
Materials Matter:
How biologically inspired alternatives to conventional neural

networks improve meta-learning and continual learning

 Jeff Clune

Associate Professor, Computer Science

University of British Columbia

Research Team Leader

OpenAI

@jeffclune

Evolution of Structural Organization

• Modularity
• Hierarchy

Modularity

• Localization of function in an encapsulated unit (Lipson 2007)

• Car (spark plug, muffler, wheel), bodies (organs), brains, software, etc.

• Enables increased

• Complexity

• Adaptability

Modularity

• Rare in previous neuroevolution

• Suggests selection on performance alone does not produce modularity

Kashtan and Alon 2005

Evolutionary Origins of Modularity
Clune, Mouret, & Lipson, Proc. Royal Society, 2013

Jeff Clune Jean-Baptiste Mouret Hod Lipson

Retina Problem

L&R L R

Kashtan and Alon. PNAS. 2005

object on
left side?

object on
right side?

object on both sides? (L&R:)

Why does modularity evolve?

• Hypothesis from founding neuroscientist (Ramón y Cajal 1899)

- Selection to minimize connection costs

Summary

• Performance Alone (PA)

• Performance & Connection Costs (P&CC)

Clune, Mouret, & Lipson. 2013. Proceedings of the Royal Society

• P&CC significantly more modular, higher-performing (p < 0.0001)
• Perfect decomposition in 56% of P&CC, never for PA (p < 0.0001)

• Significantly more evolvable (p < 0.0001)
Clune, Mouret, & Lipson. 2013. Proceedings of the Royal Society

• Modularity
• Hierarchy

Evolution of Structural Organization

Hierarchy
• recursive composition of lower-level units (Lipson 2007)

• important principle in brains

• also doesn’t occur in evolution by default

Mengistu, Huizinga, Mouret & Clune. 2016. PLoS Comp. Bio.

Hypothesis: Connection Costs also Cause Hierarchy

• Hierarchical networks are
• sparse
• composed of nested modules

2016. PLoS Comp. Bio.

Jeff CluneJean-Baptiste MouretHenok Mengistu

Evolutionary Origins of Hierarchy

Joost Huizinga

��� ��� ��� ���

��� ���

���

�� � 	
��
�

PA P&CC

0

20

40

60

80

100
p <0.00001

% sub-problems
solved

Without a Connection Cost

With a Connection Cost

Mengistu, Huizinga, Mouret & Clune. 2016. PLoS Comp. Bio. To appear.

Talk Overview

• Describe alternatives to conventional neural networks loosely
inspired by biology

• that can improve meta-learning, continual learning

• Deep dives

• Differentiable Hebbian Plasticity

• Differentiable Neuromodulated Hebbian Plasticity (“backpropamine”)

• ANML

Meta-Learning Algorithms

• Two major camps

• Meta-learn good initial weights + SGD

• e.g. MAML, Finn et al. 2017

• Meta-learn RNN, which creates its own learning algorithm

• Learning to Reinforcement Learn, Wang et al. 2016

• RL2, Duan et al. 2016

Meta-Learning Algorithms

• Two major camps

• Meta-learn good initial weights + SGD

• e.g. MAML, Finn et al. 2017

• Meta-learn RNN, which creates its own learning algorithm

• Learning to Reinforcement Learn, Wang et al. 2016

• RL2, Duan et al. 2016

LRL

• Outer loop: optimize RNN with parameters for “lifetime” performance
• Inner loop: run (with reward as input)

θ
θ

St

Rt−1
At

• Et voila!
• It learns an entire RL algorithm
• Theoretically can learn any RL algorithm

LRL

Mirowski et al. 2016, Wang et al. 2016

RNN

Feedforward
NN

Learns to
• explore
• exploit
• all on its own!

LRL

Wang et al. 2016

Learns to
• build a model
• plan
• all on its own!

Rubik’s Cube

• Identifies properties of the world
• friction, mass of cube, size of cube, etc.

