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REseandt  Artificial and Spiking Neural Networks
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‘stateless’ and activity is Zungh (Hixiwi)
produce via non-linear &
functions e e e o
. Synapses with
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RESEARIE  Synaptic Plasticity as a means toward intra-lifetime learning

WOt +or) =W (t) + o)) © Aapen(t)
ABCD Rule

* Flexible Learning Rule
e Coefficients on joint

* Synaptic plasticity is Aapcp(t) = (4, + By +Cy) + D)(®)

thought to be one of
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Evolve the initial weights and
synaptic plasticity parameters for a
population of neural networks

Algorithm 1 Evolution Strategies
1: Input: Learning rate «, noise standard deviation o,
initial policy parameters
2: fort =0,1,2,... do
3:  Samplee,...e, ~N(0,I)
4:  Compute returns F; = F(0; +o¢;) fori =1,...,n
3
6

AW =AY W;)2(t) S ot — ) g Wy)w(t) 3 6t — )

Set Ht_|_1 — ﬂt -+ HL E:L:l P!!'E!'

L

- end for
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- Time-dependent parameters are being optimized across a (short) time horizon.

Training Testing
Time
Finite
Time
Horizon

. B} : —Time Horizon Bound —
Generation 1 —Time Horizon Bound —

Finite
Time
Horizon

Generation 2 —Time Horizon Bound — W

- Does intra-lifetime learning generalize to the time domain?
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* PANNs are shown to  Artificial Neurons (ABCD) Ant Quadrupedal Reward / Time
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Artificial Neurons

Average lifespan over trained time horizon (Oja's Plasticity) Average lifespan over trained time horizon (ABCD Plasticity)

——=- Best-fit linear regression L —=—- Best-fit linear regression +a
.

* PANNSs are shown to have a linear o

relationship between the time- L L
horizon and the amount of time ’

balanced
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* PSNNs are shown to be capable of o« s

balancing the pole indefinitely for [ of gm’ oo
any time horizon beyond 400 for all e =i e ey 0 e

tested plasticity types and with Spiking Neurons

Average lifespan over trained time horizon (SNN STDP) Average lifespan over trained time horizon (SNN Oja's)

recurrent PSNNs : :
=== Upper Bound H === Upper Bound H
1750 /| — Estimated Fit i —— Estimated Fit i
] ]
H 4000 H
4 ] ]
1500 i i
] ]
] ]
= ] (= ]
§ 1250 : §3000 :
_2 1 _2 1
< 1000 1 ° 1
o ] o ]
o | I |
[ I @ 2000 I
= 750 ] > I
< | < |
] ]
] ]
500 I ]
1 1000 1
] ]
4 ] ]
- - - 250 1 H
] ]
] ]
0 . - . r T r ! 0 . - . r T r !

100 150 200 250 300 350 400 100 150 200 250 300 350 400

Trained time horizon Trained time horizon

Distribution A — Approved for public release, distribution is unlimited NAIVIL 2022 | 7



‘ U.S.NAVAL \
ESEARC

ResearcHl  Conclusion

* The purpose of synaptic plasticity is to B M B
allow learning to occur within and
beyond the training period of a neural
network, and hence it is necessary to
consider the ability to generalize not
only in the task domain but also in the
time domain

* Spiking neurons seem to generalize Synapses win
. . . . (/ 1:1\\ b Currently prassy 4
better in the time domain on robotic SN | , o &\
@,2/ ‘*i\ dil. n ‘ 17/,,3/‘/{ / TN
control tasks W~ R ; < )
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An example of a neuron showing the input ( X4 - X ), their corresponding T i\ \ \ Partially
weights (w, -w_ ), a bias (b ) and the activation function f applied to the Incoming T accumulated
weighted sum of the inputs. spikes == charge
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