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A Framework for Benchmarking Neuromorphic
Computing Algorithms and Systems

Jason Yik, Harvard University

(Representing the work of many contributors)
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What does fast mean?

I’'m fast I’'m real fast Me most
fastest



Benchmarks standardize
what performance means
and how it is measured

I’'m fast I’'m real fast Me most
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Benchmarks standardize
what performance means
and how it is measured

They provide a way to rank /
compare performance

I’'m fast I’'m real fast Me most
fastest
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ImageNet:
A benchmark for deep learning
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AlexNet, sparked deep learning

https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-Scale-Visual-Recognition-Challenge-Accuracy_fig1_332452649




ImageNet: 5
A benchmark for deep learning

" Task: Image classification
Dataset: Imagenet Corpus
Metric: Top1 Classification-accuracy

25

20

15

10

Human error rate

ImageNet Visual Recognition Error Rate (%)

2010 2011 2012 2013 2014 2015 2016 2017

Year

A

AlexNet, sparked deep learning

https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-Scale-Visual-Recognition-Challenge-Accuracy_fig1_332452649




ImageNet:
A benchmark for deep learning

" Task: Image classification
Dataset: Imagenet Corpus
Metric: Top1 Classification-accuracy
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Benchmarks:

10 - Align on challenges of interest
— - Measure SOTA and growth

- Spur research progress
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ImageNet:
A benchmark for deep learning

" Task: Image classification
Dataset: Imagenet Corpus
Metric: Top1 Classification-accuracy

25

20

15

Benchmarks:

10 - Align on challenges of interest
— - Measure SOTA and growth

- Spur research progress

ImageNet Visual Recognition Error Rate (%)

2010 2011 2012 2013 2014 2015 2016 2017

A Year Standard benchmarks are vital for
technological progress.

AlexNet, sparked deep learning

https://www.researchgate.net/figure/Error-rates-on-the-ImageNet-Large-Scale-Visual-Recognition-Challenge-Accuracy_fig1_332452649
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Benchmarks for neuromorphic
computing

Deep learning benchmarks?

Lack native temporal dimension




Benchmarks for neuromorphic
computing
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Benchmarks for neuromorphic

computing

Deep Iearning benchmarks?
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Prior benchmarks

Comment \ Published: 11 September 2019
Benchmarks for progress in neuromorphic computing
Mike Davies &

Nature Machine Intelligence 1, 386-388 (2019) \ Cite this article

2447 Accesses | 62 Citations | 22 Altmetric \ Metrics

Perspective | Published: 31 January 2022

Opportunities for neuromorphic computing
algorithms and applications

Catherine D. Schuman &, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date & Bill

Kay

Nature Computational Science 2,10-19 (2022) | Cite this article

84k Accesses | 238 Citations | 161 Altmetric | Metrics

Benchmark calls to action
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Challenges in Benchmarking

Neuromorphics
#1 #2
Lack of a Implementation
formal definition diversity

#3

Rapid
research evolution
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#1: Lack of a formal definition

Neuromorphic == “biologically-inspired”
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#1: Lack of a formal definition

Neuromorphic == “biologically-inspired”

All of deep
learning is

“neuromorphic”
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#1: Lack of a formal definition
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[Example from the NeuroTech EU Consortium]
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What should be benchmarked
as “neuromorphic”?

Necessitates inclusive
benchmarks
- General tasks of interest
- General metrics
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Challenges in Benchmarking

Neuromorphics
#1 #2 #3
Lack of a Implementation Rapid
formal definition diversity research evolution
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#2: Implementation diversity
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Challenges in Benchmarking

Neuromorphics
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Lack of a Implementation Rapid
formal definition diversity research evolution
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#3: Rapid research evolution

What topics should a neuromorphic benchmarking workshop include?




#3: Rapid research evolution

What topics should a neuromorphic benchmarking workshop include?

event-based sensors
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#3: Rapid research evolution

What topics should a neuromorphic benchmarking workshop include?
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Lack of a Implementation Rapid
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Challenges in Benchmarking

Neuromorphics
#1 #2 #3
Lack of a Implementation Rapid
formal definition diversity research evolution
inclusive actionable iterative

— NeuroBench: A framework for benchmarking neuromorphics
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NeuroBench

Goals: inclusive, actionable, iterative benchmarking
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What are the ...
- Benchmarks of interest to drive research?

