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Outline

❑ Filament-Free Bulk RRAM Fabrication and Characterization

❑ Weight Mapping on RRAM Crossbar

❑ SNN Implementation with our Bulk RRAM Crossbars

❑ Conclusion
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Source: Celestial AI
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➢ AI operations require high parallelism

➢ Memory access is the bottleneck 

Hardware challenges: 

• Limited on-chip memory capacity

• Expensive off-chip memory access

➢ Hundreds of millions of queries on ChatGPT

cost ~1 GWh daily, enough to power an 

entire city for one day (~33,000 U.S. homes)!

Solution: 1) 3D stacking of memory, 

2)Reduce the data movement by 

performing Compute in Memory

Memory Access
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❑ Challenging requirements by today’s AI Models:

❑ Massive training and inference exercises require large amount of energy 

❑ MAC operations (as MVM - matrix vector multiplication) contribute 70- 90% 

of the total operational cost of neural network implementation. 

❑ Need energy efficient MVM operations: 

❑ CMOS compatible RRAM crossbar 

array for MVM using CIM.
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Analog Compute-in-Memory (CIM)



1. High voltage forming → not compatible with 

advanced CMOS, requires additional 

peripheral circuitry to support this operation.

2. Abrupt resistive switching → Variations and 

noise, accuracy loss, many iterations of 

read/verify cycles.

3. Low ON state resistance (~kΩ) → increases 

power consumption, limits the arrays size and 

parallel MAC operations.

4. Limited number of states or binary operations

→ not suitable for on-chip learning.
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Optimizing RRAM Technology for CIM 
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❑ Filamentary RRAM 

Solution: Bulk (Area-type) RRAM

1. Forming-free operation, no filaments

2. Area-type switching, uniform switching with   

no compliance current

3. MΩ level resistance enables large size arrays 

and parallel read, reduced array level energy 

consumption

4. Multi-level gradual switching for on-chip 

learning



Fabrication of Trilayer Bulk RRAM
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*Eliminates the edge effects due to 

high-field corners or sidewalls 

❑Trilayer bulk RRAM stack:

❑ Al2O3(3nm) / TiO2(3nm) / TiOx (40nm)

❑ Tunnel barrier from Al2O3, high oxygen 

vacancy concentration in TiOx , separated 

by ALD deposited TiO2

❑ Crossbar with via-hole structured RRAM

Park, J., Kumar, A., Zhou, Y. et al. Nat Commun 15, 3492 (2024). 



RRAM Structure and Resistive Switching
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❑ Bulk RRAM’s resistive switching mechanism:

❑ Distribution of oxygen vacancies (VO) is modulated 

between TiOx and TiO2 layers by applying a field across 

the device.

❑ Migration of oxygen vacancies near the TiO2/TiOx

interface either extend or reduce the effective thickness 

of oxygen vacancy rich TiOx layer to switch the device in 

LRS or HRS. 

❑Darker contrast of ALD TiO2 confirms higher 

atomic density than sputtered 40nm TiOx

❑ STEM-EELS line-scan profile also shows 

lower oxygen concentration in 40nm TiOx

❑STEM-EELS composition map (red-dotted 

(a)) shows nm-scale dark areas pointing to a 

porous structure.   



Bulk RRAM DC Switching Characterization
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❑ Bulk (area-type ) Switching: Resistance 

scales with area for both HRS and LRS.

❑ MΩ level bulk switching

❑ Low device-to-device and cycle-to-cycle 

variations

Park, J., Kumar, A., Zhou, Y. et al. Nat Commun 15, 3492 (2024). 



Bulk RRAM Pulse Switching Characterization
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❑Achieved Multilevel States at MΩ Range:

1. Identical pulse programming scheme → same pulse amplitude

2. Incremental pulse programming scheme → pulse amplitude increases with 

20mV step. 



Row Differential Weight Scheme in Crossbar
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❑ Row Differential Crossbar Schematic

❑ Signed weight implementation with voltage-

sensing scheme.

❑ Increased effective switching dynamic range 

(~170) while observing the many (100) 

conductance levels. 

❑ Enables mapping of a wide range of real-

valued weights



MVM Operations with Bulk RRAM Crossbars

11

❑ A neuromorphic CIM platform utilizing a 

switched capacitor voltage sensing

❑ Packaged crossbar array tested using neuromorphic-

board developed with on board energy efficient voltage 

sensing.

