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Motivation

Spiking Neural Networks (SNNs)

SNNs inspired in the function of
the mammalian brain.

Energy and data-efficient
alternative to Artificial Neural
Networks (ANNs)

Develop on neuromorphic
computational architectures
(Loihi, IBM’s Truenorth, etc.)

Source: Wikipedia

Research of SNNs in Control
Systems

Stabilization of tracking error with
a biologically plausible Limbic
system inspired control (LISIC)
(Rubio Scola, Garcia Carrillo, 2023)

Spiking Neural Network-based
Control Applied to a classical
control system platform.
(Chavez Arana, Garcia Carrillo, Sornborger

2022)

Source: Rubio Scola, Garcia Carrillo, and
Hespanha, 2023
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Objective

Develop an SNN-based controller to perform spatial stabilization
and trajectory tracking of an Unmanned Aircraft System

Used Proportional-Derivative (PD) control laws as its foundational
framework

Adoption of Neural Engineering Framework (NEF) through Nengo
Python API

Proposed controller effectiveness was evaluated using a flight simulation
environment (X-Plane)
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Methodology

UAS dynamics: Mathematical model
based on Newton-Euler formalism

ξ̇ = V (1)

mV̇ = RF (2)

Ṙ = RΩ̂ (3)

IΩ̇ = −Ω× IΩ+ Γ (4)

F ∈ R3 - Total force

Γ ∈ R3 - Total torque on vehicle

V = (ẋ, ẏ, ż)T - Translational
velocity

Ω̂ - skew-symmetric matrix from
Ω̂a = Ω× a

Ω× IΩ is the direction and magnitude
of the angular velocity and rotational
inertia.

Forces acting on the UAS,
inertial frame I, and body

frame B
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Methodology (Cont.)

UAS dynamics

Reduced model does not consider all the effects acting on the vehicle

ẍ = −u (cosφ cosψ sin θ + sinφ sinψ) /m

ÿ = −u (cosφ sin θ sinψ − cosψ sinφ) /m

z̈ = −u (cos θ cosφ) /m+ g

φ̈ = Mφ/Ixx + φ tan θMθ/Ixx + tan θMψ/Izz

θ̈ = cosφMθ/Iyy − sinφMψ/Izz

ψ̈ = φMθ/(Iyy cos θ) +Mψ/(Izz cos θ)

(5)
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Classic PD Control

Classic PD control: inner and outer loops
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Neural Engineering Framework (NEF)

Our Spiking Neural Network Based Controller (SNNBC) was constructed
using NEF. NEF proposes a way to transform a physical magnitude or signal
into a spiking neuron firing rate.

The encoding process of a
vector representation in a
neural population

ai(x(t)) = Gi

[
αi

〈
ζ̃ix(t)

〉
l
+ Jbias

i

]

The neural populations
represent a dynamic state over
time through nonlinear
encoding and linear decoding
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Neural Engineering Framework (NEF)

Our Spiking Neural Network Based Controller (SNNBC) was constructed
using NEF. NEF proposes a way to transform a physical magnitude or signal
into a spiking neuron firing rate.

The decoding process
translates the neural response
into the desired output

x̂(t) =
∑
i,n

ζi (t− tin)

NEF uses a mix of decoding
matrix weights (convolution
operation with synaptic filter)

Input current
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Spiking Neural Network Based Controller (SNNBC)

SNN PID control: inner and outer loops
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Spiking Neural Network Based Controller (SNNBC)

Classic PD control: inner and outer loops
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Experiments

The process integrates the UAS mathematical model of the quad rotorcraft in
the simulation environment and implements the SNNBC within the simulator.

Mission profile:

Take-off

Climbing

Tracking of a figure-8 reference

Parameter kp kd k
x 0.09 0.208 —
y -0.0936 -0.192 —
z -0.096 -0.72 —
φ — — 3.9
θ — — 3.9
ψ — — 3.4
p 0.12 0.005 —
q 0.108 0.01 —
r 0.25 0.25 —
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Experiments (Cont.)

Communication structure

Ubuntu 18.04 - ROS Melodic

PDNengo.py

Nengo Control
Law

ROS
Topics

run_model.py

quadcopterROS.py

X-PlaneROS

X-Plane

XPC

StatesMotors
Throttle UDP

States

Motors
Throttle

Calculate errors

Nengo Simulator

Errors

Network
Model

UDP

Send Motor
Commands

xplaneROSWrapper.py

X-plane

Physics-based flight simulator
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Results

Euler angles: desired and measured states
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Euler angles vs. desired euler angles.
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Results (Cont.)

Angular velocities: desired and measured states
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Results (Cont.)
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Conclusions

Outcomes:

Demonstrated adaptability and performance of SNNBC
throughout the autonomous flight mission of a subactuated UAS

Future Directions:

Development of a SNNBC for UAS implemented on neuromorphic
hardware and incorporating neuromorphic sensors (event-based
camera)

Writing low-level code using NxSDK to develop SNN on Loihi
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