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Lifelong-learning & Its Challenges

WHAT  IS  LIFELONG-LEARNING ?

LearningRemembering

 Tasks are learned sequentially

 Ability to recollect previously learned tasks and
continually learn new tasks is considered lifelong
learning

CHALLENGES

CATASTROPHIC 
FORGETTING

NETWORK 
CAPACITY

UNSUPERVISED 
LEARNING 

MECHANISMS

LEARNING RATE

LEARNING COST

HARDWARE 
CONSTRAINTS

 Inability to remember previously learned tasks is called
catastrophic forgetting

 Learning mechanism can be supervised, unsupervised
or reinforcement based
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Neuroevolution

Neuroevolution is the process of evolving or modifying the architecture of a neural network

 Neurogenesis is the generation of new Neurons
 Addition of NODES

 Synaptogenesis is the generation of new Synapses
 Addition of EDGES

 Neuronal Death/Termination is the removal of Neurons
 Removal of NODES

 Synapse Termination is the removal of Synapses
 Removal of EDGES
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Research Questions & Contributions

How can neuroevolution assist 
lifelong learning?

I

In the absence of a supervisor 
providing context, how does 
evolution occur?

II

Which mechanisms can aid 
information preservation?

III

New rules for neuroevolution through neurogenesis 
and synaptogenesisI

Mechanism for preserving information 
through activity trackingII

Simulated environments for evaluating lifelong 
learningIII

Library for bridging reinforcement learning algorithms 
and simulations  IV
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Reinforcement Learning
CONTEXT

The problem is defined through a 
RL context



6

Reinforcement Learning Example

Spider
AGENT

Fire
NEGATIVE REWARD

Food
POSITIVE REWARD

Maze
ENVIRONMENT

FOOD
Env-1

FIRE
Env-2

FOE
Env-3

FRIEND
Env-4

Task-1 Task-2 Task-3 Task-4

LIFELONG LEARNING
SETUP
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Example Environment

Auditory, Olfactory 
and Vibratory 
Sense Zones 

based on radial 
distance from the 
agent.

Line-Of-Sight vision-
based sense vectors 

receiving distance 
from 5 points

inferring object type 
from the color of 
received point of 
contact
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Reinforcement Learning Paradigm & Algorithm

REWARDS

AGENT

ENVIRONMENT
OBSERVATIONS

ACTIONS

POSITIVE

NEGATIVE
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Relational Neurogenesis
ALGORITHM  &  ARCHITECTURE 

Structure of the RN algorithm
Overview of the architecture
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DRL Network

 Forward Pass  Activation Measurement  Input Activation Matrix [AI]
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Relational Neurogenesis Framework

Deep 
Reinforcement 
Learning 
Network

Weights
Activations
Outputs
Score

Relative Layer Activation
Weight Change Magnitude
Average Global Activation
Relative Output Confidence
Score Gradient

Calculate 
Intermediate 
Metrics

Compare 
Threshold 
Criteria

Neurogenesis
Synaptogenesis
Neuron Pruning
Synapse Pruning
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Relational Neurogenesis
MECHANISMS 

Mechanisms and Methods 
developed to support 
Neuroevolution
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Neurogenesis Mechanisms

Plateauing 
Merit

The Merit Score is an
evaluation metric of the
agent’s performance.

The Merit Score should
keep rising as the agent
learns.

A plateauing or
descending merit score
curve is undesirable as
it shows lack or loss of
learning respectively



14

Neurogenesis Mechanisms

Learning
Opposing
Concepts

Learning opposing
ideas or concepts
causes the network
weights to oscillate

The oscillation of
weights results in poor
representation

The oscillation of
weights is caused by
pulling of nodes in
opposing directions
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Neurogenesis Mechanisms

Low Margin 
of 
Confidence

The output activations
are passed through a
softmax

The resultant can be
viewed as a confidence
metric of each output

If the confidence is low
or similar between
outputs, it shows poor
class separability and
additional nodes are
needed to separate the
classes
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Simulated Environments
EVALUATION 

Virtual Environments developed in 
Unity Engine for evaluating 
Lifelong Learning
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Environment Set – A     *Spider Survival*

Before Training
Episode 1

After Training

Episode 500

Training Time

60 minutes

Environment – A1

FIRE
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Environment Set – A     *Spider Survival*
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Environment Set – B     *Forest Fire*

AGENT

Forest Environment
(top view)

 Task I
Navigating Forest Fires

 Task II
Locating Trapped Civilians

 Task III
Rescuing Civilians

 Task IV
Multi-agent cooperation
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Environment Set – B     *Forest Fire*

Trained on B1 

Successfully Navigating Forest Fires

Trained on B2

Successfully Locating Trapped Civilians
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Results
EVALUATION 

Results obtained in single task as 
well as continual learning scenarios
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Results: Single Task Performance

Network GrowthRN is compared against RL and Continual Learning Algorithms:
I. Observed to learn at an accelerated pace
II. Nearly matches SOTA performance in individual task
III. Heavy computational overheads
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Results: Continual Learning Performance

Continual Learning Performance
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What’s Next ?
CONCLUSION
FUTURE  SCOPE 

More Refined Mechanisms
Transfer Learning
Improved Environments



 Relational Neurogenesis is a combination of evolutionary algorithms and deep reinforcement learning
 It can learn continually with minimal catastrophic forgetting 
 It minimizes and optimizes network growth
 It converges (episodically) much quicker than other algorithms
 No supervisor needed for task-switching
 But Relational Neurogenesis is computationally expensive 
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Conclusion  &  Future Scope

Takeaways

 Optimize and unify diverse neuroevolutionary mechanisms
 Reduce computational overheads
 Transfer learn between virtual and real-world scenarios
 Explore extent of lifelong learning supported by expandable networks

Future Work
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Thank you for attending the talk  
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