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Motivations

= Systems to sense and process
textures in a biologically plausible
manner
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Research Goal —

Evaluate the viability of simple classifiers

for use with a neuromorphic texture

dataset 1B. Ward-Cherrier, N. Pestell, and N. F. Lepora, “Neurotac: A
neuromorphic optical tactile sensor applied to texture recognition”



Methodology

= Dataset of natural and 3D printed
textures

= 22 textures x 100 trials

= Application of simple classifiers to
temporal and spatio-temporal data

= KNN, Naive Bayes & MLP

» Hierarchy Of event-based Time
Surfaces (HOTS)?

2X. Lagorce, et al. “Hots: a hierarchy of event-based time-surfaces for pattern

recognition,” IEEE transactions on pattern analysis and machine intelligence, vol.

39, no. 7, pp. 1346-1359, 2016
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Temporal Data

N T+AT
Rep(T) = Z Z th
n=1 t=T

Rep(T) gives an encoded representation of the incoming spike train, within
a moving time window of size AT moving in 1ms increments where t is a
spike time event with index i for pixel n and N is the total number of pixels.
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Hierarchy Of event-based Time

Surfaces (HOTS)

«  Spatio-temporal classifier that
builds time surfaces based on local
pixel activity

« Histograms are created for each
label with Euclidean distance
between histograms used for
classification

2X. Lagorce, et al. “Hots: a hierarchy of event-based time-surfaces for pattern
recognition,” IEEE transactions on pattern analysis and machine intelligence, vol.
39, no. 7, pp. 1346-1359, 2016
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Time for Classification (t.)

t. metric indicates how much data is
required for accurate classification. It is the

length of training data provided to achieve
90% of final accuracy




Accuracy (%)

Time for Classification (t-) cont.
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Results

. Algorithm
Dataset Metric Naive Bayes KNN MLP HOTS
Peak Accuracy (%) 85 91 84 50
Artificial
t.(ms) 400 500 700 -
Peak Accuracy (%) 70 69 64 40
Natural
t.(ms) 500 500 2300 -




Results Cont.

HOTS Confusion matrix Naive Bayes Confusion matrix KNN Confusion matrix MLP Confusion matrix
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Conclusions & Future Work

« Temporal element of data more * Results are informing the design of
important within our application spiking networks

« HOTS falls to be scalable for this « Additional functionality planned to aid
application with confusing textures

» Lower accuracies given for natural « Miniaturisation of neuroTac under

textures development
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