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Evolution of Structural Organization

* Modularity
* Hierarchy



Modularity

* Localization of function in an encapsulated unit (ipson 2007)

e Car (spark plug, muffler, wheel), bodies (organs), brains, software, etc.

e Enables increased
e Complexity

e Adaptability
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Modularity

 Rare in previous neuroevolution

e Suggests selection on performance alone does not produce modularity

epoch 1: T=2

epoch 2: T=1
OUTPUT OUTPUT

Kashtan and Alon 2005



Evolutionary Origins of Modularity

Clune, Mouret, & Lipson, Proc. Royal Society, 2013
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Retina Problem

object on | |- object on
left side? M right side?

\

object on both sides? (L&R:)

Kashtan and Alon. PNAS. 2005



Why does modularity evolve!

 Hypothesis from founding neuroscientist (Ramon y Cajal 1899)

- Selection to minimize connection costs




Summary

Evolutionary pr Evolutionary pr
Modular problem olutionary process Non-modular networks olutionary process

pixels for left pixels for right S8 P In new environment
subproblem subproblem S : NN\ 2
election on \

performance alone slow adaptation

variation

Selection on

performance and fast adaptation
connection costs

variation Modular networks

* Performance Alone (PA)

* Performance & Connection Costs (P&CC)

Clune, Mouret, & Lipson. 201 3. Proceedings of the Royal Society
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e P&CC significantly more modular, higher-performing  <o.0001)
* Perfect decomposition in 56% of P&CC, never for PA ¢ <o.0001)

* Significantly more evolvable ¢ <0.0001)
Clune, Mouret, & Lipson. 201 3. Proceedings of the Royal Society



Evolution of Structural Organization

* Modularity
* Hierarchy



Rierarchy
* recursive composition of lower-level units (Lipson 2007)
* important principle in brains

* also doesn’t occur in evolution by default

Mengistu, Huizinga, Mouret & Clune. 2016. PLoS Comp. Bio.



Evolutionary Origins of Hierarchy

2016. PLoS Comp. Bio.

Henok Mengistu Joost Huizinga Jean-Baptiste Mouret  Jeff Clune

Hypothesis: Connection Costs also Cause Hierarchy

e Hierarchical networks are
*  sparse

+ composed of nested modules COMPUTATIONAL
P I)L()S BIOLOGY

w.ploscompbiol.org
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Talk Overview

* Describe alternatives to conventional neural networks loosely
INspired by biology
e that can improve meta-learning, continual learning

 Deep dives
* Differentiable Hebbian Plasticity

» Differentiable Neuromodulated Hebbian Plasticity (“backpropamine™)
e ANML



Meta-Learning Algorithms

 f[wo major camps
 Meta-learn good initial weights + SGD

 Meta-learn RNN, which creates its own learning algorithm



Meta-Learning Algorithms

 f[wo major camps

 Meta-learn good initial weights + SGD
e e.g. MAML, Finn et al. 2017

 Meta-learn RNN, which creates its own learning algorithm

* |earning to Reinforcement Learn, Wang et al. 2016
e RLZ2 Duan et al. 2016



LRL

e Outer loop: optimize RNN with parameters @ for “lifetime” performance
» Inner loop: run @ (with reward as input)

Recurrent Neural Network

e Et voila!
- It learns an entire RL algorithm
- Theoretically can learn any RL algorithm



LRL

—— FF A3C (87)
—— Nav A3C (260) RNN

Feedforwar
NI\

0.4 0.6

(a) Labryinth I-maze (b) Illustrative Episode

(C) Performance

Mirowski et al. 2016, Wang et al. 2016

Learns to
- explore
- exploit
- all on its own!



LRL

Model-based Model-free

Lasl trial Lransition
— Common
—3 Rare

Learns to

0.0 0.0 D: ° bU”d a mOdel

Last trial rewarded Last trial not rewarded Last trial rewarded Last trial not rewarded

Probavility of repealing last action

(2) Two-step task (b) Model predictions . pla N

Last trial transition ° a” On itS Own!

mm Common
mm [are

Prabability of repeating last action

Last triel rewarded Last trial not rewarded

(C) LSTM A2C with reward input

Wang et al. 2016



Rubik’s Cube

 |dentifies properties of the world
- friction, mass of cube, size of cube, eftc.

e Exploits that information

OpenAl et al. 2019



Materials Matter

e Still have to decide the materials of the network

* RNNs forced to do all litetime learning with activations

* may be unstable
e proposal: store information in weights too




Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018
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Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

* Can store info in weights (in addition to activations)
» Hebbian learning (trained via SGD)



Hebbian Learning

e neurons that fire together, wire together

+1 [ [ -1
sz — wl-j + nxl.xj
* many capabillities

- unsupervised learning (e.g. PCA)

- associlative recall



Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

e Recurrent, Hebbian network

- Inner loop: network updates with no SGD
- outer loop: differentiate through episode, update trainable parameters via SGD

Wi
Trainable parameters,
optimized by SGD to

maximize lifetime/
episode reward

Hi,;
Lifetime quantity
(init=0)




Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

 Near then-SOTA on Omniglot

Table 1: Results for the 5-way, 1-shot omniglot tasks, including recent reported results and the new ditferentiable plasticity
(DP) result (£ indicates 95% CI). Note that these reports describe widely varying approaches and model sizes (see text).

