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Take home message

• Demonstrated (using simulations) Online few-shot learning on a novel, energy 
efficient hardware architecture


• Constraining network architecture does not terminally detriment the performance of 
the model


• Importance of inner loop dynamics in MAML; Highlighting the need for HW-SW co-
design for efficient 
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What is this project about?

3

Novel energy efficient architecture Meta-learning Hardware-aware training



Low-power architecture
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The Memory wall problem
Non-Von Neumann Architectures

Von Neumann Architectures

Memory Compute
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Mark, H. (2014, February). Computing’s energy problem (and what we can do about it). In Proceedings of the 
IEEE International Solid-State Circuits Conference, San Francisco, CA, USA (pp. 9-13).



Scaling IMC: Possible solution
Core 1 Core 2

Core n-1
Core n
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Scaling multi-core IMC

7Faraz Zaidi. Small world networks and clustered small world networks with random connectivity. Social Network 
Analysis and Mining, 2012. hal-00679660

Dalgaty, T., Moro, F., Demirağ, Y., De Pra, A., Indiveri, G., Vianello, E., & Payvand, M. (2024). Mosaic: in-memory 
computing and routing for small-world spike-based neuromorphic systems. Nature Communications, 15(1), 142.

Core 1 Core 2

Core n-1 Core n

•High clustering coefficient

•Low number of total connections



The Neuromorphic Mosaic

•Non-von Neumann systolic architecture 

•Distributed memristors for in-memory 
computing and in-memory routing 

•Efficiently implements small-world graph 

topologies for Spiking Neural Networks (SNNs)

8 Dalgaty, T., Moro, F., Demirağ, Y., De Pra, A., Indiveri, G., Vianello, E., & Payvand, M. (2024). Mosaic: in-memory 
computing and routing for small-world spike-based neuromorphic systems. Nature Communications, 15(1), 142.

Neuron core

Routing core



The Neuromorphic Mosaic

9 Dalgaty, T., Moro, F., Demirağ, Y., De Pra, A., Indiveri, G., Vianello, E., & Payvand, M. (2024). Mosaic: in-memory 
computing and routing for small-world spike-based neuromorphic systems. Nature Communications, 15(1), 142.

Neuron tile

External weights Recurrent weights Neuron 

circuits

Routing tile



Neuromorphic Mosaic for edge computing
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Stewart, K. M., & Neftci, E. O. (2022). Meta-learning spiking neural networks with surrogate gradient descent. 
Neuromorphic Computing and Engineering, 2(4), 044002.

Demirag, Y., Dittmann, R., Indiveri, G., & Neftci, E. O. (2023). Overcoming phase-change material non-
idealities by meta-learning for adaptation on the edge. Proceedings of Neuromorphic Materials, Devices, 
Circuits and Systems (NeuMatDeCaS).

Environmental Noise

Domain data-shifts

RRAM device non-idealities



Meta-learning algorithm

11

Novel energy efficient architecture Meta-learning Hardware-aware training



Model Agnostic Meta-learning
(MAML)

• Learning to learn approach


• Model agnostic


• Learn a good initialisation


• Fine-tune to learn new examples (few-shot)


• Gradient-based bi-level optimisation

12 Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning for fast adaptation of deep 
networks. In International conference on machine learning (pp. 1126-1135). PMLR.



A few-shot task

N-way

K-shot
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[“Claude Monet”, “Jackson Pollock”, “Vincent Van Gogh”]



A few-shot data loader
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Support set Query set Support set Query set

Fine tune to this particular task Evaluate the FSL performance

Meta-training Meta-testing



Lifecycle of MAML
Meta-training phase
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Randomly initialize 𝛳

Sample a task 

(3 image labels to classify)

Draw two data samples for each label

(Support + Query set)

ℒ(𝛳, Dsupport) 

ɸᵢ = 𝛳 - 𝛼 ⛛𝛳 ℒ(𝛳, Dsupport)

ℒ(ɸᵢ, Dquery) 

Update 𝛳 ← β ⛛𝛳 ℒ(ɸᵢ, Dquery)

Inner Loop

Outer Loop



Lifecycle of MAML
Meta-testing phase
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Meta-learned 𝛳 


(from training)

Sample a task 

(3 image labels to classify)

Draw two data samples for each label

(Support + Query set)

ℒ(𝛳, Dsupport) 

ɸᵢ = 𝛳 - 𝛼 ⛛𝛳 ℒ(𝛳, Dsupport)

ℒ(ɸᵢ, Dquery) 

Update 𝛳 ← β ⛛𝛳 ℒ(ɸᵢ, Dquery)

Inner Loop

Outer Loop

Predict(ɸᵢ, Dquery)



Dataset
Spiking Heidelberg Digits
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• Audio-based classification dataset


• 700 frequency channels, 100 time steps


• “Zero”, “One”, “Two”, …. , “Nine”


 “Null”, “Eins”, “Zwei”, ….. , “Neun”


• 12 speakers in total (2 speakers exclusive to the 
testing set)


• Class-balanced; 8k training and 2k testing samples

Cramer, B., Stradmann, Y., Schemmel, J., & Zenke, F. (2020). The heidelberg spiking data sets for the 
systematic evaluation of spiking neural networks. IEEE Transactions on Neural Networks and Learning 
Systems, 33(7), 2744-2757.



