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Business Model: IP License

15+ yrs fundamental Al architecture research & technologies
65+ data science, hardware & software engineers

Publicly traded Australian Stock Exchange (BRN:ASX)

10 Customers - Early Access, Proof of Concept, IP License
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TENN can reduce energy use by orders of magnitude

« TENN = TEMPORAL EVENT-BASED NEURAL NETWORK

« TENN is related to State Space Models
* Replacement for many Transformer tasks

 Language Models
« Time-series Data
« Spatiotemporal Data
« Dramatically lowers energy requirements across all

compute platforms
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Kernel Representation Evolution
The journey from neurons to polynomials

Receptive Field of a simple cell
DeAngelis et al., 1995)

Receptive Field of V1 Hubel & Wiesel, 1959, 1962

Gabor filter

* A gabor filter is a combination of a gaussian filter
and a sinusoidal term.

A gabor filter in 2 dimension is :
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Gabor filter: continuous parametric models of receptive fields
Popular in the 1990s.

Brachmann & Redies

Replaced by learnable kernels in deep learning. 016
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https://www.researchgate.net/profile/Anselm-Brachmann?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24iLCJwcmV2aW91c1BhZ2UiOiJfZGlyZWN0In19
https://www.researchgate.net/profile/Christoph-Redies

What price, Learnable Kernelse

- Explosion of parameters
- Discretization in time and space

- Time is particular problematic for event-
based systems

- Learning is inextricably linked to a clock in
conventional Deep Learning
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Representing time-series with orthogonal polynomials
BrainChip uses Chebyshev polynomial

Legendre polynomials

In Legendre polynomials basis can lead to
exponential convergence for analyftic
function:s.

Intolerant to discontinuities
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Chebyshev polynomials
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Chebyshev polynomial basis can lead to
exponential convergence for a wide range
of functions, including those with
singularities or disconfinuities.*

*Lloyd N. Trefethen. 2019. Approximation Theory and Approximation Practice, Extended
Edition. SIAM-Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
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TENN has two modes: Convolution (Kernel) and Recurrent

Principles:

(1)

(2)

(3)
(4)

(5)

Surprise: Inspiratfion is from sophisticated signal

Recurrence: Chebyshev and Legendre polynomials
have recurrence relationship.

Duality: Recurrence imputes duality: Convolutional
form as well as recurrent form.

Stable training: Train in Convolutional Domain
Fast Running: Run in recurrent domain. Small foot-
print

Insight: TENNs and SSM are a stack of generalized
Fourier filters running in a recurrent mode, with non-
linearities between layers.

processing but works with LLMs 1!
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Recurrent to Convolution

A Matrix is initialized S.T. the resulting LTI system convolves the input U with polynomial basis.
A matrix leverages recurrence relationship of Chebyshev polynomials
Xn = Ax,_1 + Bu,
Yn = CXxn
where x e R?, u € R, y € R4
The recurrence relationship can be unfolded into a convolutional representation
C[A° AL, A2, .. A®]B
Parameterized by three matrices: A4, B, C

We can now “fine-tune” the basis to create a better, low dimensional fit. Lose some of the
time independence & orthogonality, however.
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TENN Support In
Akida 2.0

sssssssssss

BrainChip Confidential - Internal Use Only | 9



Akida 2.x Architecture and Benefits
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Temporal Event-based Neural Networks (TENN)
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Key hardware Features

Digital, Event-Based, at memory
compute

Highly Scalable

Each Node connected by mesh
network

Inside each node is a event based
TENN processing unit
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Event-Based Convolution, 2-D example

Classical

Frame-based

Convolution
9x5x%x5=225MACs
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Research Roadmap for TENNSs

Audio

Denoising
Keyword spotting
Automatic Speech
Recognition

Raw Audio processing
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Generative Al

* Large Language Models
* Intelligent Agents
» Primitive Reasoning

* LLama 1B Params equiv

Industrial AloT
Condition Monitoring
Anomaly Detection

Counting
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BioMedical
EEG /EKG /EMG
Wearables for health
Activity Monitoring
VR/AR interface



TENN Performance

The following results are performance projections

brainchip

Essential Al

13



Task: Sentence generation
TENN is highly competitive with models of similar size

L=

TENN trained on WikiText-103. 100M tokens
GPT models trained on open_web_text, Mamba trained on the Pile

TENN training time: ~3 days on (1) A100
Scores reported as negative entropy:.—log,(1/VocabSize) — log, (perplexity) (higher better)

GPT2 GPT2 TENN Mamba | GPT2large | GPT2 full Mamba
Small Medium 130M 370M

Train_size
Score

Params
(relative to TENN)

Energy

(relative to TENN)
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TENNS generates tokens far faster than GPT-2 medium

TENN (ours): gpt2-medium (theirs):

H‘”(RRT WAS COMPLETELY AFRAID
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Task: Audio Denoising
Comparison of TENN versus SoTA

Deep Filter TENN Deep Filter Deep Filter
Net V1 Net V2 Net V3

PESQ 2.49 2.67 2.68

Params 2.98 1 3.86 3.56
(relative to TENN)

MACs 11.7 | 12.1 11.5
(relative to TENN)

Denoised

NSRS Il (Gl TENN (raw audios in and ou)
N\
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TENN can be extended to spatio-temporal dat hand clap

DVS Hand Gesture Recognition: IBM DVS128 Dataset

y (%) (ms)

TrueNorth-CNN 96.5 18 M 155
Loihi-Slayer 93.6 - - 1450
ANN-Rollouts 97.0 500 k 10.4 1500
TA-SNN 98.6 - - 1500
Akida-CNN 95.2 138 k 0.12 200
TENN-Fast 97.6 192 k 0.429 105 State of the Art
TENN 100.0 192 k 0.499 510 SOTA
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https://openaccess.thecvf.com/content_cvpr_2017/papers/Amir_A_Low_Power_CVPR_2017_paper.pdf
https://arxiv.org/abs/1810.08646
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214871/
https://arxiv.org/abs/2107.11711#:~:text=Temporal%2Dwise%20Attention%20Spiking%20Neural%20Networks%20for%20Event%20Streams%20Classification,-Man%20Yao%2C%20Huanhuan&text=How%20to%20effectively%20and%20efficiently,has%20various%20real%2Dlife%20applications.

Key Take aways

« TENN
- |Is highly power efficient
- Can be mapped to Akida 2.0 IP
- SOTA performance in areas explored to date

* Future Work
- Enhance activation sparsity to take advantage of Akida 2.0 IP

- Further Exploration of polynomial space
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