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TENNLab
• Four PIs at UTK:

— Dr. Ahmed Aziz (Devices)
— Dr. Garrett Rose (Architectures and 

Devices)
— Dr. Jim Plank (Software and 

Applications)
— Dr. Katie Schuman (Algorithms and 

Applications)

• Affiliated faculty at:
— University of Albany
— George Mason University
— University of Mississippi
— Florida International University
— Oak Ridge National Laboratory https://neuromorphic.eecs.utk.edu/



What is the role of recurrence in spiking 
neural networks?



Recurrence in today’s spiking neural networks

• Liquid state machines/reservoir computing
— Sparse, recurrent randomly generated reservoirs that are not trained by the 

algorithm

• Winner-take-all networks
— Used in a variety of contexts, but typically with fixed weights

• Recurrence inspired by or mapped from networks like LSTMs
— Trained using conventional or adapted recurrent neural network approaches



Training recurrent neural networks is 
hard!



Training recurrent neural networks is 
hard!

But…is it worth it?



How do we evaluate recurrence in SNNs?

• We wanted to evaluate across multiple control applications in a simple 
SNN simulator 

• Why control?
— Control applications usually benefit from some form of memory, though not all 

actually require memory to be successful

• We wanted to compare feed-forward networks with recurrent neural 
networks where any two neurons could be connected by a synapse



TENNLab Neuromorphic Software Framework

Software Core: Common Interfaces, Input/Output Coding, Network Compiler

Plank, J. S., Schuman, C. D., Bruer, G., Dean, M. E., & Rose, G. S. (2018). The TENNLab exploratory neuromorphic computing framework. IEEE Letters of 
the Computer Society, 1(2), 17-20.
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Reduced Instruction Spiking Processor (RISP)

• RISP is implemented with a C++ discrete event simulator. 

• Simple leaky integrate and fire neuron is implemented with 
programmable leak and thresholds. 
— We turn off leak on the RISP neurons
— Neuron thresholds vary between -1 and 1.

• RISP's synapses have programmable weights and delays. 
— RISP synapse weights to vary between -1 and 1. 
— Synaptic delay values are integers between 1 and 5.
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Evolutionary Optimization for Neuromorphic Systems

Schuman, Catherine D., et al. "Evolutionary optimization for neuromorphic systems." Proceedings of the Neuro-inspired Computational Elements Workshop. 2020.
Schuman, Catherine D., et al. "An evolutionary optimization framework for neural networks and neuromorphic architectures." 2016 International Joint Conference on Neural Networks 
(IJCNN). IEEE, 2016.

• Evolved structure, 
evolved 
parameters
• Evolve with the 

following number 
of starting hidden 
neurons: 0, 1, 2, 5, 
10
• Do not allow for 

EONS to add 
hidden neurons, 
but they can be 
deleted



Library for Evolutionary Algorithms in Python

• Fixed structure, evolved 
parameters

• Same inputs/outputs as EONS 
evolved networks for each 
application
• Evaluate with the following 

numbers of hidden neurons: 1, 5, 
10, 20, and 50

Coletti, Mark A., Eric O. Scott, and Jeffrey K. Bassett. "Library for evolutionary algorithms in Python (LEAP)." In Proceedings 
of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1571-1579. 2020.
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Applications

Static Data 
Classification

Temporal Data 
Classification

Event 
Detection

Control General 
Computation



Control

TENNLab Pole Balancing
• Observations: 4
• Actions: 2

TENNLab Pole Balancing 
No Velocities
• Observations: 2
• Actions: 2

OpenAI Gym Bipedal Walker
• Observations: 24
• Actions: 4

Bipedal Walker source: https://gymnasium.farama.org/environments/box2d/bipedal_walker/



Experimental Setup

• For each algorithm (EONS and LEAP), each number of hidden 
neurons (0, 1, 2, 5, and 10 for EONS and 1, 5, 10, 20, and 50 for 
LEAP), and each application (pole balancing with and without 
velocities, and bipedal walker), we ran 20 tests with different random 
starting seeds. 
• Each evolution:
— Population size of 100
— 300 generations

• The testing fitness is the average score across 1000 random 
episodes. 



Results

Key 
Observation:

Recurrent 
networks 

achieve the 
best 

performance 
on each task



Results

Key 
Observation:

Recurrent 
networks with 
zero hidden 
neurons on 

average 
outperform all 
feed-forward 

networks



Results

Key 
Observation:

Pole 
balancing 
with no 

velocities 
requires 

recurrence 
(memory)



Results

Key 
Observation:

Even tasks 
that do not 

require 
recurrence 

perform 
better WITH 
recurrence



Network: Pole balancing with velocities

Key Observation:

Best performing network for 
pole balancing with velocities 
has no hidden neurons at all, 

but significant recurrent 
connectivity



Network: 
Bipedal-Walker

Key Observation:

Best performing network for 
bipedal walker has two hidden 

neurons and significant 
recurrent connectivity (input to 

input, output to output, output to 
input, etc.)



Some additional recurrence anecdotes…



Recurrence Anecdotes: Autonomous Racing

Schuman, Catherine, Robert Patton, Shruti Kulkarni, Maryam Parsa, Christopher Stahl, N. Quentin Haas, J. Parker Mitchell et al. "Evolutionary vs 
imitation learning for neuromorphic control at the edge." Neuromorphic Computing and Engineering 2, no. 1 (2022): 014002



Recurrence Anecdotes: Pong 

Rizzo, Charles P., Catherine D. Schuman, and James S. Plank. "Neuromorphic downsampling of event-based camera output." In 
Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference, pp. 26-34. 2023.



Recurrence Anecdotes: Radiation Detection

Ghawaly, James, Aaron Young, Andrew Nicholson, Brett Witherspoon, Nick Prins, Mathew Swinney, Cihangir Celik, Catherine Schuman, and 
Karan Patel. "Performance Optimization Study of the Neuromorphic Radiation Anomaly Detector." In Proceedings of the 2023 International 
Conference on Neuromorphic Systems, pp. 1-7. 2023.



Conclusions

• For these three control applications, the recurrent networks can result 
in not only better performance, but better performance with 
significantly smaller networks  
• Our main goal with this work was to demonstrate that allowing for 

more free-form recurrent networks can give better performance with 
potentially smaller networks
• Our secondary goal was to encourage the community to explore the 

development of:
— Algorithms that can produce and leverage these sorts of network architectures
— Hardware that can implement them effectively 
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Thank you!

Questions?

Contact:
Email: cschuman@utk.edu

Website: neuromorphic.eecs.utk.edu