❑ A representative resistance map of 16x16 bulk RRAM 

crossbar read by using voltage sensing scheme.

❑ Measured MVM and expected MVM result show good 

linearity (low error) for differential mapping scheme.
In collaboration with Prof. G. Cauwenberghs @UCSD

Jain et al. IEEE ISCAS, 2023.

Current Sensing Voltage Sensing 



SNN Implementation: F-1 racetrack navigation 
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❑ SNN Model Using Evolutionary 

Optimization for Neuromorphic 

Systems (EONS):

❑ SNN is optimized and trained for 

small-scale autonomous racing task 

(representative tracks). 

❑ Trained on 5 F-1 tracks and tested on 

an additional 15 tracks.

❑ Pruned SNN consists of 14 input 

neurons and 30 output neurons.

J. S. Plank, et al., IEEE Letters of the Computer Society, 2018.

C. D. Schuman, et al., NICE, Workshop, 2020.

In collaboration with Prof. C. Schuman @UTK



SNN Weight Implementation on Bulk 

RRAM Crossbars
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❑ Two 16x16 crossbars for all 

encoded weights

❑ SNN’s signed 4-bit weights were 

encoded into differential conductance 

(G+ and G− ) using row differential 

scheme and programmed in crossbars. 

❑ Ideal (software) verses programmed 

(hardware) weight map in RRAM 

crossbars.

❑ Network outputs: steering angle and 

speed



SNN Hardware Implementation: Results
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❑ Network Performance and Energy Comparison:

❑ Speed and steering angle computations across navigation through all 15-racetracks show highly 

consistent results between software and hardware implementations.

❑ Average energy consumed for MVM operations across all 15 tracks shows that our trilayer bulk 

RRAM substantially (more than two orders of magnitude) reduces energy consumption compared 

to other filamentary RRAM technologies.

[CEA-Leti] L. Grenouillet et al., IEEE International Memory Workshop (IMW), 2021.

[UCSB, Strukov] H. Kim, et al., Nature communications, 2021.

[Tsinghua] W. Wan et al., Nature, 2022.

Synaptic Weight Implementation Using RRAM
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Conclusion
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❑ Developed a novel trilayer filament-free bulk RRAM crossbar technology

❑ Proposed row-differential weight mapping to achieve higher dynamic range 

for mapping of a wide range of real-valued weights in bulk RRAM crossbars.

❑ Performed highly linearized MVM operation in an energy efficient way using 

in-house design neuromorphic CIM hardware platform.

❑ Presented SNN implementation using our bulk RRAM crossbars for 

autonomous navigation tasks for scaled F1-tracks and showed great 

agreement with ideal software and hardware results.

❑ Our bulk RRAM crossbars for at edge neuromorphic computing application 

substantially reduced energy consumption compared to other filamentary 

RRAM technologies.

❑ Presented bulk RRAM crossbar technology with capability of multilevel 

switching in MΩ regime and CMOS-BEOL compatibility addresses several 

challenges and offer great potential for energy and area efficient computing.
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Thank You!



References

18

1. J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean, and G. S. Rose, ”The TENNLab exploratory neuromorphic

computing framework,” IEEE Letters of the Computer Society, 1, 2, 17-20, 2018.

2. C. D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and J. S. Plank, ”Evolutionary optimization for neuromorphic

systems,” Annual NeuroInspired Computational Elements Workshop, pp. 1-9. 2020.

3. https://github.com/f1tenth/f1tenth racetracks.

4. L. Grenouillet et al., ”16kbit 1T1R OxRAM arrays embedded in 28nm FDSOI technology demonstrating low BER, high

endurance, and compatibility with core logic transistors,” IEEE International Memory Workshop (IMW), 1-4, 2021.

5. H. Kim, M. Mahmoodi, H. Nili, D. B. Strukov, ”4K-memristor analog grade passive crossbar circuit,” Nature

communications 12, 5198, 2021.

6. W. Wan et al., ”A compute-in-memory chip based on resistive random access memory,” Nature 608, 504-512, 2022.

7. B. Fleischer et al., "A Scalable Multi- TeraOPS Deep Learning Processor Core for AI Trainina and Inference," 2018

IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 2018.


	Slide 1: Neuro-Inspired Computational Elements (NICE 2024)
	Slide 2:    Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Thank You! 
	Slide 18

