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SNNs for computational
neuroscience

Where we're coming from!



GPU-enhanced Neural Networks (GeNN) origin story
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T. Nowotny, "Parallel implementation of a spiking neuronal network model of unsupervised olfactory learning on NVidia® CUDA™ "
The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, 2010, pp. 1-8.



GeNN - current status
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https://github.com/genn-team/genn/



https://github.com/genn-team/genn/

Cortical microcircuit simulations: 1mm? of brain

e 1mm? of cortex
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o Neural recording + microscopy + heuristics gave
other background input /9 estimates of connectivity densities between cell
/ types
A o Calcium imaging gave firing rates of cell types in
— y awake animals

e 80%10% neurons
e 0.3x10° sparse synapses
e 3 seconds/second on CPU-based HPC
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Potjans, T. C., & Diesmann, M. (2012). The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale
Spiking Network Model. Cerebral Cortex



Cortical microcircuit simulations: 1mm? of brain

T e On workstation GPU takes < 0.7
: second/second
g e Uses 10x less energy than
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Knight, J. C., & Nowotny, T. (2018). GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating
a Highly-Connected Cortical Model. Frontiers in Neuroscience, 12(December), 1-19. https://doi.org/10.3389/fnins.2018.00941



SNNSs for machine learning

Where we’re going!



Spiking Neural Networks for ML

e Repeated claims in the literature that SNNs can save
energy vs standard ANNs

e Brain-like sparse activity and connectivity should reduce
computation and thus energy

e \ery few actual demonstrations of this on real tasks and
standard hardware

e Using GeNN we want to change this!



Converting ANNs to SNNs: CIFAR10
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Stdckl, C., & Maass, W. (2021). Optimized spiking neurons can classify images with high accuracy through temporal coding with two
spikes. Nature Machine Intelligence, 3(3), 230-238. https://doi.org/10.1038/s42256-021-00311-4



Converting ANNs to SNNs: ImageNet

e 100 times slower than TensorFlow

e Efficiency savings due to sparsity need to counteract:
o 10 SNN timesteps need to be simulated for each ANN
iteration
o Lower algorithmic complexity of ANN convolutions
o Highly optimised TensorFlow code
e Deep, feedforward SNN architectures are not the answer!
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Converting ANNs to SNNs: Paper
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Abstract

In this paper we present mlGeNN—a Python library for the conversion of artificial neural
networks (ANNs) specified in Keras to spiking neural networks (SNNs). SNNs are simulated using
GeNN with extensions to efficiently support convolutional connectivity and batching. We evaluate
converted SNNs on CIFAR-10 and ImageNet classification tasks and compare the performance to
both the original ANNs and other SNN simulators. We find that performing inference using a
VGG-16 model, trained on the CIFAR-10 dataset, is 2.5 faster than BindsNet and, when using a
ResNet-20 model trained on CIFAR-10 with FewSpike ANN to SNN conversion, mlGeNN is only a
little over 2 x slower than TensorFlow.



Training recurrent SNNs: model
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Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: model

LIF neuron with adaptation
and relative reset
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Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: model
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Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: eProp

Per-synapse eligibility traces and supervised learning rule
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Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: eProp
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networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: eProp
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Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent
networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y



Training recurrent SNNs: datasets

Spiking Heidelberg Digits
e English & German spoken digits
e /00 spike trains

Spiking Sequential MNIST

e Pixels ‘'scanned’ in fixed order
e /9 neurons representing intensity
thresholds
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Cramer, B., Stradmann, Y., Schemmel, J., & Zenke, F. (2020). The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural
Networks. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3044364



Training recurrent SNNs: SHD accuracy
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* Zenke, F., & Vogels, T. P. (2020). The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural
networks. BioRxiv, 1-22. https://doi.org/10.1101/2020.06.29.176925