VINYALS ET AL. SNELL ET AL. FINN ET AL. MISHRA ET AL.
(MATCHING NETWORKS) (PROTONETS) (MAML) (SNAIL)
(VINYALS ET AL., 2016) (SNELL ET AL., 2017) | (FINN ET AL., 2017) | (MISHRA ET AL., 2017)

98.1 % 97.4% 98.7% =+ 0.4% 99.07% + 0.16 98.5% + 0.57




Differentiable Hebbian Plasticity
Miconi, Clune, Stanley, ICML 2018

50-bit patterns

Neurons | —— LSTM (2050 neurons)
— Non-plastic RNN (2050 neurons)
— Plastic RNN (51 neurons)

Pattern
Input

Input Input Input Test Desired
Pattern Pattern Pattern Pattern Output
1 2 3 (partial 2)  (full 2)

200000 400000 600000 800000 1000000
Number of episodes




Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

* Image reconstruction: learn (memorize) an image, reconstruct it

e 2M+ parameters

LSTMs cannot solve this



Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

Maze Navigation

- | —— Non-plastic
—— Plastic
—— Homogenous Plastic

0 200000 400000 600000 800000 1000000
Number of Episodes

Episode O Episode 500,000
Learned to Explore & Exploit (Better)



Differentiable Neuromodulated Plasticity
‘Backpropamine™. Miconi, Rawal, Clune, Stanley, ICLR, 2018

 Hebbian learning is local (hard optimization problem)

e Better: turn learning on in some weights only In certain contexts
- e.g. If | am playing chess AND | just won, THEN:

* Increase learning in only chess playing parts of the brain

Deep neural network
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Differentiable Neuromodulated Plasticity
"‘Backpropamine™. Miconi, Rawal, Clune, Stanley, 2018

Hebbian Learning Neuromodulated Hebbian Learning

(w; ; + a; jHebb; ;(t))z;(t — 1)} new
1€inputs to 3 part
Hebb; ;(t + 1) = Clip(Hebb; ;(f) + nxi(t — 1)x;(t)), Hebb; ;(t + 1) = Clip(Hebb; ;(t) + M (t)z;(t — 1)z;(t))

ij(1))
i(t)).

Hebb; ;(t +1) = Clip(Hebb,; ;(t) + M(t)LE
E,i(t+1)=(1—-—n)E; () +nx;(t—1)x

Eligibility Trace Version



Differentiable Neuromodulated Plasticity
. Miconi, Rawal, Clune, Stanley, 2018
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"‘Backpropamine’
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Learning to Continually Learn
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Catastrophic Forgetting

* Achilles Heel of machine learning
* In sequential learning
Learning skill A Learning skill B

o o 0.0 o
Learn task A, then learn task B %_'
* ML overwrites A when learning B o o-d
® O

* forgets catastrophically

 Animals, including humans

* pick up where we left off
* forget gradually

* Must solve catastrophic forgetting to continually learn



Many Proposed Solutions: All Manual

 Rehearsal techniques e EXperience replay
 Pseudo-patterns * Generative replay

* Activation sharpening * Progress & Compress
e Sparse representations e etc.

* Progressive networks
* Elastic weight consolidation
 PathNet

* Intelligent synapses



Many Proposed Solutions: All Manual

 Rehearsal techniques e EXperience replay
 Pseudo-patterns * Generative replay

* Activation sharpening * Progress & Compress
e Sparse representations e etc.

* Progressive networks
* Elastic weight consolidation
 PathNet

* Intelligent synapses



Freqguent Manual Path Philosophy

* Optimize for one thing and hope for in other

* e.g. optimize for sparse representations, hope for decreased
catastrophic forgetting



Meta-Learning Philosophy

* Don’t optimize for one thing and hope for another
e Optimize for what you want



Hypothesis

* There’s a good chance humans are not smart enough to
manually build systems that continually learn well



Proposal: Use meta-learning to
learn to continually learn

e Optimize for we what

 Learn a sequence of tasks
 Be good on all of them at the end



Meta-Learning Algorithms

 f[wo major camps

 Meta-learn good initial weights + SGD
* e.g. MAML, Finn et al. 2017

 Meta-learn RNN, which creates its own learning algorithm
* |earning to Reinforcement Learn, Wang et al. 2016
e RLZ2 Duan et al. 2016
 OpenAl et al. 2019, Rubik’s Cube



