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Inference Time : ML vs HDC

Inference Time by Model and Classifier
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For ARM-based edge devices, the HDC model 1s 6x, 3X,

and 5x faster than SVM, MLP, and Random Forest,

respectively. Thils speed 1s due to 1ts use of binary

data, simplifying 1inference to just adding and

thresholding binary vectors.
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Brain-Inspired Hypervector Processing

Overall Results

Embedding Model Algorithm [so-Accuracy Training Time (sec.) * Model Size Inference Time (sec.)®

SVM 946.32 213.51 MB 6.3357

—_— MLP 010 300.21 18.05 MB 3.3300
Random Forest ’ 534.59 63.50 MB 5.7673

HDC 272.94 9KB 1.0180

SVM 800.45 95.58 MB 4.5522

o MLP X 590.75 1.81 MB 2.9476
DISTILBERT b ndom Forest 53% 519.53 55.76 MB 4.8522
HDC 269.41 9OKB 1.0127

SVM 750.45 229.67 MB 6.5548

I MLP . 343.52 5.42 MB 32187
Random Forest . 458.48 55.44 MB 4.8012

HDC 306.41 9KB 1.0290

Result table highlights HDC's efficiency with 1so-accurate
performance versus other classifiers, achieving high accuracy with
a nhotably compact 9KB model. Unlike traditional algorithms 1like
SVM, MLP, and Random Forest that use 1larger floating-point
representations, HDC's binary encoding greatly reduces model size

and complexity.
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Conclusion

- HDC pairs effectively with LLMs such as BERT, DistilBERT, and GPT-2
for efficient language processing.

- Achieved high accuracy 1n bilnary classification on the IMDb dataset
with a compact model size of just 9KB.

- Ensures swift 1nference times on edge devices, highlighting 1its
sultability for real-time applications.

- Showcased the scalability and cost-effectiveness of HDC for NLP on
devices with limited computing power.
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Thank you for listening!

alaaddin.ayarl@louisiana.edu
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