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Introduction

Model-free SNN training via Metropolis-Hastings Sampling

=  SNNs have gained huge attention for ultra-low power Al application in extreme edge domains such as
Personalized Healthcare and loT.

= A general promising path for pushing the boundaries of SNN hardware efficiency lies in the use of
“‘unconventional’”’ computing technologies such as e.g.,Analog Sub-threshold designs and Memristor
hardware [Indiveri et al. 201 |, Payvand et al. 2022].

= But because of their increased variability vs. digital designs, a precise model of the underlying SNN
hardware is more challenging to obtain.

= This motivates the exploration of chip-in-the-loop [Mitchell & Schuman, 2021] and model-free SNN training
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Bayesian Inference: a short recap

= Bayesian Inference for inferring the weights of a Neural Network.

L(D|Wp)rw,) _ L(DIWp)P (W
P(D) — [P(OWaw'

= L(D|W,) is the Likelihood of the Data D given the model 1/, (linked to Loss function).
- is the Prior distribution (belief) over
= P(W,.1|D) is the Posterior distribution of I/, , | after integrating the Prior with the data.

= Bayes Rule: P(IW,,,1|D) =

= P(D) is the Evidence (expensive to compute).
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Metropolis-Hastings Sampling
= Explicitly solving Bayesian Inference is highly compute expensive in high-dimensional spaces due
to the Evidence Density P(D) = [ P(D,W")dW' [Jospin et al. 2022].
= Metropolis-Hastings: a popular Markov Chain Monte Carlo (MCMC) method for drawing
samples from the Posterior W~P(W|D).
= Algorithm:
|.  Geta new weight sample proposal W,~Q(W,|W,_,) (Q is centered around previous W,,_,)
2. Compute Likelihoods L(D|W,) & L(D|W,_;) using the training data D.
L(D[Wp)pwy)
L(D|Wn—1)P(Wn—1)
4. With Probability min(p, 1), accept the proposal W,, « W, Else W, « W,_;

3. Compute the “new posterior” vs.“ “old posterior” ratio: p =
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Metropolis-Hastings SNN Architecture



SNIN Architecture with LIF neuron non-ideality

= SNN architecture using Leaky Integrate and Fire (LIF) Neurons:

Vk+1 — oV + (1 — Oz)ISyn
Sout = 11f Vi1 > pelse 0
Vl-c—|—1 =0 if Vk_|_1 > |4 or Vk_|_1 <0

L

Isyn Sout

Where « is the membrane decay and p is the LIF threshold.

Post-synaptic (output) spikes

Sout

Pre-synaptic (input) spikes

S 1M1

k

*  We simulate hardware non-ideality by applying an arbitrary hard non-linearity

on the neuron’s membrane potential: [, (V) =V + %Vz + %VB

= During our experiments, we will explore the impact of non-linearity strength ¢ on SNN
training with Metropolis-Hastings vs. Surrogate Gradient Descent backprop.

» In the backprop setup, the non-ideality is not included in the model, to simulate the
training of SNN hardware with incomplete knowledge of the underlying SNN hardware

model.
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Metropolis-Hastings SNN training

"  We set up a small SNN composed of two fully-connected layers (3 LIF — 2 LIF).

= The SNN is assessed within a biomedical scenario on the 2-class Wisconsin Breast Cancer
detection dataset as Poisson spike trains of length T = 10 time steps.

= The learning goal is to steer the output spike rates 7,,; to the one-hot label .

Target Label y = [ ]
0 \

1 Class 1

- Tout
Tout = [ 2 ]

Tout
Class 2
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L(DIW) =

1 _MSE

e 202
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Algorithm 1 Metropolis-Hastings SNN Training

L:Jl\)

4.
S.

7

8:

Input: D : trammg data and labels, ¢* : weight Samphng

variance, v? : Likelihood density variance in (5), p? : Prior
den91ty variance in (6).
. A « ¢*1 //diagonal covariance matrix with variance ¢
: Wi~ N(0,A)
for n =1 to end do
W, ~ N(W,,,A) // Sample random proposal W),
Run SNN with weights W, and W,, and data D to

I compute L(D|W,) and L(D\W,J (see Section II-Al)

a(W,|W,,) = min{1, L(gllg/ 7) 71

With probability a(W,|W,,) set WnH = W, else keep
VV?hLI =W,
end for




Results



Experimental Setup

" The goals of our experiments are to study how Metropolis-Hastings compares to Surrogate Gradient
Descent [Neftci et al. 2019, Eshraghian et al. 2023] for SNNs under:

|.  Varying model non-ideality o.