• Exploits that information

OpenAI et al. 2019

Materials Matter

• Still have to decide the materials of the network

• RNNs forced to do all lifetime learning with activations

• may be unstable

• proposal: store information in weights too

Differentiable Hebbian Learning
Differentiable plasticity: training plastic neural networks with backpropagation

Miconi, Clune, Stanley. ICML. 2018

Thomas Miconi Ken StanleyJeff Clune

Differentiable Hebbian Learning
Differentiable plasticity: training plastic neural networks with backpropagation

Miconi, Clune, Stanley. ICML. 2018

• Can store info in weights (in addition to activations)

• Hebbian learning (trained via SGD)

Hebbian Learning

• neurons that fire together, wire together

• many capabilities
• unsupervised learning (e.g. PCA)
• associative recall
• …

wt+1
ij = wt

ij + ηxt
i xt

j

• Recurrent, Hebbian network
• inner loop: network updates with no SGD
• outer loop: differentiate through episode, update trainable parameters via SGD

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

Differentiable Hebbian Learning

fixed
part

plastic
part wi,j "i,j

Trainable parameters,
optimized by SGD to

maximize lifetime/
episode reward

Hi,j
Lifetime quantity

(init=0)

• Near then-SOTA on Omniglot

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

Differentiable Hebbian Learning

Miconi, Clune, Stanley, ICML 2018
Differentiable Hebbian Plasticity

• Image reconstruction: learn (memorize) an image, reconstruct it

• 2M+ parameters

Differentiable plasticity: training plastic neural networks with backpropagation
Miconi, Clune, Stanley. ICML. 2018

Differentiable Hebbian Learning

LSTMs cannot solve this

Differentiable Hebbian Learning
Differentiable plasticity: training plastic neural networks with backpropagation

Miconi, Clune, Stanley. ICML. 2018

Episode 0 Episode 500,000

Learned to Explore & Exploit (Better)

LRL

/RL2

Maze Navigation

Ours

Differentiable Neuromodulated Plasticity
“Backpropamine”: Miconi, Rawal, Clune, Stanley, ICLR, 2018

• Hebbian learning is local (hard optimization problem)

• Better: turn learning on in some weights only in certain contexts
• e.g. if I am playing chess AND I just won, THEN:

• increase learning in only chess playing parts of the brain

Soltoggio et al.

new
part

Differentiable Neuromodulated Plasticity

Hebbian Learning Neuromodulated Hebbian Learning

Eligibility Trace Version

“Backpropamine”: Miconi, Rawal, Clune, Stanley, 2018

Differentiable Neuromodulated Plasticity

Simple Task
network says if one of the symbols

just shown is the secret symbol

Word prediction, Penn-Tree Bank

“Backpropamine”: Miconi, Rawal, Clune, Stanley, 2018

p < 0.05

NM vs. Non

Nick Cheney*

Shawn Beaulieu Lapo Frati Joel Lehman Thomas Miconi Ken Stanley

Jeff Clune*

Learning to Continually Learn

*co-senior authors

ECAI 2020

Catastrophic Forgetting

• Achilles Heel of machine learning

• In sequential learning

• Learn task A, then learn task B

• ML overwrites A when learning B

• forgets catastrophically

• Animals, including humans

• pick up where we left off

• forget gradually

• Must solve catastrophic forgetting to continually learn

Many Proposed Solutions: All Manual

• Rehearsal techniques

• Pseudo-patterns

• Activation sharpening

• Sparse representations

• Progressive networks

• Elastic weight consolidation

• PathNet

• Intelligent synapses

• Experience replay

• Generative replay

• Progress & Compress

• etc.

Many Proposed Solutions: All Manual

• Rehearsal techniques

• Pseudo-patterns

• Activation sharpening

• Sparse representations

• Progressive networks

• Elastic weight consolidation

• PathNet

• Intelligent synapses

• Experience replay

• Generative replay

• Progress & Compress

• etc.

• Optimize for one thing and hope for in other

• e.g. optimize for sparse representations, hope for decreased

catastrophic forgetting

Frequent Manual Path Philosophy

• Don’t optimize for one thing and hope for another

• Optimize for what you want

Meta-Learning Philosophy

• There’s a good chance humans are not smart enough to
manually build systems that continually learn well

