
Efficient GPU training of SNNs
Jamie Knight



SNNs for computational 
neuroscience

Where we’re coming from!



GPU-enhanced Neural Networks (GeNN) origin story

● 24x speed up over CPU
● It took a month to implement an 

existing model (after learning 
how to use CUDA)

● The program was optimised for 
a particular GPU

● It was designed for one size of 
the simulation

T. Nowotny, "Parallel implementation of a spiking neuronal network model of unsupervised olfactory learning on NVidia®CUDA™," 
The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, 2010, pp. 1-8.



GeNN - current status
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Cortical microcircuit simulations: 1mm3 of brain
● 1mm3 of cortex

○ Neural recording + microscopy + heuristics gave 
estimates of connectivity densities between cell 
types

○ Calcium imaging gave firing rates of cell types in 
awake animals

● 80×103 neurons
● 0.3×109 sparse synapses
● 3 seconds/second on CPU-based HPC

Potjans, T. C., & Diesmann, M. (2012). The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale 
Spiking Network Model. Cerebral Cortex



Cortical microcircuit simulations: 1mm3 of brain

● On workstation GPU takes < 0.7 
second/second

● Uses 10× less energy than 
CPU-based HPC
(energy = power × time)

Knight, J. C., & Nowotny, T. (2018). GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating 
a Highly-Connected Cortical Model. Frontiers in Neuroscience, 12(December), 1–19. https://doi.org/10.3389/fnins.2018.00941



SNNs for machine learning
Where we’re going!



Spiking Neural Networks for ML

● Repeated claims in the literature that SNNs can save 
energy vs standard ANNs

● Brain-like sparse activity and connectivity should reduce 
computation and thus energy

● Very few actual demonstrations of this on real tasks and 
standard hardware

● Using GeNN we want to change this!



Converting ANNs to SNNs: CIFAR10

● No significant drop in 
performance

● ≈Half speed of 
TensorFlow ANN

● ≈10✕ faster than other 
solutions using ANN 
tools for SNN

Stöckl, C., & Maass, W. (2021). Optimized spiking neurons can classify images with high accuracy through temporal coding with two 
spikes. Nature Machine Intelligence, 3(3), 230–238. https://doi.org/10.1038/s42256-021-00311-4



Converting ANNs to SNNs: ImageNet

● 100 times slower than TensorFlow
● Efficiency savings due to sparsity need to counteract:

○ 10 SNN timesteps need to be simulated for each ANN 
iteration

○ Lower algorithmic complexity of ANN convolutions
○ Highly optimised TensorFlow code

● Deep, feedforward SNN architectures are not the answer!



Converting ANNs to SNNs: Paper



Training recurrent SNNs: model

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent 
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: model

LIF neuron with adaptation 
and relative reset

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent 
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: model
Non-spiking 

output neuron 
with trainable bias

Softmax πk
t calculated 

from membrane voltage

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent 
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: eProp
Per-synapse eligibility traces and supervised learning rule

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent 
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: eProp
Per-synapse eligibility traces and supervised learning rule

Postsynaptic neuron 
surrogate gradient

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent 
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: eProp
Per-synapse eligibility traces and supervised learning rule

Filtered presynaptic 
activity

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent 
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: datasets

Spiking Heidelberg Digits
● English & German spoken digits
● 700 spike trains

Spiking Sequential MNIST
● Pixels ‘scanned’ in fixed order
● 79 neurons representing intensity 

thresholds

Cramer, B., Stradmann, Y., Schemmel, J., & Zenke, F. (2020). The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural 
Networks. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3044364



Training recurrent SNNs: SHD accuracy

* Zenke, F., & Vogels, T. P. (2020). The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural 
networks. BioRxiv, 1–22. https://doi.org/10.1101/2020.06.29.176925



Training recurrent SNNs: SMNIST accuracy

* Plank, P., Rao, A., Wild, A., & Maass, W. (2021). A Long Short-Term Memory for AI Applications in Spike-based Neuromorphic Hardware. 
Retrieved from http://arxiv.org/abs/2107.03992



Training recurrent SNNs: Performance

* Plank, P., Rao, A., Wild, A., & Maass, W. (2021). A Long Short-Term Memory for AI Applications in Spike-based Neuromorphic Hardware. 
Retrieved from http://arxiv.org/abs/2107.03992



Training recurrent SNNs: Paper



Training recurrent SNNs: Sparse connectivity

● Basic ANN operation is matrix multiply
○ Dense - very fast
○ Sparse - tricky to optimise

● Spike transmission (is not 
multiplication)
○ Dense - can’t match ANN
○ Sparse - much easier to optimise!

Micikevicius , P. (2021). Sparsity, structure and performance. Sparsity in Neural Networks Workshop



Fully event-driven learning

Wunderlich, T. C., & Pehle, C. (2021). Event-based backpropagation can compute exact gradients for spiking neural networks. Scientific 
Reports, 11(1), 12829. https://doi.org/10.1038/s41598-021-91786-z

Zenke, F., & Vogels, T. P. (2020). The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural 
networks. BioRxiv, 1–22. https://doi.org/10.1101/2020.06.29.176925

https://doi.org/10.1038/s41598-021-91786-z


Future direction

● Some supervised learning in brain but unlikely to be 
end-to-end
○ Self-supervised learning
○ Contrastive learning

● Structural plasticity to optimise sparse connectivity
● FPGA hardware



Thank you!
J.C.Knight@sussex.ac.uk


