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Lifelong-learning & Its Challenges

TASK-1 TASK-2

TASK-N TASK-3

\ TASK-4

Tasks are learned sequentially

Ability to recollect previously learned tasks and
continually learn new tasks is considered lifelong
learning

CATASTROPHIC
FORGETTING

HARDWARE NETWORK
CONSTRAINTS CAPACITY

UNSUPERVISED
LEARNING
MECHANISMS

LEARNING RATE

Inability to remember previously learned tasks is called
catastrophic forgetting

Learning mechanism can be supervised, unsupervised
or reinforcement based



Neuroevolution

Neuroevolution is the process of evolving or modifying the architecture of a neural network

Neurogenesis is the generation of new Neurons Q Q
Addition of NODES v,

Synaptogenesis is the generation of new Synapses
Addition of EDGES

Neuronal Death/Termination is the removal of Neurons
Removal of NODES

Synapse Termination is the removal of Synapses
Removal of EDGES




Research Questions & Contributions

n How can neuroevolution assist

lifelong learning?

New rules for neuroevolution through neurogenesis
and synaptogenesis

In the absence of a supervisor
n providing context, how does

evolution occur?

Mechanism for preserving information
through activity tracking

m Which mechanisms can aid

information preservation?

Simulated environments for evaluating lifelong
learning

B

Library for bridging reinforcement learning algorithms
and simulations




Reinforcement Learning
CONTEXT




Reinforcement Learning Example

M Fire Maze
¢ NEGATIVE REWARD ENVIRONMENT
Spider
AGENT
ol Food
t POSITIVE REWARD I I_| I

LIFELONG LEARNING FOOD FRIEND
SETUP
Env-| Env-3 Env-4

Task-| Task-2 Task-3 Task-4




Example

nvironment

Auditory, Olfactory
and Vibratory
Sense Zones

based on radial
distance from the
agent.

Line-Of-Sight vision-
based sense vectors

receiving distance
from 5 points

inferring object type
from the color of
received point of
contact



Reinforcement Learning Paradigm & Algorithm
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OBSERVATIONS
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Training using
Reinforcement Learning




Relational Neurogenesis
ALGORITHM & ARCHITECTURE
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Relational Neurogenesis Framework

Collection of Network Parameters
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Relational Neurogenesis
MECHANISMS




Neurogenesis Mechanisms

Plateauing
Merit

The Merit Score is an
evaluation metric of the
agent’s performance.

The Merit Score should
keep rising as the agent
learns.

A plateauing or
descending merit score
curve is undesirable as
it shows lack or loss of
learning respectively

Performance of Agent:

Merit Score vs Number of Episodes
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Neurogenesis Mechanisms

Learning
Opposing
Concepts
Learning opposing
ideas or concepts
causes the network

weights to oscillate

The oscillation  of
weights results in poor
representation

The oscillation  of
weights is caused by
pulling of nodes in
opposing directions

Learning Opposing Concepts
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Outputs

Aw(f) =w(f) —w(f - 1)
Aw = change in weight

|Aw| = change in magnitude

v

Threshold

Perform
Neurogenesis

CHANGE IN WEIGHT MAGNITUDE |Aw|
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Neurogenesis Mechanisms

Low Margin
of

edin)
€01 = Son T ga0;
Confidence
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The output activations

TIME
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The resultant can be
viewed as a confidence
metric of each output v (i,))

Perform
Neurogenesis

If the confidence is low

or similar  between Relative Output Confidence Matrix
outputs, it shows poor
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Simulated Environments
EVALUATION




Environment Set - A

Before Training After Training
Episode 1 Episode 500

Environment — A1 Training Time

FIRE 60 minutes
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Environment Set - A

Environment - A2

FOOD

Environment - A3

FOE

Environment - A4
FRIEND

Coexisting

Environment - A4

FRIEND

Competing



Environment Set - B

AGENT
: - = Task |

Navigating Forest Fires

= Task Il
Locating Trapped Civilians

Forest Environment,
(top view) [
x

,. 2y Wt = Task Il

Rescuing Civilians

= Task |V

Multi-agent cooperation
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Environment Set - B %

Trained on B1 Trained on B2

Successfully Navigating Forest Fires Successfully Locating Trapped Civilians

Object Detection from
Visible and IR Spectra

RGB Camera (HD) Processed Image (16x9) FLIR Camera (16x9)



Results
EVALUATION

Results obtained in single task as
well as continual learning scenarios
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Results: Single Task Performance

RN (s compared against RL and Continual Learning Algorithms: Network Growth
l. Observed to learn at an accelerated pace
ll.  Nearly matches SOTA performance in individual task
lll.  Heavy computational overheads
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Score

Score

Results: Continual Learning Performance

Continual Learning Performance
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What's Next ?

CONCLUSION
FUTURE SCOPE

More Refined Mechanisms
Transfer Learning

Improved Environments
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Conclusion & Future Scope

Takeaways

= Relational Neurogenesis is a combination of evolutionary algorithms and deep reinforcement learning
= |t can learn continually with minimal catastrophic forgetting

» |t minimizes and optimizes network growth

= [t converges (episodically) much quicker than other algorithms

= No supervisor needed for task-switching

= But Relational Neurogenesis is computationally expensive

Future Work

Optimize and unify diverse neuroevolutionary mechanisms

Reduce computational overheads

Transfer learn between virtual and real-world scenarios

Explore extent of lifelong learning supported by expandable networks
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