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Overview

e Introduction

e Motivation

e Proposed NoC Architecture

e Leveraging Sparsity using the NoC
e Implementation and Results

e Conclusion
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Introduction

e Spiking Recurrent Neural Network (SRNN)

o resource-efficient low-power solution
m Less neurons can achieve high computational

performance

o nonlinear signal processing and control applications

e Utilizing analog timing information of spike data

e Reconfigurable implementation on hardware challenging

e
o Network-on-Chip (NoC) to support reconfigurable 1L geiils
— i I
connectivity J—”M_—@I— Building block:
MM —@— Neuron Core with

multiple synapses

i SL LAB : . . . . THE UNIVERSITY OF
Ilé Leveraging Sparsity of SRNNs for Reconfigurable and Resource-Efficient Network-on-Chip TENNESSEE

[
*LLNEUROMORPHIC KNOXVILLE
ARCHITECTURES. LEARNING. APPLICATIONS.



http://progress_bar_id
http://progress_bar_id

Introduction

Reconfigurable NoC requirements:

v Connections between any two arbitrary neurons
v Low-power and area-efficient
: : - : Input
v High fidelity and minimal degradation spikes ‘
v Preserving spike timing and synchronization information | ||| |
v Scalable
v Flexibility of design space to include multiple viable routing paths
T B
NoC be circuit-switched or packet-switched e o 11
JUWL__@_ Building block:
Constrained by physical wiring limits Iy = Neuron Core with

multiple synapses
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Introduction

e Existing Solutions : multi-bit packet-based

e While scalable, added performance overhead for

proximal neurons
o Spike encoder/decoder
o Routers
o Extrawires for addresses
o Advantage of spiking low-power data

compromised
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Introduction

e Existing Solutions: Circuit-switched crossbars Crossbar
e Simple and easy to implement, but |
| InlfrAer\\//\\ihw\
o Only one possible datapath between a set of ) U rJ)JU 1)
input-output m2| - AN A A LA )
) U™ UF U
o Scales multiplicatively
0. of switches = input x outpu In3 M \ L}\ \ M \
m  No.of switch put tput \vjrwjtvj@
: md| . A Y CAA VA L
N it it o)
S N N
En Outl Out2 Out3 | Out4
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Motivation

e Network structures that inform NoC architecture -90° Lidar @
N hic T 1 -60° Lidar
[ J
euromorphic Targeter[1] 30° Lidar @
2
0° Lidar
e Small network O
30° Lidar
o Packet-based 60" Lidar
90° Lidar @E
approach unnecessary Bias

e Sparse Connectivity

o Crossbar NoC assumes fully-concurrently
Target Backwards ()

connected network Target Forwards

Legend
© Normal Neuron Input Neuron (O Output Neuron
-— Excitatory Synapse <— Inhibitory Synapse
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Proposed NoC

e Spike-routing Circuit-Switched Network-on-chip iﬁg:t:g;e e oi?;;gt{a d
crossbars Sin X Sout crossbars
e SpiCS-Net: “spikes-as-spikes” L xa_
p inputs {§ X XE W
e Circuit-Switching : establish direct wired connection — -~
»-)E >< g}q outputs
: : cachi )
e Clos topology[1]: multiple smaller crossbars; achieve full Pitel = ) = Gl
inputs EDC : :E outputs
connectivity with less switches ’
Crossbar ~ X =
e Unicast, Multicast or Broadcast nl /—A \ A _7\*\ 4 o

f/"f

e Delay agnostic LA -

LA (AN
]
In3 > v g -
1@9@ i i it
o é |, CA A A

Outl Out2 Out3 Out4

Crossbars
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SpiCS-Net

Problem of connecting P inputs to Q outputs B8 Problem of connecting p inputs to q outputs

— i —
.. ) . p inputs {E — =
Conditions on SpiCS-Net parameters for multicast — __@"
. . = E}q outputs
non-blocking implementation, Gl — —
P total — @ total
inputs outputs

r<=p+q-1, P/lp<Q/g, r>p, r>q

] 6 B 0
(11 1

= [ o o

Crossbars\
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SpiCS-Net Design for specific SRNN size

Nn = number of neurons

CmaX = Maximum number of connections for fully-connected

SRNN

p inputs {E
.

P total —
inputs =——

= =

g outputs

[
v

o

G325 (]\27"> = N(N, —1)

Q total
outputs

Limiting by fan-in and fan-out per neuron

Cmaa: — Nn ¥ max(Sm, Sout)

) B H

Crossbars\
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SpiCS-Net Design for specific SRNN size

The maximum possible unicast connections through the NoC

are given by,

. o

—— 3=q outputs

p inputs {E
Cmax — max(P7 Q) s
=

4 b

|
<

This can be related back to C..,, for specific sized SRNN, with

Q total
outputs

P total —
inputs =

neuron core fan-in and fan-out.

= 9 [ P

sisie

Crossbars\
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Leverage Network Sparsity using SpiCS-Net

e Concurrent Connectivity: Max connections established
(P/p)*Sm SM*(Q/q)

.

.

.

]

e .
connections  connections H
1]

1]

.

