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Introduction

▪ SNNs have gained huge attention for ultra-low power AI application in extreme edge domains such as 
Personalized Healthcare and IoT.

▪ A general promising path for pushing the boundaries of SNN hardware efficiency lies in the use of 
“unconventional” computing technologies such as e.g., Analog Sub-threshold designs and Memristor 
hardware [Indiveri et al. 2011, Payvand et al. 2022]. 

▪ But because of their increased variability vs. digital designs, a precise model of the underlying SNN 
hardware is more challenging to obtain.

▪ This motivates the exploration of chip-in-the-loop [Mitchell & Schuman, 2021] and model-free SNN training
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CONFIDENTIAL
confidential

Bayesian Inference: a short recap

▪ Bayesian Inference for inferring the weights of a Neural Network.

▪ Bayes Rule: 𝑃 𝑊𝑛+1 𝐷 =
𝐿 𝐷 𝑊𝑛 𝑃(𝑊𝑛)

𝑃(𝐷)
=

𝐿 𝐷 𝑊𝑛 𝑃(𝑊𝑛)

׬ 𝑃 𝐷,𝑊′ 𝑑𝑊′

▪ 𝐿 𝐷 𝑊𝑛  is the Likelihood of the Data 𝐷 given the model 𝑊𝑛 (linked to Loss function).

▪ 𝑃(𝑊𝑛) is the Prior distribution (belief) over 𝑊𝑛.

▪ 𝑃 𝑊𝑛+1 𝐷  is the Posterior distribution of 𝑊𝑛+1 after integrating the Prior with the data.

▪ 𝑃(𝐷) is the Evidence (expensive to compute).
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Metropolis-Hastings Sampling

▪ Explicitly solving Bayesian Inference is highly compute expensive in high-dimensional spaces due 
to the Evidence Density 𝑃 𝐷 = 𝑃׬ 𝐷,𝑊′ 𝑑𝑊′ [Jospin et al. 2022].

▪ Metropolis-Hastings: a popular Markov Chain Monte Carlo (MCMC) method for drawing 
samples from the Posterior 𝑊~𝑃 𝑊 𝐷 .  

▪ Algorithm:
1. Get a new weight sample proposal  𝑊𝑝~𝑄(𝑊𝑝|𝑊𝑛−1) (𝑄 is centered around previous 𝑊𝑛−1)

2. Compute Likelihoods 𝐿(𝐷|𝑊𝑝) & 𝐿(𝐷|𝑊𝑛−1) using the training data 𝑫.

3. Compute the “new posterior” vs. “old posterior” ratio: 𝑝 =
𝐿 𝐷 𝑊𝑝 𝑃(𝑊𝑝)

𝐿 𝐷 𝑊𝑛−1 𝑃(𝑊𝑛−1)

4. With Probability min(𝑝, 1), accept the proposal 𝑊𝑛 ← 𝑊𝑝 Else 𝑊𝑛 ← 𝑊𝑛−1
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𝑾𝒑~𝑵(𝑾𝒑|𝑾𝒏−𝟏)
Running Neural Network

𝐿(𝐷|𝑊𝑝) & 𝐿(𝐷|𝑊𝑛−1)

𝑝 =
𝐿 𝐷 𝑊𝑝 𝑃(𝑊𝑝)

𝐿 𝐷 𝑊𝑛−1 𝑃(𝑊𝑛−1)

Accept 𝑊𝑝 with 

Probability min(𝑝, 1)
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Metropolis-Hastings SNN Architecture
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SNN Architecture with LIF neuron non-ideality

▪ SNN architecture using Leaky Integrate and Fire (LIF) Neurons:

▪ We simulate hardware non-ideality by applying an arbitrary hard non-linearity 

on the neuron’s membrane potential: 𝑓𝜎 𝑉 = 𝑉 +
𝜎

2
𝑉2 +

𝜎

6
𝑉3 

▪ During our experiments, we will explore the impact of non-linearity strength 𝜎 on SNN 

training with Metropolis-Hastings vs. Surrogate Gradient Descent backprop.

➢ In the backprop setup, the non-ideality is not included in the model, to simulate the 

training of SNN hardware with incomplete knowledge of the underlying SNN hardware 

model.

Where 𝛼 is the membrane decay and 𝜇 is the LIF threshold.

LIF 

𝑽𝒌
𝑰𝒔𝒚𝒏 𝑺𝒐𝒖𝒕

𝑺𝒐𝒖𝒕

𝒌
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Metropolis-Hastings SNN training 

▪ We set up a small SNN composed of two fully-connected layers (3 LIF → 2 LIF).

▪ The SNN is assessed within a biomedical scenario on the 2-class Wisconsin Breast Cancer 

detection dataset as Poisson spike trains of length 𝑇 = 10 time steps.

