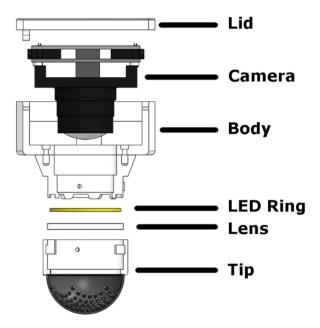


Temporal and Spatio-temporal domains for Neuromorphic Tactile Texture Classification

George Brayshaw, Martin J. Pearson, Benjamin Ward-Cherrier

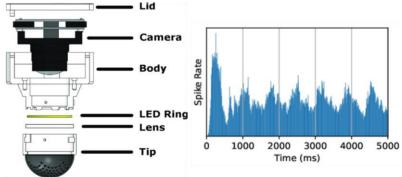

Engineering and Physical Sciences Research Council

Motivations

- Systems to sense and process textures in a biologically plausible manner
 - Manipulators
 - Prosthesis
- Neuromorphic sensors/cameras and spiking neural networks

Research Goal

Evaluate the viability of simple classifiers for use with a neuromorphic texture dataset


¹B. Ward-Cherrier, N. Pestell, and N. F. Lepora, "Neurotac: A neuromorphic optical tactile sensor applied to texture recognition"

Methodology

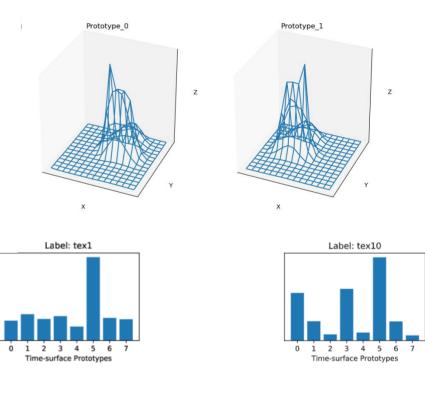
- Dataset of natural and 3D printed textures
 - 22 textures x 100 trials
- Application of simple classifiers to temporal and spatio-temporal data
 - KNN, Naïve Bayes & MLP
 - Hierarchy Of event-based Time Surfaces (HOTS)²

²X. Lagorce, et al. "Hots: a hierarchy of event-based time-surfaces for pattern recognition," IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 7, pp. 1346–1359, 2016

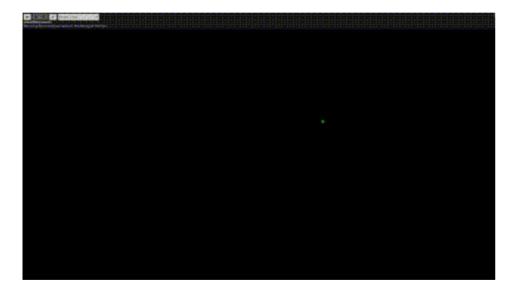


Temporal Data

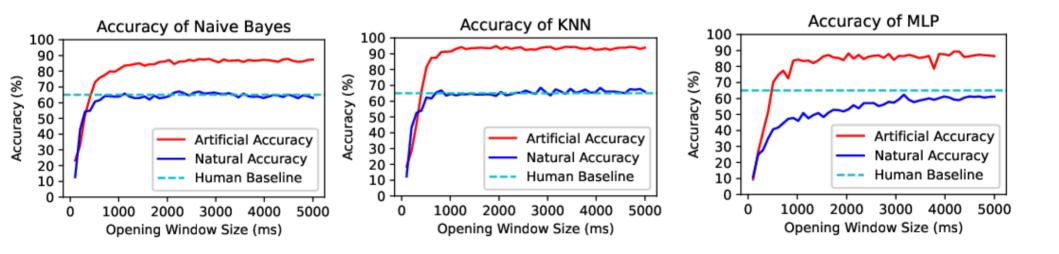
$$Rep(T) = \sum_{n=1}^{N} \sum_{t=T}^{T+\Delta T} t_n^i$$


Rep(T) gives an encoded representation of the incoming spike train, within a moving time window of size ΔT moving in 1ms increments where t_n^i is a spike time event with index i for pixel n and N is the total number of pixels.

Hierarchy Of event-based Time Surfaces (HOTS)

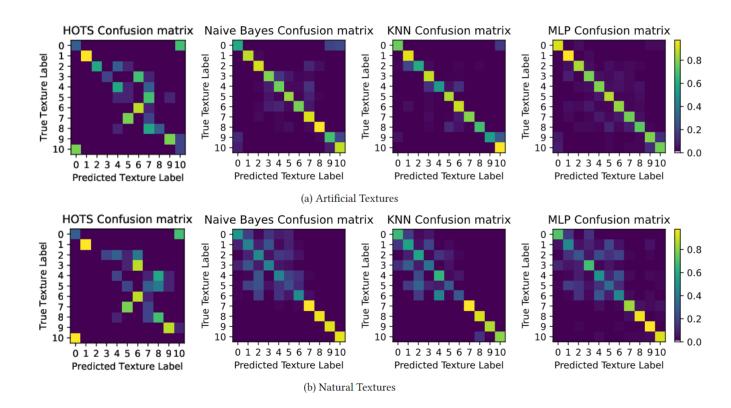

 Spatio-temporal classifier that builds time surfaces based on local pixel activity

 Histograms are created for each label with Euclidean distance between histograms used for classification


²X. Lagorce, et al. "Hots: a hierarchy of event-based time-surfaces for pattern recognition," IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 7, pp. 1346–1359, 2016

Time for Classification (t_c)

 t_c metric indicates how much data is required for *accurate* classification. It is the length of training data provided to achieve 90% of final accuracy


Time for Classification (t_c) cont.

Results

Dataset	Metric	Algorithm			
		Naïve Bayes	KNN	MLP	HOTS
Artificial	Peak Accuracy (%)	85	91	84	50
	t _c (ms)	400	500	700	-
Natural	Peak Accuracy (%)	70	69	64	40
	t _c (ms)	500	500	2300	-

Results Cont.

Texture Label	Texture Material		
0	Acrylic		
1	MDF		
2	Foam		
3	Plywood		
4	Microdot Foil		
5	Metallic Mesh		
6	Liquid Satin		
7	Felt		
8	Fleece		
9	Fake Fur		
10	Wool		
	•		

Conclusions & Future Work

Conclusions

- Temporal element of data more important within our application
- HOTS fails to be scalable for this application
- Lower accuracies given for natural textures

Future Work

- Results are informing the design of spiking networks
- Additional functionality planned to aid with confusing textures
- Miniaturisation of neuroTac under development

¹B. Ward-Cherrier, N. Pestell, and N. F. Lepora, "**Neurotac: A neuromorphic optical tactile sensor applied to texture recognition**," in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 2654–2660.

²X. Lagorce, et al. "Hots: a hierarchy of event-based time-surfaces for pattern recognition," IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 7, pp. 1346–1359, 2016