- Common tools to be developed?
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NeuroBench

Goals: inclusive, actionable, iterative benchmarking

What are the ...
- Benchmarks of interest to drive research?
- Common tools to be developed?

- Initial set of baseline approaches?

An open community of
neuromorphic researchers
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Dual-track structure

How to approach benchmarking algorithmic / deployed methods?
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Dual-track structure

How to approach benchmarking algorithmic / deployed methods?

Algorithm track: System-independent complexity analysis
- General metrics for model complexity, proxy hardware performance
- Exploration and prototyping, without implementation to neuromorphic HW

System track: For measuring methods deployed on hardware
- Evaluate deployed latency, throughput, energy efficiency
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Dual-track structure

Algorithm Track

System Track

Dataset

Dataset

User-defined solution

Algorithm

Algorithm
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Dual-track structure

Standard tasks, measurement

User-defined solution

>
Algorithm Track Dataset Algorithm Algorllthm
Metrics
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| Algorithm-System System-Informed |
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System Track Dataset Algorithm + Hardware P Syst_em
Metrics



Dual-track structure

— Highly-effective solutions can motivate future solutions in the other benchmark track

Algorithm Track
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Dual-track structure

e.g., best-performing algorithms are target
workloads for future hardware, hardware
influences network topologies, etc.

— Highly-effective solutions can motivate future solutions in the other benchmark track

Algorithm Track
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Dual-track structure

— Highly-effective solutions can motivate future solutions in the other benchmark track

— Deployed performance will inform hardware models of algorithm complexity metrics

User-defined solution

Algorithm

Algorithm Track Dataset Algorithm

4

Algorithm-System
i Co-Innovation

1
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Metrics

4

System-Informed
Complexity Metrics :

System
Metrics



e.g., determine operation costs,

D U al -t rack stru ctu re compute / memory resource costs

— Highly-effective solutions can motivate future solutions in the other benchmark track

— Deployed performance will inform hardware models of algorithm complexity metrics

User-defined solution

Algorithm

Algorithm Track Dataset Algorithm

4

Algorithm-System
i Co-Innovation

1
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Dual-track structure

Algorithm track: System-independent complexity analysis
- General metrics for model complexity, proxy hardware performance

- Exploration and prototyping, without implementation to neuromorphic HW

System track: For measuring methods deployed on hardware
- Evaluate deployed latency, throughput, energy efficiency
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Algorithm Track v1.0 Benchmarks

£ o A

Keyword Few-shot, Event Camera Primate Motor Chaotic Function
Continual Learning Object Detection Prediction Prediction
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Keyword Few-shot Continual Learning

Application

Continual expansion of multilingual keyword dictionary using few training examples.

Dataset

Multilingual Spoken Word Corpus (MSWC) keyword dataset (50 languages, over 6000 hours).

Task

Model base-trains on 100 keywords across 6 languages. Then, it successively undergoes 10-way,

5-shot learning sessions of 100 total new keywords from 10 new languages.

Correctness

Classification accuracy is measured after each session, on all previously

learned classes.
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[ W English W Catalan [ Arabic [ Persian Portuguese [ Spanish
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lovenian
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Event Camera Object Detection B=¢

Application

Real-time, energy-efficient / always-on automotive object detection, autonomous driving.

Dataset
Prophesee 1MP Gen 4 Automotive Detection dataset (14.65 hours, 3.5TB uncompressed).

Task

Detect car, two-wheeler, pedestrian. [train / val / test] split of [11.2 /2.2 / 2.2] hours.

Correctness
COCO mean average precision (mAP).



Primate Motor Decoding

Application

Sensorimotor biophysiological emulation, for prosthetics and brain-computer interfaces.

Dataset
Motor cortex recordings of two non-human primates engaged in reaching tasks (touch screen).

Task
Use cortical recording time-series to predict fingertip reach velocity in X and Y dimensions.

Correctness
R? of predicted velocities against ground truth.
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Chaotic Function Prediction

Application

Dynamic time-series forecasting, (markets, climate, signals, etc.). Also a small dimensional problem
useful for prototyping emerging resource-constrained hardware (i.e., mixed-signal).

Dataset
Mackey-Glass time series, one-dimensional non-linear time delay differential equation.

