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Deep learning networks have been trained to recognize speech,
caption photographs, and translate text between languages at
high levels of performance. Although applications of deep learn-
ing networks to real-world problems have become ubiquitous, our
understanding of why they are so effective is lacking. These empirical
results should not be possible according to sample complexity in
statistics and nonconvex optimization theory. However, paradoxes
in the training and effectiveness of deep learning networks are
being investigated and insights are being found in the geometry of
high-dimensional spaces. A mathematical theory of deep learning
would illuminate how they function, allow us to assess the strengths
and weaknesses of different network architectures, and lead to
major improvements. Deep learning has provided natural ways for
humans to communicate with digital devices and is foundational for
building artificial general intelligence. Deep learning was inspired by
the architecture of the cerebral cortex and insights into autonomy
and general intelligence may be found in other brain regions that
are essential for planning and survival, but major breakthroughs will
be needed to achieve these goals.

deep learning | artificial intelligence | neural networks

n 1884, Edwin Abbott wrote Flatland: A Romance of Many
Dimensions (1) (Fig. 1). This book was written as a satire on
Victorian socicty, but it has endured because of its exploration of

NeurlIPS conferences, I oversaw the remarkable evolution of a
community that created modern machine learning. This confer-
ence has grown steadily and in 2019 attracted over 14,000 par-
ticipants. Many intractable problems eventually became tractable,
and today machine learning serves as a foundation for contem-
porary artificial intelligence (Al).

The early goals of machine learning were more modest than
those of Al Rather than aiming directly at general intelligence,
machine learning started by attacking practical problems in
perception, language, motor control, prediction, and inference
using learning from data as the primary tool. In contrast, early
attempts in Al were characterized by low-dimensional algorithms
that were handcrafted. However, this approach only worked for
well-controlled environments. For example, in blocks world all
objects were rectangular solids, identically painted and in an envi-
ronment with fixed lighting. These algorithms did not scale up to
vision in the real world, where objects have complex shapes, a wide
range of reflectances, and lighting conditions are uncontrolled. The
real world is high-dimensional and there may not be any low-
dimensional model that can be fit to it (2). Similar problems were
encountered with early models of natural languages based on
symbols and syntax, which ignored the complexities of semantics
(3). Practical natural language applications became possible once
the complexity of deep learning language models approached the
complexity of the real world. Models of natural language with
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Computing performance (petaFLOP days)

The Rise of the GPU
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Computer Cost

Data Are All You Need
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Long-Range Temporal Context
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Language Translation by Recurrent Neural Networks
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LSTM
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Error propagated back will elicit conflicting weight update signals:

1) Accessing the information stored in a memory cell (+)

2) Protecting downstream units from being perturbed by the
information stored (-)

Introducing gates offers more flexibility on controlling connection
weights updated by error flows.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation



Transformer Dynamics
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Self-attention (within one encoder]
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Linear State Space Model
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Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu, Karan Goel, and Christopher Re

- —

o
~

g
i e e R Tl ) A S P —— S ————————

bt
o

>
9 |
o
CIFAR-10 3 05
&J - nv.,r\._l\\/\r'\;’\r"d\e’\-"\/\-f“\"“N‘""‘\‘4“~—\"-’-“""‘*v‘-/— ——i™as
(_>U 0'4 I\/’\'\J\’\ - HIPPO
o~ - Diagonal
0.3 _— Rar.1dom
— Trained A
0.2 -== Frozen A
0 25 50 75 100 125 150 175 200

Epoch



Toeplitz Matrix

Any n X n matrix A of the form
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is a Toeplitz matrix. If the ¢, j element of A is denoted A; ; then we have

Ai,j = Ai+1,j+1 = Qj—j-



Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Albert Gu and Tri Dao
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Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Albert Gu and Tri Dao, 2023

pp| = perp|exity Pp(p) . ZH(P) =92 >z p(z) logy p(z) _ Hp(m)—P(I)