Meta-Learning Algorithms

 f[wo major camps

 Meta-learn good initial weights + SGD
e e.g. MAML, Finn et al. 2017

 Meta-learn RNN, which creates its own learning algorithm
* |earning to Reinforcement Learn, Wang et al. 2016
e RLZ2 Duan et al. 2016
 OpenAl et al. 2019, Rubik’s Cube



meta-training (outer-loop learning)
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“meta-training”
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“meta-training”
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meta-learning (outer-loop learning)

meta-learning for continual, multi-task learning

0, » u Tesk? / N

VHI (‘SZ meta(e?))

gmeta(‘gg)




Online-aware Meta-Learning (OML)

Javed & White, NeurlPS, 2019

 validates the vision of meta-learning solutions to continual
learning

* We were
* Inspired by it
e compare to it



OML

Javed & White 2019

=N FRERE

Representation Learning Prediction Learning
Network (RLN) Network (PLN)

(w) (6)

representation, SGD for



Representation Learning Prediction Learning

Network (RLN) Network (PLN)

Javed & White 2019 () (0)

e Performs well
» After sequentially training on 150 classes of Omniglot

* 97% on meta-test training set (near-perfect memorization)
« ~63% on meta-test test set (worse at generalizing, but still impressive)

* Learns a sparse representation

Random Instance 1 Random Instance 2 Random Instance 3 Average Activation

Pre-training




OML

Javed & White 2019

* Gets a lot right

* But is still ultimately subject to SGD
* which was not optimized for continual learning
* has to find a representation that avoids CF when SGD is applied



Can we do better?

* \We propose: allowing control over SGD via neuromodulation



Traditional Neuromodulation

* NM neurons change learning
rates In other neurons

 Enables data-dependent, thus
task-specific, learning

W34

Soltoggio et al. (2008)



Neuromodulation Solves CF on Simple Networks & Problems

e Ellefsen KO, Mouret JB, Clune J. 2015. PLoS Computational Biology
e VVelez & Clune. 2017. PLoS One



Scaling Traditional Neuromodulation

e Struggled to scale it up
* Insight (Shawn Beaulieu) @

W0 4

- maybe It Is because the
forward pass is not affected

- thus forward-pass interference

still exists Soltoggio et al. (2008)




Activation-Based Neuromodulation

 Neuromodulation that
» directly modulates activations: selective activation
* Indirectly modulates learning: selective plasticity

Wo 4

Soltoaaqio et al.




A Neuromodulated Meta-Learning algorithm
(ANML)



A Neuromodulated Meta-Learning algorithm
(ANML)

Neuromodulatory network (6""")

I
' element-wise

. multiplication

Prediction network (8")




Normal Deep Learning
O O
QOO OO

Inference everywhere () (\) ()
Learning everywhere ~ S

oJe




Enables:
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(Inference)

selective plasticity
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Domain

° Omniglot, following OML Omniglot character set

dataset for few-shot learning (1623 character classes)

* each character type is a class/task




meta-learning (outer-loop learning)

Ideally, differentiate through 600 tasks

0, » u Tesk? / N

VHI (‘SZ meta(e?))

gmeta(‘gg)




meta-learning (outer-loop learning)

Approximation: train on task t+1
validate on t+1 & some previous tasks

0, » u Tesk? / N

VHI (‘SZ meta(e?))

gmeta(‘gg)




Learn sequentially on one class in the inner-loop

Inner-loop train
step O

Inner-loop train
step 1

Inner-loop train
step 2

R
g
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Inner-loop train
step 19

T
-

e20



Backpropagate through the SGD steps

0

0

Inner-loop train
step O

Inner-loop train
step 1

Inner-loop train
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step 2 0,
e19 a
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Backpropagate through the SGD steps

.U

Inner-loop train
step O

Inner-loop train
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Inner-loop train
step 2
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META-TESTING



Meta-test-training and meta-test-testing

meta-testing post-training on a held-out set of 200 classes

Meta-test
test accuracy
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Meta-test-training and meta-test-testing

meta-testing post-training on a held-out set of 200 classes

Meta-test
test accuracy

Numoer of Claszss Seen

Meta-test test on remaining

. 5 instances
testing of first class

__________



Meta-test-training and meta-test-testing

meta-testing post-training on a held-out set of 200 classes

Meta-test
test accuracy

......

3
"o
S

. 5 Instances
testing of 2 classes

i \l—' £ i Meta-test test on remaining

_________________



Meta-test-training and meta-test-testing

meta-testing post-training on a held-out set of 600 classes

Meta-test
test accuracy

......