Data augmentation
Spatial sampling at regular intervals
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* Not to scale



Data augmentation
Spatial sampling at regular intervals
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Converting the SHD into a FSL dataset
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Model Architecture

• Layer Sequential Unit Variance Initialisation


• Inner loop: Stochastic Gradient Descent 


• Outer loop: Adam optimiser


• Softmax Cross entropy loss on Vmem


• BPTT using surrogate gradients, also 
compatible with MAML
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Hardware-aware training
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Hardware based constraints

• Update only the output layer weights in the inner loop

• One inner loop gradient step

• 1-shot learning is ideal

• A very high inner loop learning rate
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⛛
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⛛  = 0.02501204023dW

Small learning rate

⛛ = 0.83dW

Large learning rate

5-shot



RRAM-aware training
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WX Y
^*

Backward pass

Forward pass

Y target-L = Y
^

backpropagating errors 

Moro, F., Esmanhotto, E., Hirtzlin, T., Castellani, N., Trabelsi, A., Dalgaty, T., ... & Vianello, E. (2022, May). 
Hardware calibrated learning to compensate heterogeneity in analog RRAM-based Spiking Neural 
Networks. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 380-383). IEEE.

Learning the weights in a Neural network
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Conductance drift on RRAMs



RRAM-aware training
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Backward pass

Forward pass

Y target-L = Y
^

backpropagating errors 

+

5% Gaussian noise

W

Moro, F., Esmanhotto, E., Hirtzlin, T., Castellani, N., Trabelsi, A., Dalgaty, T., ... & Vianello, E. (2022, May). 
Hardware calibrated learning to compensate heterogeneity in analog RRAM-based Spiking Neural 
Networks. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 380-383). IEEE.

Conductance drift on RRAMs



Mosaic layout-aware training

Random fully connected Small-world connected
Zero

Non-zero

26 Dalgaty, T., Moro, F., Demirağ, Y., De Pra, A., Indiveri, G., Vianello, E., & Payvand, M. (2024). Mosaic: in-memory 
computing and routing for small-world spike-based neuromorphic systems. Nature Communications, 15(1), 142.



Calculating the layout-constraint mask
Example of matrix H

Neuron Tile
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27 Dalgaty, T., Moro, F., Demirağ, Y., De Pra, A., Indiveri, G., Vianello, E., & Payvand, M. (2024). Mosaic: in-memory 
computing and routing for small-world spike-based neuromorphic systems. Nature Communications, 15(1), 142.



Mosaic layout-aware training

Random fully connected Small-world connectedLayout-constraint mask
Zero

Non-zero

28 Dalgaty, T., Moro, F., Demirağ, Y., De Pra, A., Indiveri, G., Vianello, E., & Payvand, M. (2024). Mosaic: in-memory 
computing and routing for small-world spike-based neuromorphic systems. Nature Communications, 15(1), 142.

Cross entropy loss

Layout lossTotal loss



Results



Experimental Setup
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•1 layer SRNN with 256 LIF neurons (64 neurons for 

fully-connected baseline)


•Trained on 15 classes (5 excluded classes); Tested on 

all 20 classes


•5 way 5 shot tasks


•One inner loop update


•Report the accuracy on seen and unseen classes 

separately




(Compared to a fully connected network)

Constrained network architecture does not reduce the 
performance of the model!
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• 70% accuracy, standard SHD benchmark for 1 layer 

SRNN


•Increase in performance on unseen classes (attributed to 

sparse dist. of parameters)


•Best performance on seen classes (attributed to noise 

aware training)



Increasing inner loop gradient steps increases performance!
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Discussion



Discussion
Interesting relationship between learning rates and no. of inner loop updates

34 https://docs.wandb.ai/guides/app/features/panels/parameter-importance.

➡ 10 inner loop gradient steps

➡ 1 inner loop gradient step
MAML

https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*10ntlho*_ga*OTk0NDg4MDk1LjE3MTE0NjE2MTU.*_ga_JH1SJHJQXJ*MTcxMzQ0ODE5OS4zLjEuMTcxMzQ0ODMzNS4yNS4wLjA


Discussion
Can re-training compensate for multiple gradient steps?
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Discussion
Can re-training compensate for multiple gradient steps?
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𝛳
3 inner loop updates

𝛳
Re-training



Take home message

• Demonstrated (using simulations) Online few-shot learning on the Mosaic 
architecture


• Constraining network architecture does not terminally detriment the performance of 
the model


• Importance of inner loop dynamics in MAML; Highlights the need for HW-SW co-
design for efficient 
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