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Evolution of Structural Organization

• Modularity
• Hierarchy



Modularity

• Localization of function in an encapsulated unit (Lipson 2007)

• Car (spark plug, muffler, wheel), bodies (organs), brains, software, etc. 

• Enables increased 

• Complexity

• Adaptability



Modularity

• Rare in previous neuroevolution

• Suggests selection on performance alone does not produce modularity 

Kashtan and Alon 2005



Evolutionary Origins of Modularity
Clune, Mouret, & Lipson, Proc. Royal Society, 2013

Jeff Clune Jean-Baptiste Mouret Hod Lipson



Retina Problem

L&R L R

Kashtan and Alon. PNAS. 2005

object on 
left side?

object on 
right side?

object on both sides? (L&R:)



Why does modularity evolve?

• Hypothesis from founding neuroscientist (Ramón y Cajal 1899)

- Selection to minimize connection costs



Summary

• Performance Alone (PA)

• Performance & Connection Costs (P&CC)

Clune, Mouret, & Lipson. 2013. Proceedings of the Royal Society



• P&CC significantly more modular, higher-performing (p < 0.0001) 
• Perfect decomposition in 56% of P&CC, never for PA (p < 0.0001)     

• Significantly more evolvable (p < 0.0001)     
Clune, Mouret, & Lipson. 2013. Proceedings of the Royal Society



• Modularity
• Hierarchy

Evolution of Structural Organization



Hierarchy
• recursive composition of lower-level units (Lipson 2007)

• important principle in brains

• also doesn’t occur in evolution by default

Mengistu, Huizinga, Mouret & Clune. 2016. PLoS Comp. Bio.



Hypothesis: Connection Costs also Cause Hierarchy

• Hierarchical networks are
• sparse
• composed of nested modules

2016. PLoS Comp. Bio.

Jeff CluneJean-Baptiste MouretHenok Mengistu

Evolutionary Origins of Hierarchy

Joost Huizinga
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Talk Overview

• Describe alternatives to conventional neural networks loosely 
inspired by biology

• that can improve meta-learning, continual learning


• Deep dives

• Differentiable Hebbian Plasticity

• Differentiable Neuromodulated Hebbian Plasticity (“backpropamine”)

• ANML



Meta-Learning Algorithms

• Two major camps

• Meta-learn good initial weights + SGD

• e.g. MAML, Finn et al. 2017


• Meta-learn RNN, which creates its own learning algorithm

• Learning to Reinforcement Learn, Wang et al. 2016

• RL2, Duan et al. 2016
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LRL

• Outer loop: optimize RNN with parameters     for “lifetime” performance 
• Inner loop:  run      (with reward as input)

θ
θ

St

Rt−1
At

• Et voila! 
• It learns an entire RL algorithm 
• Theoretically can learn any RL algorithm 



LRL

Mirowski et al. 2016, Wang et al. 2016

RNN

Feedforward 
NN

Learns to 
• explore 
• exploit 
• all on its own!



LRL

Wang et al. 2016

Learns to 
• build a model 
• plan 
• all on its own!



Rubik’s Cube

• Identifies properties of the world 
• friction, mass of cube, size of cube, etc.  

• Exploits that information

OpenAI et al. 2019



Materials Matter

• Still have to decide the materials of the network

• RNNs forced to do all lifetime learning with activations

• may be unstable

• proposal: store information in weights too



Differentiable Hebbian Learning
Differentiable plasticity: training plastic neural networks with backpropagation

Miconi, Clune, Stanley. ICML. 2018

Thomas Miconi Ken StanleyJeff Clune



Differentiable Hebbian Learning
Differentiable plasticity: training plastic neural networks with backpropagation

Miconi, Clune, Stanley. ICML. 2018

• Can store info in weights (in addition to activations)

• Hebbian learning (trained via SGD)



Hebbian Learning

• neurons that fire together, wire together 

• many capabilities 
• unsupervised learning (e.g. PCA) 
• associative recall 
• …

wt+1
ij = wt

ij + ηxt
i xt

j



• Recurrent, Hebbian network 
• inner loop: network updates with no SGD 
• outer loop: differentiate through episode, update trainable parameters via SGD

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

Differentiable Hebbian Learning

fixed  
part

plastic 
part wi,j  "i,j

Trainable parameters,
optimized by SGD to 

maximize lifetime/
episode reward 

Hi,j 
Lifetime quantity 

(init=0)



• Near then-SOTA on Omniglot

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

Differentiable Hebbian Learning



Miconi, Clune, Stanley, ICML 2018
Differentiable Hebbian Plasticity



• Image reconstruction: learn (memorize) an image, reconstruct it 

• 2M+ parameters

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

Differentiable Hebbian Learning

LSTMs cannot solve this



Differentiable Hebbian Learning
Differentiable plasticity: training plastic neural networks with backpropagation

Miconi, Clune, Stanley. ICML. 2018

Episode 0 Episode 500,000

Learned to Explore & Exploit (Better)