Task

Train using the first half of the generated time series, then autonomously forecast the second half.

Correctness
Symmetric mean absolute percentage error (sMAPE).

_u(t17)

da:_ﬁ z(t — 1)
dt "l1+zt—1)"

— vz (t).




Algorithm Track Metrics

Solution-agnostic metrics (primary)

- Correctness (defined per task)
- Complexity
- General metrics which reflect the architectural cost of the algorithm

Solution-specific metrics can be added:

- Complexity of neuron dynamics
- Robustness to noise (e.g. for methods aimed towards analog hardware)
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Algorithm Track Complexity Metrics

Footprint
Memory usage accounting for quantization, parameters and buffer requirements.

Connection Sparsity
Sparsity of model synaptic connections. Accounts for sparse initialization and pruning.

Activation Sparsity

Sparsity of neuron activations during execution. Insight into deployed communication requirement.
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Algorithm Track Complexity Metrics

Footprint, Connection Sparsity, Activation Sparsity

Synaptic Operations

Number of synaptic operations per prediction.

— Dense SynOps account for all operations.

— Effective SynOps count only non-zero operations.

— Multiply-Accumulates (MACs) for valued activations and Accumulates (ACs) for binary spikes.

Model Execution Rate*
Throughput of model output, reflects responsiveness and deployed compute requirement.
— Critical algorithmic feature, not necessarily a metric to be calculated.
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Benchmark case studies

Algorithmic baselines




Keyword FSCIL - Base Metrics

Baseline Accuracy Footprint Model Exec. Connection Activation SynOps (per model exec.)
aseli

(Base / Session Avg) (bytes) Rate (Hz) Sparsity Sparsity Eff MACs Eff ACs
M5 ANN | (97.09% /89.27%)  6.03 x 10° 1 0.0 0.783  2.59x107 7.85x10°

SNN (93.48% /1 75.21%)  1.36 x 107 200 0.0 0.916 3.39 x 106

3.65 x 10°




Keyword FSCIL - Base Metrics

Baseline Accuracy Footprint Model Exec. Connection Activation SynOps (per model exec.)
(Base / Session Avg) (bytes) Rate (Hz) Sparsity Sparsity Eff MACs Eff ACs
M5 ANN | (97.09%/89.27%)  6.03 x 10° 1 0.0 0.783 2.59x 107 7.85x 10° 0
SNN (93.48% 175.27%)  1.36 x 107 200 0.0 0.916 3.39 x 10° 3.65 x 10°

- Footprint vs Dense SynOps
- Model execution rate: real-time data processing

- Activation sparsity of SNN baseline
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Keyword FSCIL - Continual Learning

Prototypical Networks 100 All Classes Performance
Using pre-trained feature extractor,
90 1
predicted class is based on distance to
mean feature embeddings. i 20
©
S 70
Large initial drop for SNN <
” ¢ 601 :
— Opportunities towards general SNN - —=— Prototypical M5 ANN "~
. —e— Prototypical SNN
feature extraction. e E== Frozen M5 ANN
————— Frozen SNN
40
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Incremental Sessions




Event Camera Object Detection

Footprint Model Exec. Connection Activation SynOps (per model exec.)

Baseline mAP

(bytes) Rate (Hz) Sparsity Sparsity Dense Eff MACs  Eff_ACs
RED ANN | 0.429 9.13 x 10’ 20 0.0 0.634 2.84 x 101 2.48 x 10! 0
Hybrid | 0.271 1.21 x 10’ 20 0.0 0.613 9.85x 1010 376 x 1019 5.60 x 108

- Footprint: not much different
- Activation sparsity

- Ratio of effective SynOps for Hybrid model
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Primate Motor Decoding

Baseline R2 Footprint Model Exec. Connection Activation SynOps (per model exec.)
(bytes) Rate (Hz) Sparsity Sparsity  Dense Eff MACs Eff_ACs
ANN 0.593 20824 250 0.0 0.683 4704 3836 0
0.558 33496 250 0.0 0.668 7776 6103 0
SNN 0.593 19648 250 0.0 0.997 4900 0 276
0.568 38848 250 0.0 0.999 9700 0 551

- Activation sparsity (!)

