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Conventional Computing

o Significant demand from Al

50 Years of Microprocessor Trend Data

training and applications'-2 ‘
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N. Maslej et al., “The Al index 2024 annual report,” Al Index Steering Committee, Institute for Human-Centered Al, Stanford University, Stanford, CA, Apr.
2024

23 Chen, “How much energy will Al really consume? the good, the bad and the unknown,” Nature, vol. 639, no. 8053, pp. 22—24, 2025. DOI:
10.1038/d41586-025-00616-z
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Conventional Computing

40 Years of Microprocessor Trend Data
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Conventional Computing

@ Significant demand from Al
training and applications'-2

o Dennard (energy-density) scaling
ended ~2006

o Dynamic power consumption,
power wall, dark silicon, memory
wall

— New computing stacks

@ Domain-specific hardware
accelerators?:
GPUs, FPGAs, and beyond

4W. J. Dally et al., “Domain-specific hardware accelerators,” Commun. ACM, vol. 63, no. 7, pp. 48-57, Jun. 2020. DOI: 10.1145/3361682
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Neuromorphic Hardware?

@ Numerical simulation:
o high level of parallelism is possible but latency
to result is limited'-?
@ SNNs follow an event-driven computing
paradigm: sparse in space and time
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@ Neuromorphic hardware can complement
simulation — SNN accelerators
@ Functional modeling (ML-inspired?), but also in
Computational Neuroscience:
o Complex neuron dynamics, plasticity,

long/repetitive experiments or guided
reconfiguration!

TA. C. Kurth et al., “Sub-realtime simulation of a neuronal network of natural density,” Neuromorphic comput. eng., vol. 2, no. 2, p. 021 001, 2022. DOI:
10.1088/2634-4386/acb5fc

2y, Jordan et al., “Extremely scalable spiking neuronal network simulation code: From laptops to exascale computers,” Frontiers in Neuroinformatics,
vol. 12, p. 2, 2018. DOI: 10.3389/fninf.2018.00002 Eric Miller
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Demonstrating Advantages of Analog Wafer-Scale NMHW

BrainScaleS-1

(<) 20x modules
Wafer-scale integration (180 nm CMOS)
384 ASICs per 20 cm wafer

48 FPGAs, 40 GbE uplink to control cluster
Typical speedup factor of 10’000
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Two Network Models from Computational Neuroscience

Balanced Random Network! Cortical Microcircuit Network Model?

Ve =

—— excitatory

s inhibitory

'N. Brunel, “Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons,” Journal of Computational Neuroscience, vol. 8, no. 3,
pp. 183-208, 2000. DOI: 10.1023/A:1008925309027

2T. C. Potjans and M. Diesmann, “The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking network modela,” Cereb.
Cortex, vol. 24, pp. 785-806, 3 2012. DOI: 10. 1()93/cercor/bh535£?5 o il 412
ric Muller
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Mapping the “Microcircuit” to BrainScaleS-1
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Mapping the “Microcircuit” to BrainScaleS-1

@ 200k analog neuron circuits & 43M synapses

o Neurons follow configurable AJEx dynamics

o Configurable maximum fan-in implemented by
linking multiple neuron circuits (up to 64
neurons resulting in 14k synapses)

o On-wafer sparse configurable circuit-switched
network for asynchronous spike
communication’

@ Modeling API: PyNN (on top of the BSS-1
“Operating System”)

TH. Schmidt et al., “From clean room to machine room: Commissioning of the first-generation BrainScaleS wafer-scale neuromorphic system,”
Neuromorphic comput. eng., vol. 3, no. 3, p. 034 013, 2023. DOI: 10.1088/2634-4386/acf7e4
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Mapping the “Microcircuit” to BrainScaleS-1

o 384 ASICs (each marked w/ white triangle at
the bottom)

o Neuron placement represented by shading

o Darker shades indicate higher neuron counts
o Routed connections visualized as colored lines
o Colored borders indicate model populations

Eric Miiller
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Adapting Network Models to BrainScaleS-1 |

o Size of the network models:

{
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inhibitory

Balanced Random Network  Cortical Microcircuit
12’400 neurons 80’000 neurons
15’625°000 synapses 300°000°000 synapses

@ Number of model neurons < neuron circuits per wafer,
but average neuron fan-in requires interlinked neuron circuits.
— Reduced amount of (model) neurons available.
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Adapting Network Models to BrainScaleS-1 1l