Hypothesis

• Optimize for we what

• Learn a sequence of tasks

• Be good on all of them at the end

Proposal: Use meta-learning to
 learn to continually learn

Meta-Learning Algorithms

• Two major camps

• Meta-learn good initial weights + SGD

• e.g. MAML, Finn et al. 2017

• Meta-learn RNN, which creates its own learning algorithm

• Learning to Reinforcement Learn, Wang et al. 2016

• RL2, Duan et al. 2016

• OpenAI et al. 2019, Rubik’s Cube

Meta-Learning Algorithms

• Two major camps

• Meta-learn good initial weights + SGD

• e.g. MAML, Finn et al. 2017

• Meta-learn RNN, which creates its own learning algorithm

• Learning to Reinforcement Learn, Wang et al. 2016

• RL2, Duan et al. 2016

• OpenAI et al. 2019, Rubik’s Cube

 + SGD (e.g. MAML)

θ1

θ2

θm

..
.

m
et

a-
tra

in
in

g
(o

ut
er

-lo
op

 le
ar

ni
ng

)

θ1
1 θ2

1 θn
1. . .

inner-loop learning

ℒmeta(θn
1)

θ1
2 θ2

2 θn
2. . .

inner-loop learning

ℒmeta(θn
2)

∇θ1
(ℒmeta(θn

1))

θ

θ1

θ2

θm

..
.

m
et

a-
tra

in
in

g
(o

ut
er

-lo
op

 le
ar

ni
ng

)

θ1
1 θ2

1 θn
1. . .

inner-loop learning

ℒmeta(θn
1)

θ1
2 θ2

2 θn
2. . .

inner-loop learning

ℒmeta(θn
2)

∇θ1
(ℒmeta(θn

1))

“meta-training”

“meta-training”

θ1

θ2

θm

..
.

θ1
1 θ2

1 θn
1. . .

inner-loop learning

ℒmeta(θn
1)

θ1
2 θ2

2 θn
2. . .

inner-loop learning

ℒmeta(θn
2)

∇θ1
(ℒmeta(θn

1))

meta-train training meta-train testing

m
et

a-
tra

in
in

g
(o

ut
er

-lo
op

 le
ar

ni
ng

)

“meta-testing”

θm θ1
m θ2

m θn
m. . .

inner-loop learning

ℒmeta(θn
m)

meta-test training meta-test testing

. . .
inner-loop learning

Task 1 Task 2 Task t

θ1
1 . . . θk

1 k updates k updates

meta-learning for continual, multi-task learning

θ1

θ2

θm

..
.

m
et

a-
le

ar
ni

ng
 (o

ut
er

-lo
op

 le
ar

ni
ng

)

ℒmeta(θn
1)

inner-loop learning

ℒmeta(θn
2)

∇θ1
(ℒmeta(θn

1))

. . .
inner-loop learning

Task 1 Task 2 Task t

θ1
1 . . . θk

1 k updates k updates
all t tasks

all t tasks

Online-aware Meta-Learning (OML)

• validates the vision of meta-learning solutions to continual
learning

• we were

• inspired by it

• compare to it

Javed & White, NeurIPS, 2019

OML
Javed & White 2019

meta-learn then freeze representation, SGD for PLN

Prediction Learning

Network (PLN)

Representation Learning

Network (PLN)(RLN)

OML

• Performs well

• After sequentially training on 150 classes of Omniglot

• 97% on meta-test training set (near-perfect memorization)

• ~63% on meta-test test set (worse at generalizing, but still impressive)

• Learns a sparse representation

Javed & White 2019

OML

OML

• Gets a lot right

• But is still ultimately subject to SGD

• which was not optimized for continual learning

• has to find a representation that avoids CF when SGD is applied

Javed & White 2019

Can we do better?

• We propose: allowing control over SGD via neuromodulation

Traditional Neuromodulation

• NM neurons change learning
rates in other neurons

• Enables data-dependent, thus
task-specific, learning

Soltoggio et al. (2008)

Neuromodulation Solves CF on Simple Networks & Problems

• Ellefsen KO, Mouret JB, Clune J. 2015. PLoS Computational Biology

• Velez & Clune. 2017. PLoS One

Scaling Traditional Neuromodulation

• Struggled to scale it up

• Insight (Shawn Beaulieu)
• maybe it is because the

forward pass is not affected
• thus forward-pass interference

still exists Soltoggio et al. (2008)

Activation-Based Neuromodulation

• Neuromodulation that

• directly modulates activations: selective activation

• indirectly modulates learning: selective plasticity

Soltoggio et al.