- Effective SynOps
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Correctness-Complexity Trade-off

. —
m AN 0
% SNN %
’tln\) 105 ’ ANN_Flat 'g- N
S 4+ SNN_Flat &t
= v ]
- 4
€ o
o= =
=) % & B ANN
L ] < 10%; % SNN
‘g % & ANN_Flat
- = " 4 SNN Flat
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R2 R2

3 £ B8

v
=



Chaotic Function Prediction

) Footprint Model Exec. Connection Activation SynOps (per model exec.)
Baseline | sSMAPE
(bytes) Rate (Hz) Sparsity Sparsity Dense Eff MACs Eff ACs
ESN 1479  2.81x10° - 0.876 0.0 3.52x10*  4.37x10° 0
LSTM | 1337 4.90x10° - 0.0 0.530  6.03x10* 6.03x 10* 0

Reservoir computing solution
Connection sparsity
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Algorithm Track Harness

Benchmark Harness

Benchmark Inputs Benchmark
o . . Results
. NeuroBenchModel @
ioce : Wrapper
Benchmark Runtime |
e SN S " Static metris:
Dataset Initialize metric . Calculate static __: ‘e Footprint
Dataloader i calculations ] metrics O Connection sparsity
%—» Load data = 5 N B e
Processors i Apply : Workload metrics:
Asct Gl : : ..; Calculate ‘. . Correctness
0 ¢ workload metrics ‘e Activation sparsity
| ; ‘e Synaptic operations
. . L . Apply
Desired metrics ] post-processing .............................
|
[ Legend: | |User-defined User-customizable | Benchmark-defined ]
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Extensible to new
tasks, metrics,
frameworks.

Modular.

Designed for easy
development.

Benchmark Harness

Benchmark Inputs Benchmark
) PR R Results
Model . NeuroBenchModel @
ade : Wrapper
Benchmark Runtime | -
e Vo ) " Static metrics:
Dataset Lo Initialize r_netric Calculate static ‘e Footprint
Dataloader : P calculations ; metrics ] e Connection sparsity
4§> Load data g i .................................
Processors | Apply " Workload metrics:
aeclmui-tens R preprocessing SN Calculate 4 Corectness
' N | TN : workload metrics i ‘e Activation sparsity
] Model inference 3 : :e  Synaptic operations
4 . Py R —
Desired metrics —>§ post-processing |
1
[ Legend: | |user-defined User-customizable : Benchmark-defined ]




Using the
harness

pip install neurobench

1. Install the harness
2. Pick the dataset
3. Train the model

4. Define preprocessors,
postprocessors, and
metrics

5. Run the benchmark

import torch
from torch.utils.data import DataLoader

from neurobench.datasets import SpeechCommands

from neurobench.preprocessing import S2SPreProcessor
Trom neurobench.postprocessing import choose_max_count
from neurobench.models import SNNTorchModel

from neurobench.benchmarks import Benchmark

from SNN import net

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

test_set = SpeechCommands(path="../. /data/spocch commands/", sul ="testing")
test_set_loader = DataLoader(test set, I ‘. ze=500, =True)
net.load_state_dict(torch.load("./model_data/s2s_gsc_snntorch", Lon=device))

model = SNNTorchModel(net)

preprocessors = [S2SPreProcessor(device=device)]
postprocessors = [choose_max_count]

static_metrics = ["footprint", "connection_sparsity"]
workload_metrics = ["classification_accuracy", "activation_sparsity", "synaptic_operations"]

benchmark = Benchmark(model, test_set_loader, preprocessors, postprocessors, [static_metrics, workload_metrics])

results = benchmark. run( =device)
print(results)



Simplicity/Modularity - SynOps

Example:
We calculate synaptic operations exactly, so it can be slow

workload metrics = ["classification_accuracy", "activation_sparsity", "synaptic_operations"]

gsc(main)$ python benchmark_snn.py

Running benchmark
| 9/23 [00:19<00:30, 2.17s/itll

workload metrics = ["classification accuracy"]

gsc(main*)$ python benchmark_snn.py
Running benchmark

43% | I | 16/23 [0:08<00:10, 1.18it/sl]




Open-Source

Tutorial notebooks, baseline reproduction scripts, documentation
https://pypi.org/project/neurobench/

https://neurobench.readthedocs.io/en/latest/readme.html

https://qithub.com/NeuroBench/neurobench

# NeuroBench

# / Introduction O Edit on GitHub
neurobench 1.0.3 .
Introduction
O Introduction A harness for running evaluations on NeuroBench algorithm benchmarks.
. . .
N Bench Struct:
p 1 p 1 n s t a 1 1 n e u ro be n C h L' giCRencl aienTe NeuroBench is a community-driven project, and we welcome further development from the
Installation community. If you are interested in developing extensions to features, programming frameworks, or
Benchmarks metrics and tasks, please see the Contributing Guidelines.
Getting started

neurobench

main 10 e <> Code ~ About

Benchmark harness and baseline results
for the NeuroBench algorithm track.