Model Token. Pile LAMBADA LAMBADA HellaSwag PIQA Arc-E  Arc-C  WinoGrande Average
ppl 1 ppl | acc 1 acc 1 acct acc 1 acc 1 acc 1 acc 1
Hybrid H3-130M  GPT2 — 89.48 25.77 31.7 64.2 444 24.2 50.6 40.1
Pythia-160M NeoX 29.64 38.10 33.0 30.2 61.4 43.2 24.1 51.9 40.6
Mamba-130M NeoX 10.56  16.07 4.3 353 64.5 48.0 243 51.9 44.7
Hybrid H3-360M  GPT2 —_ 12.58 48.0 41.5 68.1 514 24.7 54.1 48.0
Pythia-410M NeoX 9.95 10.84 51.4 40.6 66.9 52.1 24.6 53.8 48.2
Mamba-370M NeoX 8.28 8.14 55.6 46.5 69.5 55.1 28.0 55.3 50.0
Pythia-1B NeoX 7.82 7.92 56.1 47.2 70.7 57.0 27.1 53.5 51.9
Mamba-790M NeoX 7.33 6.02 62.7 55.1 721 61.2 29.5 56.1 57.1
GPT-Neo 1.3B GPT2 —_ 7.50 57.2 48.9 711 56.2 259 54.9 52.4
Hybrid H3-1.3B GPT2 — 11.25 49.6 52.6 71.3 59.2 28.1 56.9 53.0
OPT-1.3B OPT — 6.64 58.0 53.7 724 56.7 29.6 59.5 55.0
Pythia-1.4B NeoX 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2
RWKV-1.5B NeoX 7.70 7.04 56.4 52.5 724 60.5 294 54.6 54.3
Mamba-1.4B NeoX 6.80 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7
GPT-Neo 2.7B GPT2 - 5.63 62.2 55.8 72.1 61.1 30.2 57.6 56.5
Hybrid H3-2.7B GPT2 — 7.92 55.7 59.7 73.3 65.6 323 61.4 58.0
OPT-2.7B OPT —_ 5.12 63.6 60.6 74.8 60.8 31.3 61.0 58.7
Pythia-2.8B NeoX 6.73 5.04 64.7 59.3 74.0 64.1 329 59.7 59.1
RWKV-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 331 59.6 59.6
Mamba-2.8B NeoX 6.22 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3




Ring Model for Temporal Convolution

Line Attractor  (f * g)( / f(r)g(t — 7)dr.

Line attractor
Seung, 1996
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Muller*, Fletterman*, Desbordes, Sejnowski
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The spectrum at a single point appears similar While the space-time Fourier transform (2D FFT) reveals

to noise a strong spatiotemporal invariant



Traveling Waves in Partially-Connected RNNs
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Keller, Sejnowski and Welling, arXiv
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Copy Task Learning is 100x Faster
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Addition Task Learning is More Robust
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Local Waves
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Hierarchy of Temporal Convolutions
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Delta-coupled single-event gamma waves
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Sleep Spindles Are Circular Traveling Waves in Cortex [ [THL|
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Muller and Sejnowski, eLife, 2016



Traveling Waves in the Hippocampus
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Traveling Waves in the Hippocampus

Lubenov, Siapas, 2008

Lubenov and Siapas(2008)



Predictive Autoencoder

EC CA3 CA1 Current Loss Predicitve Loss

Predictive Sequence Learning in the Hippocampal Formation
Chen, Zhang, Cameron, and Sejnowski, bioRxiv, Neuron, in press



Predicting Ahead in the Hippocampus
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Interpreting the Code in the Hidden Units
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Temporal Prediction Learns to Classify Actions

Action




Learning How to Rotate Images

A: Input D: Hidden unit activity
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Self-attention (within one encoder)
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Learning How to Decide What to Do Next
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Montague, Dayan and Sejnowski, 1996



Sequence Learning in Transformers and Brains

The Transformer Loop The Cortical — Basal Ganglia Loop

QOutput
Probabilities

Feed
Forward

Encoder

(shifted right)



Do Basal Ganglia Compute Self-Attention?

Basal Ganglia Thalamus
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