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BrainScaleS via. EBRAINS

“easily accessible-analog”
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Electronic Vision(s)

Kirchhoff Institute of Physics, Heidelberg University

Founded 1995 by Prof. Karlheinz Meier (12018)
1995 HDR vision sensors

1996 analog image processing
2000 Perceptron based analog neural networks:

EVOOPT and HAGEN HAGEN (2000):
2003 First concepts for spike based analog neural Perceptron-based Neuromorphic chip
networks introduced:

. . ® accelerated operation
2004 First accelerated analog neural network chip e mixed-signal Kernels

W It h S h o rt- an d IO n g-te rm p | d St l C Ity' S pl key digital control logic 8 digital to analog convertes 128 input neurons

since 2010 BrainScaleS neuromorphic systems

SPIKEY (2004):

spike-based Neuromorphic chip

introduced:

® fully-parallel Spike-Time-
Dependent-Plasticity

0.35 um, 3 metal, 1 poly CMOS process

® analog parameter storage for
calibratable physical model
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’: [ ‘[ Co-funded by

e e the European Union
TLEELR Human Brain Project

Why focus on the brain ? Three Reasons

— Understandmg the brain (Unifying Science Goal)
Underpins what we are,
* Data & knowledge are fragmented,
* Integration is needed,
* Large scale collaborative approach is essential.

Neuromorphic Computing

Part of the EBRAINS initiative of the HBP
Neuromorphic computing with physical models

— Understanding brain diseases (Society)
* Costs Europe over €800 Billon/year,
» Affects 1/3 people,
* Number one cause of loss of economic productivity,
* No fundamental treatments exist or are in sight
* Pharma companies pulling out of the challenge.

Neuromorphic Machines

Algorithms and Architectures for
Neuromorphic Computing

« Theory
«  Applications

- Developmg Future Computing (Technology)
Computing underpins modern economies,

* Traditional computing faces growing hardware, software, |[[EEE—
& energy barriers, ¥

* Brain can be the source of energy efficient, robust, self-
adapting & compact computing technologies,

* Knowledge driven process to derive these technologies is
missing.




EBRAINS’ mission:
Enabling brain research advances and innovation

/ \ @ Human Brain Project

EBRAINS offers the
neuroscience community
state-of-the-art services:

 Brain data and atlases
[- Simulation and ]

modelling tools

» Access to
supercomputing
resources

. v

l EBRAINS

E Builds on the work of the Human Brain Project and

makes it sustainable




What EBRAINS brings to the scientific community
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Data and Knowledge

« Online solutions to facilitate sharing of and access to research
data, computational models and software

Atlases

@ *@ - « Navigate, characterise and analyse information on the basis of
o) @ Y i anatomical location
E V) i R
o Q \ Simulation Co-developed by
(@) (O ; » Solutions for brain researchers to conduct sustainable and with
T simulation studies and share their results researchers
3 \ y
C m ( . i } N
— (- Brain-Inspired Technologies
q0) » Understand and leverage the computational capabilities of
| spiking neural networks
0N\ y
e Medical Data Analytics
| e The Medical Data Analytics service provides two unique EBRAINS
platforms, covering key areas in clinical neuroscience research
EBRAINS

o



brain inspired technologies
aka brain inspired computing

compute more like the brain: use novel technologies:
artificial neural networks digital and analog neuromorphic hardware
neuromorphic computing high-performance neuro-simulations

0
- - synaptic
connections :

input pattern Y output pattern

weights o
\ inner layers J




" Perceptron model (biology of 1950)

8 digital to analog convertes 128 input neurons
: - — s e

Machine Learning ggo== -

* vector-matrix
multiplication

Zwixi + b

0.35 um, 3 metal, 1 poly CMOS process

4 Splke -based model (current biology) )

Brain-Inspired
Computing

* time-
continuous
dynamical
system

* vector-matrix

° simple non-linear

activation /

function f (ReLU):

multiplication

* complex non-
linearities

* binary neuron

® output
O * allows to
0 model
* trained with ) biological
backpropagation O learning
input pattern | Y | output pattern| Mechanisms
- \\ inner layers A /8




neuromorphic dimensions
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rate based <-> event based
continuous time, c. valued <-> discrete time, d. valued
Conceptual exact computations <-> approximate, noisy, stochastic comp.
dimensions : point neurons <—> structured neurons
linear dentrides <—-> non-linear dentrides
static <—-> plastic
analog <= digital
electrical <> optical
technological standard CMOS <> novel devices
_ _ fully programmable <= fixed structure
dimensions : In-memory computing <= von Neumann computing
constant speed < variable speed
(real time or accelerated) (best effort)
. . research <—-> commercial
appllca’[lon brain emulation <—-> machine learning, Al
dimenSionS : energy, size, cost constrained <-> energy, size, cost agnostic

fixed function

&>

needs to adapt




BrainScaleS overview : accelerated, analog NMC with hybrid plasticity

* modular neuron structure
* Adaptive Exponential I&F model
e full set of ion-channel circuits

photograph of the BrainScaleS 1
neuromorphic chip

Neighbour-Neurons

. for each compartment
. : : Membrane _, STDP/ e 24 calibration parameters per
= Network
= icwm ! compartment
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neuromorphic dimensions covered by BrainScaleS

rate based < (event based )
continuous time, valued | <- | discrete time, valued
COﬂCeth8.| m <—-> | approximate, noisy, stochastic comp.]
dimensions : W <> (structured neurons
linear dentrides <> | non-linear dentrides
static <> | plastic
ranalog 1¢> digital
electrical <> optical
technological standard CMOS <> novel devices
_ _ fully programmable <= fixed structure
dimensions : INn-memory computing < von Neumann computing |
constant speed <= variable speed
L (real time or accelerated) | (best effort)