@ iasonlyik 820 Commits
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https://pypi.org/project/neurobench/
https://neurobench.readthedocs.io/en/latest/readme.html
https://github.com/NeuroBench/neurobench

Dual-track structure

Algorithm track: System-independent complexity analysis
- General metrics for model complexity, proxy hardware performance

- Exploration and prototyping, without implementation to neuromorphic HW

System track: For measuring methods deployed on hardware
- Evaluate deployed latency, throughput, energy efficiency
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Neuromorphic Systems

Host

Debugging
port

Edge Board Server Board Multi-Board System

Legend: D Flash

[ Supporting Neuromorphic lHigh-speed
microcontroller chip link

3 £ B8




Neuromorphic System Variation

- Scale: mW to kW machines

H B B B B =m

- H B B B B =

oS H B B B B =m ;

port H BN N NN D:r?”gg'"g
H BN BN = P
H B B B B Bn
H B B B B Bn
H B B B B =m

Edge Board Server Board Multi-Board System
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Neuromorphic System Variation

- Scale: mW to kW machines
- Form factor: standalone and accelerator boards

H B B B BB

- H BB BB E

0S H B B B BB i

port mEEnEE E:r?”gg'"g
H B B B E N
H B B B B B
H B N B B .
H BB B B =

Edge Board Server Board Multi-Board System

3 £ B8

Legend: D Flash [ Supporting I:l Neuromorphic I:?r:ﬁh-speed

_ microcontroller chip _ i




Neuromorphic System Variation

- Scale: mW to kW machines
- Form factor: standalone and accelerator boards
- Maturity: development, prototype, commercial

Host

port E

Edge Board Server Board Multi-Board System

Debugging
port

13 £x

Legend: D Flash [ Supporting I:l Neuromorphic I:?r:ﬁh-speed

_ microcontroller chip _ i




System Track Goals

Shared guidelines across wide system variation
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System Track Goals

Shared guidelines across wide system variation

- Application-level benchmarks
- Performance and efficiency measurements
- Open algorithm and pre-/post-processing

- Algorithm can be tailored to hardware features
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System Track Goals

Shared guidelines across wide system variation

- Application-level benchmarks
- Performance and efficiency measurements
- Open algorithm and pre-/post-processing

- Component-granularity results

- e.g. host CPU, pre-/post-processing units, memory, etc.
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System Track Goals

Shared guidelines across wide system variation

- Application-level benchmarks

- Performance and efficiency measurements
- Open algorithm and pre-/post-processing

- Component-granularity results

- Transparency then consistency

- Enable intuitive analysis of widely varying systems
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System Track v1.0 Benchmarks

B O

Acoustic Scene Quadratic Unconstrained
Classification Binary Optimization
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Acoustic Scene Classification —

Application

Always-on audio smart sensor for various environments, m\W power range.

Dataset
TAU Urban Acoustic Scenes (DCASE 2020 challenge).

Benchmark scenario
Single stream, batch-size 1 processing.

Input

Metrics ] e
Classification accuracy, latency per sample, energy per sample. | ! |
Acoustic S(cene Claissificat[ion ]
| | !

[ ] [ ] [Transportation]




QUBO (Max Independent Set)

Application

Scalable optimization for finance, routing, scheduling in m\W to kW range.

Dataset
Synthetic graphs of various sizes and connectivity.

Inhibitory weights

Benchmark scenario
Optimization, the solution improves over time.

Metrics
Most optimal solution found, latency and energy to reach various
threshold optimalities.

Neuron 1 Neuron 2 Neuron 3 ——

WAGAN

Potential

Davies et al., 2018: https://redwood.berkeley.edu/wp-content/uploads/2021/08/Davies2018.pdf



System Track v1.0: Ongoing!