= Downscaling of neuron count and in-degree
o maintaining the original connectivity probability, and
o compensating? for the reduced input by linear weight increase following the approach
by Albada et al.’
o Due to random network structure, some additional “synapse loss” occurs across
all populations.

o We incorporate this network model “distortions” into our simulations comprising
o 2’083 neurons and 690’157 synapses (Balanced Random Network)
o 7712 neurons and 2'373'933 synapses (Cortical Microcircuit)

's. J. van Albada et al., “Scalability of asynchronous networks is limited by one-to-one mapping between effective connectivity and correlations,” PLoS
Comput. Biol., vol. 11, pp. 1-37, Sep. 2015. DOI: 10.1371/journal.pcbi. 1004490

2D, Briiderle et al., “A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems,” Biological
Cybernetics, vol. 104, pp. 263-296, 4 2011
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Result: (Downscaled) Balanced Random Network

Mean firing rates of neurons

@ Varying relative inhibitory
weight and external input 3.0
spike rates.

n 2.5

o

o For firing rates exceeding 50 20
Hz, saturation effects on the 215

hardware introduce deviations 1.0
in network behavior.
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Result: (Downscaled) Balanced Random Network

Mean firing rates of neurons

@ Varying relative inhibitory
weight and external input
spike rates.

o For firing rates exceeding 50
Hz, saturation effects on the
hardware introduce deviations
in network behavior.

2 4 6
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Result: (Downscaled) Cortical Microcircuit

Firing rate distribution of neurons across eight
network model populations
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Result: (Downscaled) Cortical Microcircuit Il

Simulator Performance Energy
(10° synaptic event/s) (pJ/synaptic event)

BrainScaleS-1 162 < 0.012
NeuroAlx-Framework?: 19 0.048
CsNN0:2 3.8 0.783
NESTO:3 1.8 0.48
SpiNNaker* 0.9 0.6

OValues are estimated from the reported speedup factor and the network behavior of the full-scale model with external Poisson inputs.

K. Kauth et al., “neuroAlx-framework: Design of future neuroscience simulation systems exhibiting execution of the cortical microcircuit model 20 x faster
than biological real-time,” Front. Comput. Neurosci., vol. 17, p. 1144 143, 2023. DOI: 10.3389/fncom.2023.1144143

2A. Heittmann et al., “Simulating the cortical microcircuit significantly faster than real time on the ibm inc-3000 neural supercomputer,” Front. Neurosci.,
vol. 15, p. 728 460, 2022. DOI: 10.3389/fnins.2021.728460

SA. C. Kurth et al., “Sub-realtime simulation of a neuronal network of natural density,” Neuromorphic comput. eng., vol. 2, no. 2, p. 021001, 2022. DO
10.1088/2634-4386/ac55fc

40. Rhodes et al., “Real-time cortical simulation on neuromorphic hardware,” Philos. Trans. R. Soc. A, vol. 378, no. 2164, p. 20 190 160, 2020. DOI:
10.1098/rsta.2019.0160
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Conclusion

@ Speedup from physical emulation most evident for long/repetitive emulations
o Main operational overhead introduced by configuration and data transfer (e.g.,
read out of recorded observables)
o Comparably low energy consumption of BrainScaleS-1 can still yield advantages
in comparison to numerical simulation
@ Network model size limitations come from neuron, synapse, and routing resources
o Biological connection densities difficult to efficiently scale beyond wafer-scale
o Co-execution approach:
o validation and network topology exploration in simulation
o neuromorphic backend handles continuous time emulation, extended-duration
experiments, and iterative parameter sweeps

Eric Mdller 1012
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Demonstrating Advantages of Analog Wafer-Scale NMHW

Outlook

o Area efficiency limited by use of “plastic” synapses in fully static networks
— dedicated static (higher-density) synapses in future hardware systems?

@ Newer technology node! (BrainScaleS-1 uses 180 nm CMOS)

o No plasticity was involved, i.e. the model dynamics are numerically “cheap”;
introducing, e.g., synaptic plasticity would amplify the benefit of physical
emulation.

@ No “dependent” reconfiguration was used — neuromorphic hardware can also
deliver in latency-to-result use cases.

Eric Miiller 1112

L



Demonstrating Advantages of Analog Wafer-Scale NMHW

BrainScaleS is an Open Research Platform

o Integrated into the EBRAINS
Software Distribution

{&)ESD

o Access to accelerated
neuromorphic BrainScaleS
via EBRAINS

o Register for EBRAINS:

Eric Miiller
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