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OUTLINE

Representations of uncertainty for inference and
learning in neural networks.

 Single synapses of spiking neural network represent
uncertainty through stochastic release.

 Utilizing representations of uncertainty for distributed
learning in deep neural network.



Motivation: How can learning be made resilient against - or even
benefit from - high levels of noise in synaptic transmission?
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Trial-to-trial variability of post-synaptic currents in biological synapses
[Jensen et al. 2019]



Motivation: How can learning be made resilient against - or even
benefit from - high levels of noise in synaptic transmission?
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Synapses are strongly compartmentalized
and often experience different voltages than
parent dendrites [Cornejo et. al 2022].

Only the most prominent electrical signals,

like back-propagating action potentials, can
be detected by synapses located far a way
from the soma.

This suggests a very sparse exchange of
information between synapses and parent
dendrites.

How do synapses cope with these high
levels of uncertainty about their
environment?



Free energy model of behavior under uncertainty

Minimize the mismatch
between feedback and the
internal model of the world

by eliminating the
prediction error.
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How can learning be made resilient against - or even benefit
from - high levels of noise in synaptic transmission?

Our hypotheses:

* The model to act under uncertainty manifests not only on the behavioral
level but every synapse utilizes a similar strategy.

* Noisy synaptic transmissions are used to express uncertainty about the
environment and enable robust learning.

* Experimentally observed synaptic plasticity mechanisms are manifestations
of these principles for learning to predict post-synaptic activity.



Free energy model for single synapses

Kappel and Tetzlaff, 2021.
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Triplet STDP learning window for free energy minimization
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Event-based algorithm for free energy minimization
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Triplet STDP learning window for free energy minimization

our model Bi et al. 1998
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INTERMEDIATE SUMMARY I: FREE ENERGY
MODEL OF SYNAPTIC BEHAVIOR

* Single synapses of spiking neural network represent uncertainty
through stochastic release.

* Rules to learn synaptic weights to best predict the environment can
be derived from first principles and match experimentally found
learning dynamics.

* \We demonstrate that synapses learn to utilize synaptic noise to
represent uncertainties on the level of single neurons, networks
for pattern detection, and closed loop behavior
-~ Kappel and Tetzlaff 2022, bioarxiv.rog/2022.04.22.489175.full.pdf



OUTLINE

* Representations of uncertainty for inference and
learning in neural networks.

* Single synapses of spiking neural network represent
uncertainty through stochastic release.

 Utilizing representations of uncertainty for distributed
learning in deep neural network.



Representing uncertainties in deep neural networks

* Representing uncertainties in terms of probabilities is already implicit in
many methods that are commonly used in deep learning, e.g. cross entropy
loss, mean squared error.

* However few deep learning models make explicit use of these uncertainty
representations.

* We suggest to introduce uncertainty representations explicitly into DNNs by
interpreting the output of a DNN as the parameters of a probability
distribution g(x) and then use probability theory to derive learning rules to
learn a target probability distribution p(x).

Dk (p.q) = /p(.r) log p(ll)d;r

q(x)



Example: Uncertainty-aware autoencoder
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Using uncertainties for distributing learning
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First PoC Application: “LeNet” (-like) architecture
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test accuracy:

98.93%

(baseline end-to-
end with MSE loss)

98.96%
(end-to-end
learning with EM
loss)

98.26%
(with EM loss and
stop gradient)

14.21%
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with stop gradient)



INTERMEDIATE SUMMARY II: DISTRIBUTED
LEARNING USING UNCERTAINTIES

* DNNs are surprisingly good in generalizing in probability spaces.

* \WWe suggest to exploit this property to utilize uncertainties for
distributed learning.

* Distribute global learning across a network with nodes that use only
local learning — uncertainty messages to solve the credit
assignment problem.

 Mechanism for failure prediction automatically built in — might come
In handy in all sorts of applications.
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