LRL

/RL2

Maze Navigation

Ours



Differentiable Neuromodulated Plasticity
“Backpropamine”: Miconi, Rawal, Clune, Stanley, ICLR, 2018

• Hebbian learning is local (hard optimization problem) 

• Better: turn learning on in some weights only in certain contexts 
• e.g. if I am playing chess AND I just won, THEN:  

• increase learning in only chess playing parts of the brain

Soltoggio et al. 



new 
part

Differentiable Neuromodulated Plasticity

Hebbian Learning Neuromodulated Hebbian Learning

Eligibility Trace Version

“Backpropamine”: Miconi, Rawal, Clune, Stanley, 2018



Differentiable Neuromodulated Plasticity

Simple Task 
network says if one of the symbols  

just shown is the secret symbol

Word prediction, Penn-Tree Bank

“Backpropamine”: Miconi, Rawal, Clune, Stanley, 2018

p < 0.05

NM vs. Non



Nick Cheney*

Shawn Beaulieu Lapo Frati Joel Lehman Thomas Miconi Ken Stanley

Jeff Clune*

Learning to Continually Learn

*co-senior authors

ECAI 2020



Catastrophic Forgetting

• Achilles Heel of machine learning

• In sequential learning

• Learn task A, then learn task B

• ML overwrites A when learning B

• forgets catastrophically


• Animals, including humans

• pick up where we left off

• forget gradually


• Must solve catastrophic forgetting to continually learn



Many Proposed Solutions: All Manual

• Rehearsal techniques

• Pseudo-patterns

• Activation sharpening

• Sparse representations

• Progressive networks

• Elastic weight consolidation

• PathNet

• Intelligent synapses

• Experience replay

• Generative replay 

• Progress & Compress

• etc.
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• Optimize for one thing and hope for in other

• e.g. optimize for sparse representations, hope for decreased 

catastrophic forgetting 

Frequent Manual Path Philosophy



• Don’t optimize for one thing and hope for another

• Optimize for what you want

Meta-Learning Philosophy



• There’s a good chance humans are not smart enough to 
manually build systems that continually learn well

Hypothesis



• Optimize for we what 

• Learn a sequence of tasks

• Be good on all of them at the end

Proposal: Use meta-learning to 
 learn to continually learn 



Meta-Learning Algorithms

• Two major camps

• Meta-learn good initial weights + SGD

• e.g. MAML, Finn et al. 2017


• Meta-learn RNN, which creates its own learning algorithm

• Learning to Reinforcement Learn, Wang et al. 2016

• RL2, Duan et al. 2016

• OpenAI et al. 2019, Rubik’s Cube
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 + SGD (e.g. MAML)
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“meta-training”
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“meta-testing”
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. . .
inner-loop learning

Task 1 Task 2 Task t

θ1
1 . . . θk

1 k updates k updates 

meta-learning for continual, multi-task learning
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Online-aware Meta-Learning (OML)

• validates the vision of meta-learning solutions to continual 
learning


• we were 

• inspired by it

• compare to it

Javed & White, NeurIPS, 2019



OML
Javed & White 2019

meta-learn then freeze representation, SGD for PLN

Prediction Learning 

Network (PLN)

Representation Learning 

Network (PLN)(RLN)



OML

• Performs well

• After sequentially training on 150 classes of Omniglot

• 97% on meta-test training set (near-perfect memorization)

• ~63% on meta-test test set (worse at generalizing, but still impressive)


• Learns a sparse representation

Javed & White 2019

OML



OML

• Gets a lot right

• But is still ultimately subject to SGD

• which was not optimized for continual learning

• has to find a representation that avoids CF when SGD is applied

Javed & White 2019



Can we do better?

• We propose: allowing control over SGD via neuromodulation



Traditional Neuromodulation

• NM neurons change learning 
rates in other neurons 

• Enables data-dependent, thus 
task-specific, learning

Soltoggio et al. (2008)



Neuromodulation Solves CF on Simple Networks & Problems

• Ellefsen KO, Mouret JB, Clune J. 2015. PLoS Computational Biology  

• Velez & Clune. 2017. PLoS One



Scaling Traditional Neuromodulation

• Struggled to scale it up 

• Insight (Shawn Beaulieu) 
• maybe it is because the 

forward pass is not affected 
• thus forward-pass interference 

still exists Soltoggio et al. (2008)



Activation-Based Neuromodulation

• Neuromodulation that

• directly modulates activations: selective activation

• indirectly modulates learning: selective plasticity 

Soltoggio et al. 



A Neuromodulated Meta-Learning algorithm 
(ANML) 



A Neuromodulated Meta-Learning algorithm 
(ANML) 



Normal Deep Learning

Inference everywhere

Learning everywhere



ANML



Domain

• Omniglot, following OML

• each character type is a class/task
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. . .
inner-loop learning
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Learn sequentially on one class in the inner-loop
θ0
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θ2

θ3

θ20

...

θ19

Inner-loop train 
step 0 

...

