NICE’21 keynote 31



Maximum accuracy [%]

Frenkel, NICE’21 keynote

100

95

90

85

SPOON benchmarking
Against SOA spiking neural networks on MNIST

Moons, CICC18 Chen,
x VLSI18p
% MorphlC WhaTmough, .
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SPOON benchmarking
Against SOA spiking neural networks on MNIST

T . 100 . | : . ,
100 Moons, CICC18 Chen, Chen, Moons,
SPOON X VLSI18p Park, |sscc’1£# _4+ VvLsisb _-*ciccis
Y * MorphiC WhaTmough, ¢ ™ _x* *’ -
' ISSCC17 L4 +- : T S
| Park, , Whatmough,‘; SPOON'! al ;" -~ MorphiC
A ISsCC19 e Isscc17 , (o) Poweropt falit s
oo W& - ¢ . 95 + & - -
- @ Chen, TCASHY _ -~~~ *" "TrueNorth = . TrueNorth
& o--""" S Chen, TCASHS ¢~
g 3
g Vetter E Better
£ 90 @Kim, VLSI15 13 sof ®)Kim, VLSI15
3 Q ’
£ < /
% (@)Buhler, VLsi17 @ Buhler, VLSI17
= O On-chip learning ’ O On-chip learning
— SNN o — SNN
85 - —— ANN/CNN . 85 , — ANN/CNN
—— Binary neural network @ —— Binary neural network
——Event-driven CNN — ‘Event-driven CNN
10° 10° 10 102 10° 104 10°
Normalized active silicon area [mm?] Normalized energy per inference [nJ]

Only SPOON allows reaching the efficiency of ANN/CNN/BNN accelerators while
enabling online learning with event-based sensors.

Frenkel, NICE’21 keynote
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Outline

Part | — Bottom-up neuromorphic design
* Building blocks
* Integration

Part Il — Top-down neuromorphic design
* Algorithms
* [ntegration

Conclusion and perspectives

Summary of the key messages, next directions

Frenkel, NICE’21 keynote
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Neuromorphic Engineering — Key Claims
Unveiling roads to embedded cognition

Bottom-up

design
(exp. platforms)

@ Large-scale
silicon integration

T

@ Neuron & synapse
building blocks

Versatility / efficiency
tradeoff

Frenkel, NICE’21 keynote

Nelroscience Real-world
pp“catlon ..................... > application

Neuromorphic processors
A A
:?

Neuroscience observation

--------------------------------------

Efficiency
Cognition

Top-down

design
(accelerators)

Algorithms @

|

Silicon @
integration

Accuracy / efficiency
tradeoff
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Neuromorphic Engineering — Key Claims
Unveiling roads to embedded cognition

Bottom-up

design
(exp. platforms)

@ Large-scale
silicon integration

T

Neuron & synapse
building blocks

Versatility / efficiency
tradeoff

Frenkel, NICE’21 keynote

Nelroscience ? Real-world

pplication > application

Neuromorphic processors

A

Neuroscience observation

Claim 1

Hardware-aware neuroscience model design and selection
allows reaching record neuron and synapse densities with low-
power operation for large-scale integration in silico.
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Neuromorphic Engineering — Key Claims
Unveiling roads to embedded cognition

Nelroscience Real-world
application application

Neuromorphic processors
A
. ?

Neuroscience observation

Claim 2

Combining event-driven and frame-based processing with
weight-transport-free update-unlocked training supports
low-cost adaptive edge computing with spike-based sensors.

Top-down

design
(accelerators)

Algorithms @

|

Silicon @
integration

Accuracy / efficiency
tradeoff
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Neuromorphic Engineering — Key Claims
Unveiling roads to embedded cognition

Bottom-up

design
(exp. platforms)

Large-scale
silicon integration

T

Neuron & synapse
building blocks

Nelroscience ? Real-world

pplication " application

Neuromorphic processors
A A
:?

Neuroscience observation

--------------------------------------

Top-down

design
(accelerators)

Algorithms @

|

Silicon @
integration

Versatility / efficiency Efficiency Accuracy / efficiency
tradeoff Cognition tradeoff
Claim 3

Frenkel, NICE’21 keynote

Top-down guidance helps pushing bottom-up neuron and synapse integration
beyond the purpose of neuroscience experimentation platforms, while bottom-up
guidance supports top-down design toward brain reverse-engineering.
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Perspectives

Neuromorphic engineering and spiking neural networks:
“Can we make it work?” “Will it bring a competitive advantage?” (not only against GPUs)

Need something better than MNIST Audio (KWS) and bio-signal processing (time, biological-time)
[Davies, Nat. Mach. Intel., 2019]

Promising avenue: fine-grained mixed-signal design.
Bottom-up trend: dendrites

Top-down trend: new wave of training algorithms mapping onto bio-plausible primitives [Sacramento, NeurlPS'18]
[Payeur, bioRxiv, 2020]

Cognition: a case for neuromorphic robots? Nedroscience Real-world (Bellec, Nat. Comms., 2020]

[Man & Damasio, Nat. Mach. Intel., 2019] gpplication application

Neuromorphic processors

Neuroscience observation
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Questions?

Main references:

- ODIN:

- MorphlC:

- DRTP:

- SPOON:

Frenkel, NICE’21 keynote

[C. Frenkel et al. “MorphlC: A 65-nm 738k-synapse/mm? quad-core
binary-weight digital neuromorphic processor with stochastic spike-
driven online learning,” IEEE Trans. BioCAS, 2019]

[C. Frenkel et al., “A 0.086-mm? 12.7-pJ/SOP 64k-synapse 256-
neuron online-learning digital spiking neuromorphic processor in
28nm CMQOS,” [EEE Trans. BioCAS, 2019]

[C. Frenkel, M. Lefebvre et al., “Learning without feedback: Fixed
random learning signals allow for feedforward training of deep
neural networks,” Frontiers in Neuroscience, 2021]
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YW @cC_Frenkel

m cfrenkel

ﬂ Charlotte-Frenkel

O ChFrenkel

>,< charlotte@ini.uzh.ch

Open-sourced!
github.com/ChFrenkel/ODIN

Open-sourced!
github.com/ChFrenkel/Direct
RandomTargetProjection

Journal extension coming soon
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