▪ The learning goal is to steer the output spike rates ҧ𝑟𝑜𝑢𝑡 to the one-hot label ത𝑦.
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Class 𝟏

Class 𝟐

ҧ𝑟𝑜𝑢𝑡 =
𝑟𝑜𝑢𝑡
1

𝑟𝑜𝑢𝑡
2

Target Label ത𝑦 =
1
0

Corresponding Likelihood 

Input Dimension 30



Results
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Experimental Setup

▪ The goals of our experiments are to study how Metropolis-Hastings compares to Surrogate Gradient 
Descent [Neftci et al. 2019, Eshraghian et al. 2023] for SNNs under:

1. Varying model non-ideality 𝜎.

2. In terms of data efficiency and SNN generalization performance (i.e., how much training data is 
needed to achieve satisfactory test accuracy).

▪ We consistently follow a 5-fold train-test procedure with different train-test splits and model 
initialization and report the average accuracy and standard deviation.

▪ As LIF neuron parameters, we arbitrary choose 𝛼 = 0.9 as the decay and 𝜇 = 1 as the 
threshold.

▪ Metropolis-Hastings is run for 50000 steps with the first half being discarded as burn-out period.

▪ During our comparison study between Metropolis-Hastings and Backprop, we use a Gaussian 
Surrogate Gradient and the Adam optimizer with learning rate 𝜂 = 0.001 for a total of 100 
epochs with batch size 32. 
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Varying the LIF non-ideality 𝜎
▪ 80%-20% Train-Test split (455 training sample, 114 test samples) using Wisconsin Breast 

Cancer dataset.

▪ As the LIF model non-ideality strength 𝜎 is increased, the SNN test accuracy using 
Metropolis-Hastings stays within ~𝟖𝟕% while the Surrogate Gradient backprop SNN 
significantly drops for 𝝈 = 𝟑.

▪ Still, it is remarkable to see the resilience of Surrogate Gradient backprop for 𝜎 ≤ 2.
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Impact of the number of training data on SNN accuracy
▪ An important aspect of Bayesian techniques is their potential for better data efficiency, 

needing less training samples for achieving usable accuracy [Jospin et al. 2022].

▪ This is because Metropolis-Hastings exactly samples the Posterior [Hastings 1970] and has 
better control over model uncertainty, making models less over- and under-confident [Kristiadi 
et al. 2020].

▪ This property is specially interesting for reconfigurable ultra-low-power edge AI SNN systems.

▪ E.g., in personalized healthcare, where the goal is to deploy SNN models in wearables that 
can be personalized to the domain specificities of each patient.

➢ Next, we study how Metropolis-Hastings compares to Surrogate Gradient backprop in term of SNN 
generalization and training data efficiency.
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[Kristiadi et al. 2020] A. Kristiadi, M. Hein, and P. Hennig. 2020. “Being Bayesian, even just a bit, fixes overconfidence 

in ReLU networks.” In Proceedings of the 37th International Conference on Machine Learning (ICML’20).

Non-Bayesian Approach: 

SGD-based backprop learning 

for MAP estimation of weights.

Bayesian Approach: E.g., 

using Metropolis-Hastings 

sampling for learning weights.

Overconfidence in 

out-of-sample region!

High confidence in in-sample 

region, low confidence in 

out-of-sample region!
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Metropolis-Hastings leads to a better SNN generalization performance.

▪ We use a small portion 𝑁𝑡 of the 
dataset as train set and use all the 
remaining data 𝑁𝑡𝑜𝑡 − 𝑁𝑡 as test set.

▪ We clearly see the high data 
efficiency of Metropolis-Hastings in 
the SNN context vs. Surrogate Gradient.

▪ This data efficiency holds across model 
non-ideality.

▪ This confirms and extends the 
observations on data efficiency done in 
the non-spiking DNN context to the 
SNN context [Depeweg et al. 2018]. 
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Conclusion

▪ This work has investigated the use of Metropolis-Hastings Sampling for training SNNs in a 
model-free fashion.

▪ Under strong LIF neuron non-ideality (𝜎 = 3), the use of Surrogate Gradient backprop suffers from 
large losses in accuracy while Metropolis-Hastings is not affected thanks to its model-free 
nature.

▪ In addition, the use of Metropolis-Hastings leads to better data efficiency and SNN 
generalization, needing > 𝟏𝟎 × less training data for achieving usable (~90%) test accuracy.

➢ This makes Metropolis-Hastings interesting for chip-in-the-loop training of ultra-low-power 
SNNs using less conventional technologies such as analog, memristive devices, and so on.

➢ Metropolis-Hastings might also be specially interesting for applications where embedded 
SNNs must be personalized to each user, thanks to its remarkable data efficiency.

❑ As future work, we plan to study Bayesian training using more complex SNN architectures and 
exploring other Sampling methods such as Hamiltonian Monte Carlo methods.
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