2. In terms of data efficiency and SNN generalization performance (i.e., how much training data is
needed to achieve satisfactory test accuracy).

"  We consistently follow a 5-fold train-test procedure with different train-test splits and model
initialization and report the average accuracy and standard deviation.

* As LIF neuron parameters, we arbitrary choose ¢ = 0.9 as the decay and u = 1 as the
threshold.

= Metropolis-Hastings is run for 50000 steps with the first half being discarded as burn-out period.

*  During our comparison study between Metropolis-Hastings and Backprop, we use a Gaussian
Surrogate Gradient and the Adam optimizer with learning rate n = 0.001 for a total of 100
epochs with batch size 32.

1 2
S! (V) ~ e 2V
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Varying the LIF non-ideality o

= 80%-20% Train-Test split (455 training sample, | |4 test samples) using Wisconsin Breast
Cancer dataset.

= As the LIF model non-ideality strength ¢ is increased, the SNN test accuracy using
Metropolis-Hastings stays within ~87% while the Surrogate Gradient backprop SNN
significantly drops for o = 3.

= Still, it is remarkable to see the resilience of Surrogate Gradient backprop for o < 2.
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Impact of the number of training data on SNN accuracy
= An important aspect of Bayesian techniques is their potential for better data efficiency,
needing less training samples for achieving usable accuracy [Jospin et al. 2022].

= This is because Metropolis-Hastings exactly samples the Posterior [Hastings 1970] and has

better control over model uncertainty, making models less over- and under-confident [Kristiadi
et al. 2020].

= This property is specially interesting for reconfigurable ultra-low-power edge Al SNN systems.

= E.g,in personalized healthcare, where the goal is to deploy SNN models in wearables that
can be personalized to the domain specificities of each patient.

» Next, we study how Metropolis-Hastings compares to Surrogate Gradient backprop in term of SNN
generalization and training data efficiency.

Non-Bayesian Approach:
SGD-based backprop learning
for MAP estimation of weights.

Bayesian Approach:E.g.,
using Metropolis-Hastings
sampling for learning weights.

~~

High confidence in in-sample
region,low confidence in

[Kristiadi et al. 2020] A. Kristiadi, M. Hein, and P. Hennig. 2020. “Being Bayesian, even just a bit, fixes overconfidence out-of-sample region!
in ReLU networks.” In Proceedings of the 37th International Conference on Machine Learning (ICML’20).
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Metropolis-Hastings leads to a better SNIN generalization performance.

"  We use a small portion N; of the
dataset as train set and use all the
remaining data N;,; — N; as test set.

"  We clearly see the high data
efficiency of Metropolis-Hastings in
the SNIN context vs. Surrogate Gradient.

= This data efficiency holds across model

non-ideality.

= This confirms and extends the
observations on data efficiency done in
the non-spiking DNN context to the
SNN context [Depeweg et al. 2018].
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Conclusion

= This work has investigated the use of Metropolis-Hastings Sampling for training SNNs in a
model-free fashion.

= Under strong LIF neuron non-ideality (0 = 3), the use of Surrogate Gradient backprop suffers from
large losses in accuracy while Metropolis-Hastings is not affected thanks to its model-free
nature.

" In addition, the use of Metropolis-Hastings leads to better data efficiency and SNN
generalization, needing > 10 X less training data for achieving usable (~90%) test accuracy.

» This makes Metropolis-Hastings interesting for chip-in-the-loop training of ultra-low-power
SNINs using less conventional technologies such as analog, memristive devices, and so on.

» Metropolis-Hastings might also be specially interesting for applications where embedded
SNNs must be personalized to each user, thanks to its remarkable data efficiency.

J As future work, we plan to study Bayesian training using more complex SNN architectures and
exploring other Sampling methods such as Hamiltonian Monte Carlo methods.

This research was partially funded by a Long Stay Abroad grant from the Flemish Fund of Research - Fonds Wetenschappelijk Onderzoek (FWO) — grant V413023N.
This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiele Intelligentie (Al) VIlaanderen” programme.
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