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Motivation

Attractor networks are important models of memory in neuroscience & ML
Memory networks models for hippocampus and other brain areas
Error-correction in Vector Symbolic Architectures (VSA)

“Modern Hopfield Networks” in Transformer networks

Many traditional attractor models are inefficient

How to design efficient associative memories for neuromorphic hardware or
coupled oscillators?



Classical “Hopfield” Associative Memory

An associative memory stores a set of patterns for robust recall
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Ax = f(—V, E(x)) * Collective State Computation
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Hopfield, John J. "Neural networks and physical systems with emergent collective computational
abilities." Proceedings of the national academy of sciences 79.8 (1982): 2554-2558.



Efficiency of Associative Memories
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Existing Associative Memory Models

Pattern Pattern & Information
Information Capacity
Binary & Dense & Discrete High Low
Sparse Low High
Complex & Dense & Continuous High Low

Frady, E. Paxon, and Friedrich T. Sommer. "Robust computation with rhythmic spike patterns." Proceedings of the
National Academy of Sciences 116.36 (2019): 18050-18059.



Existing Associative Memory Models

Pattern Pattern & Information
Complexity Capacity
Binary & Dense & Discrete High Low
Sparse Low High
Complex & Dense & Continuous High Low
Complex & Dense & Discrete High ?

Frady, E. Paxon, and Friedrich T. Sommer. "Robust computation with rhythmic spike patterns." Proceedings of the
National Academy of Sciences 116.36 (2019): 18050-18059.



Complex-Valued Phasor Associative Memory
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Noest, Andre. "Phasor neural networks." Neural information processing systems. 1987.



Q-State Phasor Neural Networks
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Noest, A. J. (1988). Discrete-state phasor neural networks. Physical Review A, 38(4), 2196.



Trade-off Pattern Complexity vs. Error-Correction

Lower Entropy4 X Higher Entropy
Q=4 More Robust Less Robust




Capacity Results for Q-State Phasor Networks
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x Maximum capacity at Q=3 as predicted by mean-field theory - Cook, J. (1989)



Oscillator Networks

Mapping Associative Memories to Hardware



Synchronization in Weakly-Coupled Oscillators

Continuous Phasors Kuramoto Model
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Kuramoto Phasor Associative Memory

Phasor associative memories map to Kuramoto oscillator networks

Without state quantization fixed-points of dynamical system ARE NOT" stored patterns
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Phase Quantization

Phase Quantization
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Result: Q-State Oscillator Network

Complete System Dynamics
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Capacity of Q-state Oscillator Models
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General Phase Coupling
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M-ary Phase Shift Keying (M-PSK)

M-PSK Modulation

EbNo(dB)

* Again, Q = 3 is optimal!!



Summary

Dense Hopfield associative memories in the literature have low capacity
Q-State Phasor Associative Memories achieve high capacity

Implementation of Q-state Phasor Associative Memories in couple oscillators
with harmonic injection

() = 3 is best!
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