— Transparent, rigorous comparisons of mature, optimized
neuromorphic hardware systems on identical tasks.

— Provide the foundation for understanding and measuring further
neuromorphic systems.
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System track benchmark tooling

Benchmark Inputs Benchmark Harness
- Benchmark * System track tools (blue/purple)
model Neurobench model wrapper  -------=-~--1 Results currently under development.
DRNEIEVAAEY. I3 static metrics:
e load data EEEE i
dataset dataloader o e : E O ;ootpnnt
1 Algorithms;Benchmark:Runtime > * frequency
N 0 ! H « connection
- ' ' 0 ¥ * sparsity
pre-processors i E Start data metric calculations E calculate_ static
post-processors ' B : metrics
' B : data metrics:
r--to> ! -4 calculatedata >
' i __ pre-proc -inference -pos-proc (| S metrics « activation sparsity
P n : « effective MACs
desired metrics I T |
N o S oo o o s [ calculate hardware
! e 4 ngh'LeveI o= Low-Level b i = metrics RN RTINS =
: T T | T e £ ! Hardware metrics:
i ............ v Al beeeeoes \ | e solution validity
----- : re- roci :inference: : 0S- roc:-i >: measure hardware : 0o ;
—— R R PO performance | » effciency
i) S
Systems Benchmark|Runtime

pre-proc: apply pre-processing
Legend: user user Algorithms-track " 'Systems-track "~ " HW vendor inference: model inference
defined customizable benchmark defined “benchmark defined «. .. specific pos-proc: apply post-processing T T3




System track benchmark tooling

Benchmark Inputs

Benchmark Harness

Benchmark
model Neurobench model wrapper  --------5--1 Results
et I3 static metrics:
e load data EEEE i
dataset dataloader T Sooiooo .../ i S . ;ootpnnt
1 Algorithms;Benchmark:Runtime > * frequency
| 0 ) H « connection
- ' ' 0 ¥ * sparsity
pre-processors i E Start data metric calculations E — calculate_ static
post-processors ' B ; metrics
' B : data metrics:
r--to> ! -4 calculatedata >
.+ pre-proc -inference -pos-proc (| S metrics « activation sparsity
P n ! « effective MACs
desired metrics I T |
N s == “ItF > calculate hardware |
N 014 High-Level Loy Low-Level b Bl metrics . TP
' ' IR S IR i B R K--c----- Hardware metrics: !
i [ Yoo | e R X « solution validity
L B 0 ; & ‘'] | measure hardware | — > e performance ‘
\pre- 4 apos-proc-*1-> w ‘ i ‘
P PSP PO performence | | eeffciency
i) W
Systems Benchmark|Runtime

user
defined

user

Legend: customizable

Algorithms-track

"~ 'Systems-track {
benchmark defined « - - 'benchmark defined «_ -

~" " HW vendor
. specific

pre-proc: apply pre-processing
inference: model inference
pos-proc: apply post-processing

* System track tools (blue/purple)
currently under development.

1. Compiling +
Mapping
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System track benchmark tooling

Benchmark Inputs Benchmark Harness
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PRRRSR I static metrics:
e load data 4--4 0 i
dataset dataloader i _— o S . ;ootpnnt
1 Algorithms;Benchmark:Runtime > * frequency
N 0 ! i « connection
' I i ! ¥ « sparsity e
¢ ] > +
pre-processors i\ ' Start data metric calculations ! calcrl::::reicsstatlc 1 Com pl I I ng
post-processors : ' 0 :
' B : data metrics: Mapplng
r--to> ! -4 calculatedata > i
!+ _pre-proc -inference -pos-proc (| S metrics « activation sparsity 2 . ExeCUtlon +
P n : « effective MACs
desired metrics | T | g Measurement
N o Y ey . [ calculate hardware |
! o High-Level oy Low-Level b i Ly metrics b R ey vy R ey ~
' T T | T e £ ! Hardware metrics:
i ............ !"" _________ : pmTTmEE e 3 . e solution validity
----- : [Ees roc: :inferencezq‘ 0S-| roc:-i ->; isAsis el dvate i { = perfomance 1
jpre-proc gl "POSTPIOCTIN™  performance |« efficiency :
|
Systems Benchmark|Runtime

pre-proc: apply pre-processing
Legend: user user Algorithms-track "~ " Systems-track i HW vendor inference: model inference
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System track benchmark tooling