A Neuromodulated Meta-Learning algorithm
(ANML)

A Neuromodulated Meta-Learning algorithm
(ANML)

Normal Deep Learning

Inference everywhere

Learning everywhere

ANML

Domain

• Omniglot, following OML

• each character type is a class/task

. . .
inner-loop learning

Task 1 Task 2 Task t

θ1
1 . . . θk

1 k updates k updates

Ideally, differentiate through 600 tasks

θ1

θ2

θm

..
.

m
et

a-
le

ar
ni

ng
 (o

ut
er

-lo
op

 le
ar

ni
ng

)

ℒmeta(θn
1)

inner-loop learning

ℒmeta(θn
2)

∇θ1
(ℒmeta(θn

1))

. . .
inner-loop learning

Task 1 Task 2 Task t

θ1
1 . . . θk

1 k updates k updates
all t tasks

all t tasks

. . .
inner-loop learning

Task 1 Task 2 Task t

θ1
1 . . . θk

1 k updates k updates

Approximation: train on task t+1
validate on t+1 & some previous tasks

θ1

θ2

θm

..
.

m
et

a-
le

ar
ni

ng
 (o

ut
er

-lo
op

 le
ar

ni
ng

)

ℒmeta(θn
1)

inner-loop learning

ℒmeta(θn
2)

∇θ1
(ℒmeta(θn

1))

. . .
inner-loop learning

Task 1 Task 2 Task t

θ1
1 . . . θk

1 k updates k updates
all t tasks

all t tasks

Learn sequentially on one class in the inner-loop
θ0

θ1

θ2

θ3

θ20

...

θ19

Inner-loop train
step 0

...

Inner-loop train
step 1

Inner-loop train
step 2

Inner-loop train
step 19

...

,

Backpropagate through the SGD steps
θ0

θ1

θ2

θ3

θ20

...

θ19

Inner-loop train
step 0

...

, ..., , , , , ,,

Inner-loop train
step 1

Inner-loop train
step 2

Inner-loop train
step 19

,...

...

,

Chars just seen Others from meta-
train training set

meta-loss on both

Backpropagate through the SGD steps
θ0

θ1

θ2

θ3

θ20

...

θ19

, ..., , , , , , ,, ,...

...

,

Inner-loop train
step 0

...

Inner-loop train
step 1

Inner-loop train
step 2

Inner-loop train
step 19 Chars just seen Others from meta-

train training set

meta-loss on both

META-TESTING

class

1

1

2

3

15

16

20

in
st

an
ce

Meta-test-training and meta-test-testing
meta-testing post-training on a held-out set of 200 classes

. . .

Meta-test
training

. . .
. . .

. . .

train on first class
(15 instances)

Meta-test
test accuracy

class

1

1

2

3

15

16

20

in
st

an
ce

Meta-test-training and meta-test-testing
meta-testing post-training on a held-out set of 200 classes

. . .

Meta-test
training

Meta-test
testing

. . .
. . .

. . .

test on remaining
5 instances
of first class

train on first class
(15 instances)

Meta-test
test accuracy

class

1 2

1

2

3

15

16

20

in
st

an
ce

Meta-test-training and meta-test-testing
meta-testing post-training on a held-out set of 200 classes

. . .

Meta-test
testing

. . .
. . .

. . .

test on remaining
5 instances
of 2 classes

Meta-test
training

sequentially
train on 2 classes

(15 instances each)

Meta-test
test accuracy

class

1 2 3 600

. . .

1

2

3

15

16

20

in
st

an
ce

Meta-test-training and meta-test-testing
meta-testing post-training on a held-out set of 600 classes

. . .

Meta-test
training

Meta-test
testing

. . .
. . .