Inner-loop train 
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Inner-loop train 
step 2

Inner-loop train 
step 19

...



,

Backpropagate through the SGD steps
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meta-loss on both



Backpropagate through the SGD steps
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META-TESTING
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Reminder: Continual Learning is Hard

• Normal Deep Learning

• IID sampling (no catastrophic forgetting)

• Multiple passes through data


• Sequential Learning

• Catastrophic Forgetting

• One pass through data



sequential learning, one epoch

Results



vs. IID Oracles, Relative Performance Drop

• Oracles eliminate CF

• Oracle - Sequential

• isolates performance drop due to CF



vs. IID Oracles, Relative Performance Drop

Suggests ANML has mostly solved CF is in this problem

Scratch

99%Performance 

Drop

Pretrain & 

Transfer

67%

after one pass through 600 classes

OML ANML

47% 8%



Learned Sparsity

~50%

~6%

~13%

Both OML and ANML: No dead neurons! 

vs. ~14% with sparsity auxiliary loss

(Javed & White 2019)

Random Image 1 Random Image 2 Random Image 3 Mean 

Over Dataset

Sparse on each instance Efficiently used

 across dataset



Update

• Sara Pelivani et al. at UCL / Evolution.ai 
found results are ~just as good without the 
NM network (she will share more soon)


• We had controlled num params, so made red 
smaller

• Turns out being smaller is the key driver of 

improved performance

• We are still investigating

• why smaller models do better

• where neuromodulation helps

• e.g. for domain transfer: https://arxiv.org/abs/2108.12056



ANML Conclusions

• OML/ANML can learn 600 sequential tasks, and still perform 
pretty well on all on average


• Learns to produce sparse representations

• and likely many other things to solve CF


• Future work:

• more and harder domains

• other flavors of meta-learning (e.g. RNNs)



Artificial General Intelligence (AGI) 
or Human-level AI, if you prefer

• Long way to go


• How will we get there?



Manual Path to AI

• Dominant paradigm in ML

• Phase 1: Identify key building blocks



Key Building Blocks?
• convolution 
• attention mechanisms 
• spatial tranformers 
• batch/layer norm 
• a learned loss (e.g. evolved policy gradients)   
• hierarchical RL, options 
• structural organization (regularity,  modularity,  

hierarchy)  
• intrinsic motivation (many different flavors)  
• auxiliary tasks (predictions, autoencoding, 

predicting rewards, etc.)  
• good initializations (Xavier, MAML, etc.) 
• catastrophic forgetting solutions  
• universal value functions   
• hindsight experience replay  
• LSTM cell machinery variants 
• complex optimizers (Adam, RMSprop, etc.)

• Dyna 
• variance reduction techniques  
• activation functions 
• good hyperparameters  
• capsules 
• gradient-friendly architectures (skip 

connections, highway networks) 
• value functions, state-value functions, 

advantage functions 
• recurrence (where?) 
• multi-modal fusion 
• trust regions 
• Bayesian methods 
• Active learning 
• Probabilistic models 
• Distance metrics (latent codes) 
• etc. 

how many more? 
hundreds? thousands? 
can we find them all?



Manual Path to AI

• Dominant paradigm in ML

• Phase 1: Identify key building blocks


• Phase 2: Combine building blocks into 
complex thinking machine

• Herculean task

• complex, non-linear interactions

• debugging, optimizing would be a nightmare

• massive team required (e.g. CERN, Apollo)



Clear Machine Learning Trend:  
Hand-designed pipelines are ultimately outperformed by learned solutions

• Features 
• Architectures 

• Hyperparameters & data augmentation 

• RL algorithms

suggests alternate path

hand designed           learned



AI-Generating Algorithms

• Learn as much as possible

• Bootstrap from simple to AGI

• Expensive outer loop

• produces a sample-efficient, 

intelligent agent

• Existence proof

• Earth

Clune 2019



AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

2. Meta-learn learning algorithms

3. Generate effective learning 

environments

Clune 2019

Handcrafting each is slow, limited by our intelligence/time

Better to learn them. Let ML+compute do the heavy lifting
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AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

• Evolved NAS Real et al. 2017

• Generative Teaching Networks Such et 

al. ICML 2020. 

• Synthetic Petri Dish. Rawal et al. 2020

Clune 2019



AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

2. Meta-learn learning algorithms

3. Generate effective learning 

environments

Clune 2019

CORL Keynote, see jeffclune.com/videos.html



Overall Conclusions
• Described

• Differentiable Hebbian plasticity

• Differentiable neuromodulated Hebbian Plasticity

• ANML: Learning to continually learn via neuromodulation

• AI-Generating Algorithms


• In all, materials matter 

• Hebbian plasticity vs. normal RNN

• Neuromodulation


• What other materials should we be building with?

• Might we be able to search for them?



Thanks!

• Thomas Miconi

• Shawn Beaulieu

• Ken Stanley

• Nick Cheney

• Joel Lehman

• Lapo Frati

Main collaborators

Join us at U. British Columbia!


