(best display this pdf with Acrobat Reader or Acrobat Pro; other pdf readers may not display all graphics well)

Toward a Formal Semantics for In-Materio Computing Theory

Herbert Jaeger Department of AI and CogniGron research center

NICE 2025

Professor of Computing in Cognitive Materials

Bernoulli Institute, AI Department *and* Groningen Cognitive Systems and Materials Center (CogniGron), University of Groningen

Mission (both of CogniGron and CogniHerbert):

Develop materials-centred systems paradigms for cognitive computing based on modelling and learning at all levels: from materials that can learn to devices, circuits and algorithms

1. Wanted: A General Formal Theory of 'Computing'

Active lines of 'computing' research

It's a whirlpool

Candidate theory proposals (selection)

- Ultrastable systems (Ashby)
- Pattern theory (Grenander, Mumford)
- Free energy agent model (Friston)
- Reservoir computing (Maass, Jaeger)
- Stochastic computing (von Neumann)
- Hyperdimensional computing (Kanerva)
- Neural engineering framework (Eliasmith)
- Dynamic fields (Schöner)
- Heteroclinic channels (Rabinovich)
- Neural sampling (Hinton, Maass)
- Neuro-symbolic integration (various)
- Membrane computing (Paun)
- Constructor theory (Deutsch)
- ε-machines (Crutchfield, Packard)
- Wolfram physics (Wolfram)
- Causal sets (Sorkin)
- Commuting diagrams (Horsman, Stepney)
- Neuromorphic compilation hierarchy (Zhang et al)

Jaeger, Noheda, van der Wiel (2023): Toward a formal theory for computing machines made out of whatever physics offers: long version. https://arxiv.org/abs/2307.15408

Too inexpressive Too abstract / "meta" Too exclusively "neuro" Too informal Too far away from physics Too unready Too symbolic / combinatorial

Vision of a general formal theory (GFT) of 'computing' in physical systems

- Unified terminology across disciplines
- Model translations
- Functional invariances and translations in/between physical phenomena
- Simulation models

- System classification
- Digital computing as special case
- Describe natural systems as informationprocessing

2. Essential components of a GFT

Systems that 'compute'

By (not only my) definition

- 'Computing' system must be physical
- 'Computing' system must receive **input** and generate **output**

Image sources collected on last slide

Formal model of 'computational' system dynamics

- Formal models needed for engineering design and scientific modeling
- Many mathematical formalisms; many levels of abstraction

- 'Computing' implies that the system's input-output is externally *interpreted* (Horsman et al., *When does a physical system compute?* Proc. R. Soc. A 470, 2014)
- A 'computation' always serves an externally defined *task*
- Stones or the universe, by themselves, do not 'compute' (no pancomputalism)

The 'user'...

... can be

- a human
- an 'intelligent' robot
- an 'intelligent' software agent
- a community of users
- another module in a multi-component 'computing' system
- •
- general abstraction: computational entity (Horsman et al 2014)

Detail and discussion:

Jaeger, Noheda, van der Wiel (2023): *Toward a formal theory for computing machines made out of whatever physics offers: long version*. <u>https://arxiv.org/abs/2307.15408</u>

Computational model

The user commands on a computational model of a task, comprising

- an input model (like thinking of Bremen, car, Groningen)
- an output model (like thinking of a list of road legs)
- a transformation model, explicit or implicit, can take many forms, e.g.
 - a function or relation between inputs and outputs,
 - an optimization criterion,
 - just *anything* that allows assessing goodness of output given input: whether / how task is achieved

Many types of tasks (only three shown)

task type	input (mental / model)	transformation (mental / model)	output (mental / model)	task execution (real-world)
planning	desired goal conditions	simulation of candidate actions	model of pro- posed action or action sequence ('plan')	decide for one proposed plan and carry it out
info query	question, prompt, feature key	search in available knowledge	data matching the query key	enter input, press start, read output (the physical computing <i>is</i> the real-world task execution)
online control	sensor signals & reference signal	apply a 'filter'	control signal	controlling a physical 'plant'