. . .

test on remaining
5 instances

of all 600 classes

sequentially
train on 600 classes
(15 instances each)

. . .
Meta-test

test accuracy

Reminder: Continual Learning is Hard

• Normal Deep Learning

• IID sampling (no catastrophic forgetting)

• Multiple passes through data

• Sequential Learning

• Catastrophic Forgetting

• One pass through data

sequential learning, one epoch

Results

vs. IID Oracles, Relative Performance Drop

• Oracles eliminate CF

• Oracle - Sequential

• isolates performance drop due to CF

vs. IID Oracles, Relative Performance Drop

Suggests ANML has mostly solved CF is in this problem

Scratch

99%Performance

Drop

Pretrain &

Transfer

67%

after one pass through 600 classes

OML ANML

47% 8%

Learned Sparsity

~50%

~6%

~13%

Both OML and ANML: No dead neurons!

vs. ~14% with sparsity auxiliary loss

(Javed & White 2019)

Random Image 1 Random Image 2 Random Image 3 Mean

Over Dataset

Sparse on each instance Efficiently used

 across dataset

Update

• Sara Pelivani et al. at UCL / Evolution.ai
found results are ~just as good without the
NM network (she will share more soon)

• We had controlled num params, so made red
smaller

• Turns out being smaller is the key driver of

improved performance

• We are still investigating

• why smaller models do better

• where neuromodulation helps

• e.g. for domain transfer: https://arxiv.org/abs/2108.12056

ANML Conclusions

• OML/ANML can learn 600 sequential tasks, and still perform
pretty well on all on average

• Learns to produce sparse representations

• and likely many other things to solve CF

• Future work:

• more and harder domains

• other flavors of meta-learning (e.g. RNNs)

Artificial General Intelligence (AGI)
or Human-level AI, if you prefer

• Long way to go

• How will we get there?

Manual Path to AI

• Dominant paradigm in ML

• Phase 1: Identify key building blocks

Key Building Blocks?
• convolution
• attention mechanisms
• spatial tranformers
• batch/layer norm
• a learned loss (e.g. evolved policy gradients)
• hierarchical RL, options
• structural organization (regularity, modularity,

hierarchy)
• intrinsic motivation (many different flavors)
• auxiliary tasks (predictions, autoencoding,

predicting rewards, etc.)
• good initializations (Xavier, MAML, etc.)
• catastrophic forgetting solutions
• universal value functions
• hindsight experience replay
• LSTM cell machinery variants
• complex optimizers (Adam, RMSprop, etc.)

• Dyna
• variance reduction techniques
• activation functions
• good hyperparameters
• capsules
• gradient-friendly architectures (skip

connections, highway networks)
• value functions, state-value functions,

advantage functions
• recurrence (where?)
• multi-modal fusion
• trust regions
• Bayesian methods
• Active learning
• Probabilistic models
• Distance metrics (latent codes)
• etc.

how many more?
hundreds? thousands?
can we find them all?

Manual Path to AI

• Dominant paradigm in ML

• Phase 1: Identify key building blocks

• Phase 2: Combine building blocks into
complex thinking machine

• Herculean task

• complex, non-linear interactions

• debugging, optimizing would be a nightmare

• massive team required (e.g. CERN, Apollo)

Clear Machine Learning Trend:
Hand-designed pipelines are ultimately outperformed by learned solutions

• Features
• Architectures

• Hyperparameters & data augmentation

• RL algorithms

suggests alternate path

hand designed learned

AI-Generating Algorithms

• Learn as much as possible

• Bootstrap from simple to AGI

• Expensive outer loop

• produces a sample-efficient,

intelligent agent

• Existence proof

• Earth

Clune 2019

AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

2. Meta-learn learning algorithms

3. Generate effective learning

environments

Clune 2019

Handcrafting each is slow, limited by our intelligence/time

Better to learn them. Let ML+compute do the heavy lifting

AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

2. Meta-learn learning algorithms

3. Generate effective learning

environments

Clune 2019

AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

• Evolved NAS Real et al. 2017

• Generative Teaching Networks Such et

al. ICML 2020.

• Synthetic Petri Dish. Rawal et al. 2020

Clune 2019

AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

2. Meta-learn learning algorithms

3. Generate effective learning

environments

Clune 2019

CORL Keynote, see jeffclune.com/videos.html

Overall Conclusions
• Described

• Differentiable Hebbian plasticity

• Differentiable neuromodulated Hebbian Plasticity

• ANML: Learning to continually learn via neuromodulation

• AI-Generating Algorithms

• In all, materials matter

• Hebbian plasticity vs. normal RNN

• Neuromodulation

• What other materials should we be building with?

• Might we be able to search for them?

Thanks!

• Thomas Miconi

• Shawn Beaulieu

• Ken Stanley

• Nick Cheney

• Joel Lehman

• Lapo Frati

Main collaborators

Join us at U. British Columbia!

