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Factorization is a problem for visual perception

Reflectance & Shading Shape & Motion
Adelson (2000) Anderson, Ratnam, Roorda, 

Olshausen (2020)

What & Where
Ungerleider & Mishkin (1982)
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Given an image containing one or more objects, can we return each object's 
identity and position in the image, in a neuromorphic and efficient way?

Input
Output
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Problem statement



Sparse coding: a compact and efficient way of encoding images

Images are decomposed as a (small) linear superposition of basis functions, and 
remaining additive Gaussian noise

Basis functions learned on natural images
4

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. 
Nature, 381(6583), 607-609.



Convolutional sparse coding: an equivariant version of 
sparse coding

5

Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010, June). Deconvolutional networks. In 2010 IEEE Computer Society Conference on computer 
vision and pattern recognition (pp. 2528-2535). IEEE.
Wohlberg, B. (2017). SPORCO: A Python package for standard and convolutional sparse representations. In SciPy (pp. 1-8).



Hyperdimensional computing (aka Vector Symbolic Architectures) provides 
a compositional grammar implemented via distributed representations

Primitive symbols:
● Assign random, high-dimensional vectors (“Alice”, “Bob”, …)

Rules for composing more complicated symbols:
● Adding, a.k.a. “Bundling” (+, “plus”)

○ Alice and Bob = (“Alice” + “Bob”)
● Association, a.k.a. “Binding” (⊙, “times”)

○ Alice saw Bob = 
(“Alice”⊙“subject” + “saw”⊙”verb” + “Bob” ⊙“object”) 

Rule for comparing vectors:
● Similarity metric for vectors (e.g., inner product) 6



Choice of HD/VSA vectors: Fourier Holographic Reduced Representations (FHRR)

Vectors are complex phasors:

● Bundling (+) by element-wise addition
● Binding (⊙) by element-wise multiplication
● Similarity by normalized inner product
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8Plate, T. A. (1992). Holographic recurrent networks. Advances in neural information processing systems.
Plate, T. A. (1994). Distributed representations and nested compositional structure. University of Toronto, Department of Computer Science.

Key idea : Represent any number x, by binding z x times with itself:

Encoding numbers via power encoding



Encoding an image as a HD/VSA vector using convolutional 
sparse coding

● Convolutional sparse 
code features 
encoding:

HD vector for basis 
function j

HD vectors for 
position (x,y)

convolutional 
sparse code 

feature
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Encoding an image as a HD/VSA vector using convolutional 
sparse coding

● Convolutional sparse 
code features 
encoding:

● Pixel encoding*:

HD vector for basis 
function j

HD vectors for 
position (x,y)

convolutional 
sparse code 

feature
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image pixel value

Renner, A., Supic, L., Danielescu, A., Indiveri, G., Olshausen, B. A., Sandamirskaya, Y., ... & Frady, E. P. (2022). Neuromorphic visual scene 
understanding with resonator networks. arXiv preprint arXiv:2208.12880.



Recovering the objects/positions from the HD/VSA 
encoding is a factorization problem
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The resonator network is an algorithm for solving factorization

Input

Algorithm

Simulation
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The resonator network is an algorithm for solving factorization

Kent, S. J., Frady, E. P., Sommer, F. T., & Olshausen, B. A. (2020). Resonator networks, 2: Factorization performance and capacity compared to 
optimization-based methods. Neural computation, 32(12), 2332-2388.

Performance

Resonators
Other 
methods
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HD Vector Dimension

Ca
pa

ci
ty

*

*Capacity = maximum search problem solved at 99% accuracy with fixed number of iterations.



What makes it work: searching in superposition

Map Seeking Circuits:

- Search in superposition: check quality of 
weighted sums of guesses
- Principle: cull solutions until at most one remains

Resonator networks:

- Also search in superposition, but leverage the 
“blessing of [high] dimensionality”

- Principle of self-consistency: correct 
explanations are fixed points of the dynamics

15Arathorn, D. W. (2002). Map-seeking circuits in visual cognition: A computational mechanism 
for biological and machine vision. Stanford University Press.



Related work on resonator networks for image factorization

● Direct encoding of the pixel values: 
○ Renner et al., 2022

● Distributed representation computation using a neural network:
○ Frady et al., 2020
○ Hersche et al., 2022
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Experimental setup

Datasets:

1. MNIST
2. Random Bars
3. Letters
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Metrics:

1. Accuracy
2. Convergence 

time
3. Multi-object 

scenes
4. Confidence

Resonator network 
hyperparameters:

1. HD Vector dimension
2. Maximum number of 

iterations
3. Convergence criteria (fixed 

point vs. confidence-based)



Experiments on the translated MNIST dataset

Increasing the number of x,y positions (L)

Increasing the number of objects

Search space size : 

Object superposition 
causes crosstalk noise and 
pixel overlap.
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Sparse coding improves accuracy and convergence time
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Results on the MNIST dataset : multi-object scenes

20

Convolutional sparse coding introduces 
efficient and compact representations, which 
we then adapt to HD computing.



Confidence as an early stopping criterion

Confidence: 
- Calculated for each 

codebook, for each 
iteration

- Difference between 
similarity of best 
guesses

- Normalized between 0 
and 1

Correct: high 
confidence

Incorrect: low 
confidence

21
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Confidence as an early stopping criterion

● Two stages in the 
resonator dynamics : 
exploration and 
confirmation.

● Final confidence is 
highly correlated with 
accuracy
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Confidence as an early stopping criterion

● Early stopping : no 
decrease in accuracy, less 
iterations.

● Larger benefit for sparse 
encodings
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Future directions

● Neuromorphic implementations
○ Sparse coding and resonators have been implemented in neuromorphic hardware* 

● Scaling up to other kinds of scenes & variations
○ Video
○ Color

● Explore other resonator extensions
○ Efficiency gains from residue number systems
○ Nonlinearities in resonator network dynamics
○ Log-polar coordinate transformations to handle cases such as rotation and scaling 
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*for example,
Chavez Arana, D., Renner, A., & Sornborger, A. (2023, April). Spiking LCA in a Neural Circuit with Dictionary Learning and Synaptic Normalization. In Proceedings 
of the 2023 Annual Neuro-Inspired Computational Elements Conference (pp. 47-51).
Langenegger, J., Karunaratne, G., Hersche, M., Benini, L., Sebastian, A., & Rahimi, A. (2023). In-memory factorization of holographic perceptual representations. 
Nature Nanotechnology, 18(5), 479-485.
Wan, Z., Liu, C. K., Ibrahim, M., Yang, H., Spetalnick, S., Krishna, T., & Raychowdhury, A. (2024). H3DFact: Heterogeneous 3D Integrated CIM for Factorization 
with Holographic Perceptual Representations. arXiv preprint arXiv:2404.04173.



Takeaways

● Improvement in terms of accuracy and convergence time over pixel-based 
encodings.

● Explicitly compositional model: all images constructed from a relatively small 
number of codebook entries and operations.

● Transparent model: sparse coding makes the structure of images explicit. 
● Confidence: method for faster convergence and resonator explainability.
● Connections to circuit models in computational neuroscience; improvements 

for neuromorphic computing
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Thanks for your attention!
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