Our theory-building task

A complex situation

Jaeger, Noheda, van der Wiel (2023) arxiv.org/abs/2307.15408

A complex to-do

3. A primer on the semantics of 'semantics'

Semiotics

A field of its own standing

- Goal: understand how 'signals', 'signs', 'symbols' acquire 'meaning' ... in real-world life
- Examples of signs: Words, emblematic pictures, memes, traffic signs, gestures
- Hosted in philosophy, linguistics, psychology, social sciences, architecture and arts
- The core meme of semiotics: the semiotic triangle
- The classic classic: C. K. Ogden & I. A. Richards, *The meaning of meaning: A study of the influence of thought and of the science of symbolism*. Harcourt, Brace & World 1923
- Modern classic: U. Eco, A theory of semiotics. Indiana University Press 1979 (transl. from Italian original 1968)
- Not mathematically formalized
- Not for us on this occasion

Ogden & Richards 1923

A catch

- A *scientific* theory of semantics needs a *formal mathematical* account of the symbol-referent relation
- Ontological mismatch:
 - symbols belong to the domain of ideas (Turing says *mind*)
 - real-world 'referents' are...
 real-world, ... not ideas
 - symbols cannot *formally* connect with physical things

The escape trick

A formally defined semantic relation is possible! ...

...between

 a 'descriptive' mathematical language

and

 a mathematically defined surrogate "world of referent objects"

Existing pairs of descriptive – object math formalisms

H. Jaeger, Toward a Generalized Theory Comprising Digital, Neuromorphic, and Unconventional Computing. Neuromorphic Computing and Engineering 1(1), 2021

Adding complexity / confusion: other ways to think about semantics

Computer scientists have 3 ways and 3 motivations to define what program code 'means'

- 1. Operational semantics:
 - matching code execution against a machine model
 - purpose: checking practical feasibility and correctness
- 2. Logical semantics:
 - matching execution steps against logical pre/post conditions
 - purpose: verify that a program satisfies a task
- 3. **Denotational semantics:**
 - pin down the essential mathematical 'meaning' of symbolic information processing procedures
 - purpose: classify, compare programming languages

Formal interrelationships between these are known

Short intro in L. Hornischer, Semantics for Non-symbolic Computation. https://iiia.csic.es/tacl2024/

4. Back to our business

Reminder: what a GFT should cover

GFT

Fragments we already have for a GFT: descriptive formalisms

Fragments we already have for a GFT: object formalisms

Reminder: the confusing multiplicity of proposals for parts of a GFT

- Ultrastable systems (Ashby)
- Pattern theory (Grenander, Mumford)
- Free energy agent model (Friston)
- Reservoir computing (Maass, Jaeger)
- Stochastic computing (von Neumann)
- Hyperdimensional computing (Kanerva)
- Neural engineering framework (Eliasmith)
- Dynamic fields (Schöner)
- Heteroclinic channels (Rabinovich)
- Neural sampling (Hinton, Maass)
- Neuro-symbolic integration (various)
- Membrane computing (Paun)
- Constructor theory (Deutsch)
- ε-machines (Crutchfield, Packard)
- Wolfram physics (Wolfram)
- Causal sets (Sorkin)
- Commuting diagrams (Horsman, Stepney)
- Neuromorphic compilation hierarchy (Zhang et al)

What we need for a GFT (opinion)

¹⁾ PhD project Steven Abreu ²⁾ Jaeger/Noheda/v.d.Wiel 2023 ³⁾ ?? ⁴⁾ ongoing work

5. Domains as point of departure for GFT object universes

- D. S. Scott, *Outline of a Mathematical Theory of Computation*. Technical report, Oxford Univ. 1970 https://www.cs.ox.ac.uk/files/3222/PRG02.pdf
- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove & D. S. Scott, *Continuous lattices and domains* (Encyclopedia of Mathematics and its Applications, Vol. 93). Cambridge University Press, 2003 (590 pp.)

Domains: an intuitive intro

- From states of a computation process on can extract pieces of information (POIs, *my wording*) *A*, *B*, ... by observations / decodings
- These POI's can be partially ordered, $A \le B$ meaning that B contains more information than A
- Gives a partial order (X, \leq) , X the set of POIs
- Some POIs can be represented and handled finitely / effectively
 - for instance finite-decimal numbers like 0.235
 - finite definition for π
- Other POIs contain 'infinite' information, like an infinite random sequence 0.23545634...
- A goal of domain theory: full math story of how 'infinite' POIs can be approximated by 'finite' ones
- Leads to (Scott) topologies on partial orders, making (X, \leq) a domain

- POIs can be immensely complex, e.g. finite or infinite sets of
 - data structures
 - logic formulas
 - graphs
- 'Computational' operations: continuous functions between domains

Why consider domains as semantic object formalism for a GFT?