_________________________________________

i \l_' ,) i—l TI-' i Meta-test test on remaining

: 5 instances
testing of all 600 classes

_________________________________________



Reminder: Continual Learning is Hard

 Normal Deep Learning

* |ID sampling (no catastrophic forgetting)
 Multiple passes through data

e Sequential Learning
e Catastrophic Forgetting
* One pass through data



Accuracy

O
o

0.4

Results

200
Number of Classes Seen

sequential learning, one epoch

Treatment
Scratch
Pretrained
OML

OML-OLFT
ANML




vs. lID Oracles, Relative Performance Drop

e Oracles eliminate CF

e Oracle - Sequential
 isolates performance drop due to CF



vs. lID Oracles, Relative Performance Drop

Scratch ~ Lretané& oy ANML
Transfer

Performance

99% 6/7/% 47% 3%
Drop

Suggests ANML has mostly solved CF is in this problem



Learned Sparsity

Mmax

Mean
Over Dataset

Random Image 1 Random Image 2 Random Image 3

Post-NM

Activation

Efficiently used

Sparse on each instance
across dataset

Both OML and ANML: No dead neurons!
vs. ~14% with sparsity auxiliary loss



Update

e Sara Pelivani et al. at UCL / Evolution.ali
found results are ~just as good without the
NM network

* \We had controlled num params, so made red
smaller

e Turns out being smaller is the key driver of
Improved performance

* \We are still investigating
 why smaller models do better

 where neuromodulation helps



ANML Conclusions

« OML/ANML can learn 600 sequential tasks, and still perform
pretty well on all on average

* Learns to produce sparse representations
* and likely many other things to solve CF

e Future work:

* more and harder domains
» other flavors of meta-learning (e.g. RNNSs)



Artificial General Intelligence (AGl)

or Human-level Al, if you prefer

* Long way to go

 How will we get there?




Manual Path to Al

 Dominant paradigm in ML
 Phase 1: Identify key building blocks




how many more”?

Key BUIIdlng Blocks? hundreds? thousands?

convolution

attention mechanisms

spatial tranformers

batch/layer norm

a learned loss (e.g. evolved policy gradients)
hierarchical RL, options

structural organization (regularity, modularity,
hierarchy)

intrinsic motivation (many different flavors)

auxiliary tasks (predictions, autoencoding,
predicting rewards, etc.)

good initializations (Xavier, MAML, etc.)
catastrophic forgetting solutions

universal value functions

hindsight experience replay

LSTM cell machinery variants

complex optimizers (Adam, RMSprop, etc.)

can we find them all?
Dyna

variance reduction techniques
activation functions

good hyperparameters
capsules

gradient-friendly architectures (skip
connections, highway networks)

value functions, state-value functions,
advantage functions

recurrence (where?)
multi-modal fusion

trust regions

Bayesian methods

Active learning

Probabilistic models

Distance metrics (latent codes)
etc.



Manual Path to Al

 Dominant paradigm in ML
 Phase 1: |dentify key building blocks

* Phase 2: Combine building blocks into
complex thinking machine

 Herculean task
 complex, non-linear interactions
e debugging, optimizing would be a nightmare
 massive team required (e.g. CERN, Apollo)




Clear Machine Learning Trend:
Hand-designed pipelines are ultimately outperformed by learned solutions

hand designed = l|earned

e Features

e Architectures

 Hyperparameters & data augmentation
e RL algorithms

suggests alternate path



Al-Generating Algorithms

Clune 2019

Learn as much as possible
Bootstrap from simple to AGI

Expensive outer loop

* produces a sample-efficient,
Intelligent agent

Existence proof
e Earth s




Al-Generating Algorithms

Clune 2019

Three Pillars
1. Meta-learn architectures
2. Meta-learn learning algorithms

3. Generate effective learning
environments

Handcrafting each is slow, limited by our intelligence/time

Better to learn them. Let ML+compute do the heavy lifting



Al-Generating Algorithms

Clune 2019

Three Pillars
1. Meta-learn architectures
2. Meta-learn learning algorithms

3. Generate effective learning
environments




Al-Generating Algorithms

Clune 2019

Three Pillars

1. Meta-learn architectures

Evolved NAS Real et al. 2017

Generative Teaching Networks Such et
al. ICML 2020.

Synthetic Petri Dish. Rawal et al. 2020




Al-Generating Algorithms

Clune 2019

Three Pillars
1. Meta-learn architectures
2. Meta-learn learning algorithms

3. Generate effective learning
environments

CORL Keynote, see jeffclune.com/videos.html



Overall Conclusions

* Described
* Differentiable Hebbian plasticity
* Differentiable neuromodulated Hebbian Plasticity
« ANML: Learning to continually learn via neuromodulation
* Al-Generating Algorithms

e [n all, materials matter
* Hebbian plasticity vs. normal RNN
* Neuromodulation

* What other materials should we be building with?
 Might we be able to search for them?



Thanks!
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