Benchmark Inputs Benchmark Harness
- BeR"Ch":‘ark * System track tools (blue/purple)
model Bt (ede) wrapper r----ooooaey e currently under development.
PRRRSR I static metrics:
e load data EEEE i
dataset dataloader i e s S 0 S . ;ootpnnt
1 Algorithms;Benchmark:Runtime > * frequency
N 0 ! i « connection
' I i ! ¥ « sparsity e
i ! . +
pre-processors i\ ' Start data metric calculations ! calcrl::::reicsstatlc 1 Com pl I I ng
post-processors P B ' .
' B : data metrics: Ma pp I ng
r--to> ! -4 calculatedata > i
!+ _pre-proc -inference -pos-proc (| S metrics « activation sparsity 2 ExeCUtlon +
P n : « effective MACs
desired metrics | e T V| ———————————— Measurement
1 [EEPSSSSSSSSS Y ey . [T calculate hardware |
D1 lHigh-Level | Low-Level {t| | T oiies — : 3. Report results
' IR IR e - ! Hardware metrics:
., {"-- _________ E A R \ . e solution validity
D | @ ‘' | measure hardware | .« performance '
jpre-proc ginferencefposprocEl  performance | | efficiency :
(R N |
Systems Benchmark|Runtime

pre-proc: apply pre-processing
Legend: user user Algorithms-track "~ " Systems-track i HW vendor inference: model inference
defined customizable benchmark defined « - - ’benchmark defined «_ . specific pos-proc: apply post-processing
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Integration with other tools

Benchmark Inputs Benchmark Harness Benchmark
model Neurobench model wrapper ---------5--1 Results
DRNEIEVAAEY. I3 static metrics:
e load data EEEE i
dataset dataloader i e s S 0 S . ;ootpnnt
1 Algorithms;Benchmark:Runtime > * frequency
| 0 ) H « connection
- ' ' 0 ¥ * sparsity
pre-processors i E Start data metric calculations E calculate_ static
post-processors P B ' metrics
i B 0 data
r--to> ] -ad-> calculate data T
v, _ pre-proc -inference -pos-proc T « activation sparsity

« effective MACs

desired metrics i :'""“""““A b
i [ - - = o :. F> ) )
i L} High-Level | Low-Level 1| metrics I T . Neuromorphic Intermediate
(R . A : | Hardwaremetrics: . Representation
., o . 5 e R X | e solution validity
L B o & ‘' | measure hardware | — > e performance 1 .
pre-piec qnferencelg\pos-procr | performance | |« efficiency . https://github.com/neuromorphs/NIR
— 2 & fod | Seeemeen e ’
Systems Benchmark|Runtime

p pre-proc: apply pre-processing
{ Legend: user user Algorithms-track " 'Systems-track "~ " HW vendor inference: model inference
defined customizable benchmark defined “benchmark defined «. .. specific ) pos-proc: apply post-processing



https://github.com/neuromorphs/NIR

Ongoing Work

- Repository active maintenance

- System track v1.0 results

- Closed-loop extension, classic RL and neural decoding tasks
- BioCAS 2024 motor decoding challenge

- Common leaderboards

- Telluride talk + tutorial

gExa | Harvard John A.Paulsor
v School of Engineering
and Applied Sciences




Other Future Work

- Datasets, e.g. integration with Tonic library
- Neuron dynamics metrics
- Continuous-time benchmarking

- Open-source hardware benchmark infrastructure

gExa | Harvard John A.Paulsor
v School of Engineering
and Applied Sciences
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NeuroBench: Summary

- Algorithm and system benchmarking framework
- Novel benchmark tasks

- Extensible open-source benchmark platform
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Listen in on NICE 2025

- We demonstrate top-of-the-leaderboard accuracy / SynOps on <task>.

- We combine our method with <project> and show an improvement of ...

-  We open-source this new task through the NeuroBench harness.

- Compared to <project> from last year’s NICE, we have improved by ...
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Call to Action

NeuroBench is a community-driven benchmark framework.
v1.0 is ready and still being actively extended.
Engage with the project!

neurobench.ai
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http://neurobench.ai