.

.

E pxr A A rxq

simultaneously

e Tuning Concurrent Connectivity by modifying number of I I——ﬁ-’
. . N = :)C >< E}q outputs
crossbars in middle stage = —
P total ——/— : >< Ié Q total
e Without affecting the capability of connection between inputs =:>C : . ——  outputs
any set of neurons p inputs {E X = BE= 4
— :>C Concurrent Connectivity =5
Crossbars  through SpiCS-Net
controlled by number of

intermediate crossbars, Sy
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Leverage Network Sparsity using SpiCS-Net

Concurrent Connectivity for S, bar crossbars instead of S, crossbars
(P/p)*Sm SM*(Q/q)
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:r>qu
:)C E}q outputs
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Concurrent Connectivity percentage, inputs =:>C .

A >< — Q total
. ——  outputs

) p inputs {= = -N =
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Concurrent Connectivity 5
Crossbars  through SpiCS-Net
controlled by number of

intermediate crossbars, Sy
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Main 1deas

e Circuit-Switched Clos Network

o Areaand Power efficient when compared to packet-based approaches for proximal neurons

e Leveraging Sparseness

o Blocking property of Clos topology for further area/power savings on-chip

o Not all connections that are supported by the NoC need to be established at the same time
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SpiCS-Net Implementation

e Switch can be designed to handle digital/analog

3<104

Il Crossbar
B SpiCS-Net (Proposed)

N

spikes

@«
o
T

e Digital Implementation details:

w

o MUXbased implementation in System Verilog

no
o

o Synthesized to 65 nm IBM CMOS10LPE

—_
(&)

o Results from post-layout simulations

—

Area (total number of switches)
N

o
o

o

50 100 150 200

Number of neurons
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Leverage Network Sparsity using SpiCS-Net

e Number of switches relates directly to area, power and memory requirements on the chip

0.045
16000
Bl Fully-connected/Concurrent Connectivity = 100% 0.04
14000 - EMConcurrent Connectivity = 80%
) [7IConcurrent Connectivity = 40% 0.035 -
= 12000 - EMConcurrent Connectivity = 20%
= 0.03
=3 =
© 10000 - g
o 2 0.025
=3
8000 - =
e} g 0.02
g 6000 [ <
S 0.015
3
8 4000 [- 0.01r
=
2000 - 0.005 -
100 120 140 160 180 200 e
Number of neurons Concurrent Connectivity(Percent)
Switches vs SRNN size for various levels of Concurrent Connectivity Area vs Concurrent Connectivity for 128x128 SpiCS-Net in the 65nm process
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Leverage Network Sparsity using SpiCS-Net

e Areaon-chip for varying Concurrent Connectivity comparison with packet-based Network-on-Chip

Architectures

Design Area(mm?) Relative Area
SpiCS-Net* 128x128 CCereeni= 37.5% 0.012 1x
SpiCS-Net* 128x128 CCpereent= 75% 0.032 2.6x

SpiCS-Net* 128x128 CCporcey= 100%

(non-blocking) 0 B
SpiCS-Net* 128x128 (strictly non-blocking) 0.08 6.6x
ClosNN 128x128 (45nm) [1] 0.904 75x
H-NoC 400 neurons (65nm) [2] 0.587 15.65x (scaled)

* SpiCS-Net (65nm)
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Results

3DNoC-SNN[1] ClosRNN [2] H-NoC [3] Crossbar SpiCS-Net (this work)
Technology 45 nm 45nm 65nm 65 nm 65nm
Size 3x3x4 128x128 400 neurons 128x128 128x128
Switching Technique Packet Packet Packet Circuit Circuit
Packet Size 31-bit 32 bit 48 bit 1-bit 1-bit
Structure 3D Packet-based Clos Packet-based Hierarchical Star-Mesh Crossbar Clos Circuit-switched
Area (sg. mm) 0.031 (per Router) 0.904 0.587 0.2 0.042
Power Consumption 10'1?52]\2{1&??“@ 0.85 mW (ECG) 13.16 mW (Wisconsin) - 7'5622{’\\{0(:\323:::;]?5?5:
Throughput 0.0313 spike/node/cycle - 3.3x 107 47x 107 3.6 %107
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Results

e Upto4.5xsavingsin area compared to packet-based NoCs with Nonblocking Connectivity
o  No packet-handling circuit overhead

e Upto 6.3xsavings in area compared to packet-based NoCs with 75% Concurrent Connectivity
o Leverage sparsity

e 9% higher throughput
o  Spikes transmitted per second

e Substantial savings in power compared to packet-based approaches in literature

o  Fully- Combinational NoC without any switching activity other than the spike itself

o Nodynamic clock-associated power
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Conclusion

e Spiking Recurrent Neural Networks offer high computation power even with less neurons owing to recurrent
connectivity

e Reconfigurable NoC for these systems pose unique challenges

e Proposed SpiCS-Net architecture is highly efficient circuit-switched and delay agnostic approach for proximal
neurons

e Dedicated wires : no spike-collision or loss concerns

e Can be tailored for analog and digital spikes
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Thank you!
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