Training recurrent SNNs: SMNIST accuracy
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* Plank, P., Rao, A., Wild, A., & Maass, W. (2021). A Long Short-Term Memory for Al Applications in Spike-based Neuromorphic Hardware.
Retrieved from http://arxiv.org/abs/2107.03992



Training recurrent SNNs: Performance
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* Plank, P., Rao, A., Wild, A., & Maass, W. (2021). A Long Short-Term Memory for Al Applications in Spike-based Neuromorphic Hardware.
Retrieved from http://arxiv.org/abs/2107.03992



Training recurrent SNNs: Paper
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ABSTRACT

Taking inspiration from machine learning libraries — where tech-
niques such as parallel batch training minimise latency and max-
imise GPU occupancy - as well as our previous research on effi-
ciently simulating Spiking Neural Networks (SNNs) on GPUs for
computational neuroscience, we have extended our GeNN SNN sim-
ulator to enable spike-based machine learning research on general
purpose hardware. We demonstrate that SNN classifiers imple-
mented using GeNN and trained using the eProp learning rule can
provide comparable performance to those trained using Back Prop-
agation Through Time and show that the latency and energy usage
of our SNN classifiers is up to 7x lower than an LSTM running on
the same GPU hardware.

CCS CONCEPTS

« Computing methodologies — Bio-inspired approaches; Super-
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RTRL [21] is an alternative ‘forward mode’ algorithm for training
RNN s but, in its general form, it is too computationally expensive to
be practical. However, if the gradients flowing through the ‘explicit’
recurrent connections are ignored and only those flowing through
the ‘implicit’ recurrence represented by the dynamics of individ-
ual neurons are considered, much more computationally tractable
learning rules can be derived [26]. Learning rules of this sort include
SuperSpike [25], eProp [4] and Decolle [15]. However, in order to
apply these new spike-based machine learning techniques to larger
models and data-sets as well as prototyping algorithms for neuro-
morphic hardware [8, 11, 18], new tools are required which can
efficiently simulate SNNs on existing hardware. The development
of efficient SNN simulators has been a key area of computational
neuroscience research for several decades [1, 6, 12, 13, 23] but, these
simulators are not well-suited to the types of model and the work-
flows required for spike-based machine learning research. As such,
many ML researchers have chosen to build libraries [9, 10, 14, 19]
on top of more familiar tools such as PyTorch. However, while
libraries like PyTorch are highly-optimised for rate-based models,
they does not take advantage of the spatio-temporal sparsity of
SNNs which have the potential to enable massive computational
savings over rate-based networks [24].

While our GeNN simulator [16, 17, 23] was originally developed
for Computational Neuroscience research, its longstanding focus
on flexibility and its targeting of GPU accelerators has made it eas-
ily adaptable to the needs of spike-based ML. Specifically, we have



Training recurrent SNNs: Sparse connectivity
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e Basic ANN operation is matrix multiply
o Dense - very fast
2 =I||l o Sparse - tricky to optimise
Ten oo e Spike transmission (is not

multiplication)
o Dense - can’'t match ANN
o Sparse - much easier to optimise!

ning time [minutes]
w ey 1% [«)}

Trai
N

nnnnn tion densnty

Micikevicius , P. (2021). Sparsity, structure and performance. Sparsity in Neural Networks Workshop



Fully event-driven learning
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Wunderlich, T. C., & Pehle, C. (2021). Event-based backpropagation can compute exact gradients for spiking neural networks. Scientific
Reports, 11(1), 12829. htips://doi.org/10.1038/s41598-021-91786-z

Zenke, F., & Vogels, T. P. (2020). The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural
networks. BioRxiv, 1-22. https://doi.org/10.1101/2020.06.29.176925
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https://doi.org/10.1038/s41598-021-91786-z

Future direction

e Some supervised learning in brain but unlikely to be
end-to-end
o Self-supervised learning
o Contrastive learning
e Structural plasticity to optimise sparse connectivity
e FPGA hardware
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J.C.Knight@sussex.ac.uk