A three-step argument

- 1. All tasks, computational processes, and physical 'computing' machines can be seen as dynamical systems
 - dynamics might end with 'stopping', i.e. terminating trajectories admitted
- 2. 'Computing' \approx 'information processing'. Thus consider states of dynamical systems as denoting 'pieces of information'
 - as processing goes on (i.e. dynamical system evolves), information may grow, shrink, change
- 3. Hence, interpret states of dynamical systems as the 'pieces of information' elements $x = \circ \circ \circ \circ$ in domains (X, \leq)
 - state transitions f in the dynamical system become (Scott-)continuous functions $[f]: X \to X$, i.e. 'update rules' of information states

A simple example (from Levin Hornischer 2019, 2021a)

L. Hornischer. *Toward a logic for neural networks*. In Sedlár, I. and Blicha, M. (eds). The Logica Yearbook 2018. London: College Publications, pp. 133–148, 2019

https://pure.uva.nl/ws/files/63009239/Logica2018_ Hornischer.pdf

L. Hornischer, *The logic of information in state spaces*. The Review of Symbolic Logic 14(1) 155-186, 2021a

L. Hornischer, *Dynamical Systems via Domains: Toward a Unified Foundation of Symbolic and Nonsymbolic Computation*. PhD thesis, Institute for Logic, Language and Computation, U Amsterdam, 2021b

Assistant professor Munich Center for Mathematical Philosophy, LMU Munich

Consider a discrete-time, deterministic dynamical system $f: S \rightarrow S$

- Consider the set *T* of all finite and infinite trajectories *t*
- Define equivalence relation on *T* by

 $t \equiv t'$ iff $\begin{cases} t, t' \text{ are both finite and end in same state, or} \\ t, t' \text{ are both infinite and share a state} \end{cases}$

• Define partial order on equivalence classes by

 $[t] \leq [t'] \quad \text{iff} \quad \begin{cases} t \text{ is finite and its last state occurs in some} \\ element of [t'] \\ or \\ t \text{ is infinite and equivalent to } t' \end{cases}$

• Then $(T/_{\equiv}, \leq)$ is a domain, with 'infinite' limit POIs • the [t] where t is infinite

• Hornischer's PhD thesis treats the vastly more general case of measure-preserving maps f

6. Summary

Needed: a GFT as interdisciplinary coordination backbone for **studying 'computing' systems of all sorts**

A GFT is not a single, simple mathematical model but a textbook corpus of interrelated sub-theories

Like in digital computing theory, we must model

- 'computing' processes,
- tasks,
- physical substrates and 'machines'

'Computing' is processing information that is **meaningful for a user / observer**. 'Computing' is always 'computing about'

• No useful theory of 'computing' without modeling the semantics of computing processes

A necessary subtheory of a GFT: a mathematical formalism for **characterizing semantic 'referent object' universes**

- whose structure reflects the information we have about them,
- whose dynamics reflects the information processing we do in 'computing about them'

Image sources

Desktop computer: <u>https://www.bhphotovideo.com/c/product/736195-REG</u>

Centrifugal governor: Wikimedia commons – drawing from from W. Ripper: *Heat Engines*. Longman, London 1909 Brain: Wikimedia commons - NIH

Hand: Wikimedia commons - Evan-Amos

Eye: Wikimedia commons – user *rapidreflex*

Scientist talking: Wikimedia commons – DataBase Center for Life Science (DBCLS)

Computer action with hand: <u>https://www.youtube.com/watch?v=QvAxrnodq8w</u>

Golden chain: Wikimedia commons - user Bondigoldwiki

Chess move: Wikimedia commons - user Walter J. Pilsak

Scientist with notebook: Wikimedia commons – DataBase Center for Life Science (DBCLS)

Real-World circle picture: <u>http://www.kim-mckellar.com/round-world-card.html</u> (now inaccessible)

Sunset dance: <u>https://www.123rf.com/free-images/</u>

Ribbon circle: Wikimedia commons – user Cuberoottheo

Hornischer portrait: - his homepage