NS

research commercial

prain emulation < - [machine learning, Al
enerqgy, Size, cost constrained < - |energy, size, cost agnostic
fixed function < - |needs to adapt

application
dimensions :




BrainScaleS service sub-categories within EBRAINS

accelerated emulation of networks of structured neurons with non-linear dendrites
(Emulating dendritic computing paradigms on analog neuromorphic hardware, Jakob Kaiser et.al., Neuroscience, 2021)
large parameter sweeps for network operation tuning
(Autocorrelations in homeostatic spiking neural networks as a result of emergent bistable activity, J Zierenberg et. al., Bulletin of the American Physical Society, 2022/3/14,
Control of criticality and computation in spiking neuromorphic networks with plasticity, B Cramer et.al., Nature communications, 2020/6/5)
biology inspired learning experiments with programmed local plasticity
(Structural plasticity on an accelerated analog neuromorphic hardware system, S Billaudelle et. al., Neural Networks, 2021/1/1)
learning-to-learn sweeps of meta-parameters (Neuromorphic Hardware Learns to Learn, T Bohnstingl et.al., Front Neurosci.,2019)
inference experiments for solving tasks using optimized network parameters generated by hardware-in-the-loop gradient-based training

(Surrogate gradients for analog neuromorphic computing, B Cramer et.al., pnas.2109194119, 2022;
Fast and energy-efficient neuromorphic deep learning with first-spike times, J Goltz et.al, Nature machine intelligence, 2021/9 )

applications of spiking neural networks for approximate computing
(Spiking neuromorphic chip learns entangled quantum states, S Czischek, et. al., SciPost Physics 12 (1), 039, 2022)

parameter fitting to match experimental observations
direct real-time coupling between in-vitro preparations in wet-labs and the BrainScaleS system
- initially with HeiCINN in Heidelberg, but open for others
repeated execution of a network and/or long operation to gather statistical information or for sampling from stochastic models

interactive execution of small models with immediate visualization for educational purposes
- girls’ day, advanced lab course

experimental platform for analogue computing research
(Towards Addressing Noise and Static Variations of Analog Computations Using Efficient Retraining, B Klein et.al., ECML PKDD, 2021/9/13)

- first industry collaboration shows promising results in the area of optical communication
(submitted to Signal Processing in Photonic Communications 22) 12
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fitting BrainScaleS neurons to experimental data

mechanistic model

PM-_O
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parameter 2

parameter 1

probability

data or summary data

yin

ms

example:

hardware model k4

measured data *®

simulated data

eLife 2020;9:€56261 DOI: 10.7554/ELIFE.56261

neural density estimator

inconsistent sample

ke
N,
ol

probability

consistent sample

“Training deep neural density estimators to identify mechanistic models of neural dynamics”, Pedro | Goncalves et. al.,
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https://elifesciences.org/articles/56261#x7cd3ff70
https://doi.org/10.7554/eLife.56261

early results from BSS-2 hardware

* chain of five dendritic

1000 A
compartments
* finding the correct —>
parameter for leakage and ¥ S~
Inter-compartmental 800 A -
conductance
reference g 600-
measurement o
\6 1I0 2'0 3IO 4IO 5I0 6'0 71)/ 200 n
Time (us)

ongoing PhD thesis from Jakob Kaiser, . . . .
in collaboration with Sebastian Schmitt, 200 400 600 800 1000 0

Tetzlaff lab, University Goéttingen Jleak Time (JUS)
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fitting to a different chip

* reference is measured on
a different chip

* no 100% fit of the data
using only two parameters
possible 800 A

reference 600 -

measurement

1000 -

=" S

gaxial

400 A

0O 10 20 30 40 50 60 70 200 - >
Time (us)

ongoing PhD thesis from Jakob Kaiser, ' - - . . -
in collaboration with Sebastian Schmitt, 200 400 600 800 1000 O 50

Tetzlaff lab, University Gottingen Jleak Time (us)




easily accessible analog computing:
EBRAINS neuromorphic service BrainScaleS

make conceptual neuromorphic dimensions of BrainScaleS
remote accessible

encapsulate its technological neuromorphic dimensions into the
EBRAINS remote user framework

support all application dimensions

by implementing all EBRAINS dimensions :
° software

° user interface
* documentation
° tutorials

* support

* hardware operation and maintenance




Electronic Vision(s)
Kirchhoff Institute of Physics, Heidelberg University [RESIE

Founded 1995 by Prof. Karlheinz Meier (72018)

2010 BrainScaleS-1 analog neuromorphic computing
wafer scale system

2018 BrainScaleS-2 invents hybrid plasticity
2020 BrainScaleS-2 part of EBRAINS
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