Exploring Spike Encoder
Designs for Near-Sensor Edge
Computing

JINGANG JIN, ZHENHANG ZHANG, QINRU QIlU
SYRACUSE UNIVERSITY, USA

Outline

* Introduction and Motivation

* Proposed Method

* EXperiments

 Conclusions

Neuromorphic Computing

* Cyber-physical-systems and embodied Al call for edge capabilities

* Continuous sensing, monitoring, detecting and responding to temporal and
spatial patterns in physical environment.

* Low cost, small footprint, high energy efficiency.

* Flexibility and adaptivity to users and application context.

* Neuromorphic computing offers a promising solution by
leveraging spiking neural networks (SNNs)

* Information is represented through sequences of sparse spiking activities

* Neurons communicate and compute only when there are output or input
activities.

 Event-driven approach, combined with closely integrated memory and
computation, results in reduced workload and improved energy efficiency.

Spike Encoding

* To effectively utilize SNNs, input signals must be encoded
into spike sequence

* Sparsely project input sequences into hyperdimensional vectors
distributed evenly across the feature space for better separation

* Well-designed spike encoder should
 Convert numerical sensor readings into sparse spike trains
* Preserve the temporal and spatial features in the input sequence

* Be built with low-cost hardware, simple operations, and minimum memory

Encoder Processor

| J n" VA AL
H| H ,ﬁ' ‘U\ ” k L |

"'u“lfl'”HHI

AL '

Multi-channel Sensor Inputs Frontend Backend

Conventional Spike Encoding

* Spike Rate Coding

* Encoders periodically sample the sensor readings and convert them to floating
point numbers in the digital domain (ADC)

* The numerical values are represented by the spike count generated within the
sampling interval

* The maximum spike count within a sampling interval defines the data precision
* Cons: High spiking activity and an increased computation workload

* Spike Temporal Coding

: IgpctlJ_t v?lue is encoded as the interval between consecutive spikes (Spike Interval
oding

* Input value is encoded as the time delay between a spike and a reference start
time (Time to First Spike Coding)

* At most one spike event is generated for each sampling interval
» Sparse communication and computation activities

Temporal Coding Using LIF neurons

* Current-based (CUBA) Leaky Integrate-and-Fire (LIF) neurons
can be used for spike interval coding

dv(t)
dt

—v(t) +w=xx(t)+b

* 0(t) =HW(t) —vg) = {(1) 4 ngtl)efwfsﬂel

activation function.

, H() is the Heaviside

Input amplitude

100 125 150 175 200
Time

Limitations of Traditional Approaches

* Mapping each channel of sensor reading to one spike train

* The one-to-one mapping cannot effectively preserve the spatiotemporal features of input
sequences

* Not every sensor’s output will be in the sensitivity range of the LIF neuron
* Subtle differences between sequences need to be accumulated for a long time before
they can affect the spike output
* Use the spike encoder to collect training dataset for offline training

* Difficult to guarantee that the training dataset provides an unbiased and comprehensive
representation of the testing data distribution

* If the encoder is implemented using the analog or mixed signal circuit design, significant
device-to-device variations and limited hardware precision are typically expected

* The frontend sensor and backend processor often operate asynchronously, relying on
independent local clocks, no predetermined timing relationship can be assumed

Our Approaches to Address the Limitations

* New spike encoder designs

* Population coding-based encoder (PopEnc): a layer of LIF neurons fully
connected to the sensor inputs
* Compared optimized and random PopEnc

* Reservoir encoder (ResEnc): inspired by Reservoir Computing models using
a recurrent network with randomly generated weight coefficients

* With and without skip connections which directly connects the input to the output port

* Training on the edge, directly in conjunction with the encoder

* Utilize online learning algorithm to train the backend classifier alongside
the encoder to address encoders’ variability

Population Encoder (PopEnc)

* Neuron Model: LIF neuron with post-synaptic potential (PSP)

* Model synaptic dynamics as a first order IIR (Infinite Impulse Response) filter:
* F;[t] = oF;[t — 1] + BU;[t], U;[t] -- ith input of the neuron

* Membrane potential is the leaky accumulation of PSP with weight w:

- Vi[t] = AV; [t — 1]+ 3, w; ;F;[€] = (Vi Ot — 1], { — reset strength, empirically set to 0.5

* Population coding: using N neurons to jointly encode M inputs

* Optimizedw; ;and a, 8

Optimized PopEnc

L
* Better theoretical performance A,/\N @ T
* High implementation effort o

|

C,
M A - T
Random PopEnc e
* Randomw; ;and a, 3 yavy T
* Lower performance ® ...

|
|

* Lessimplementation effort

| |
9

Reservoir Encoder

* Reservoir network structure

e Total I input channels (represented as U[t], U[t] € RY).
* The J neurons form a complete directed graph

* Neuron states (X[t] € R/) are determined by the previous state of
the reservoir and the current input

« X[t] = (1 - k)WXX[t — 1] + kW™ U[t] + B
* Bisdrawn from a uniform distribution in the range [o, 1)

« WX and W™ are random matrices following uniform distribution in the

C
range [-€,&], € = \/f

anin+fanout
* To ensure bounded neuron states, k lies within the range of [0, 1] (set to 0.9
In experiment)

10

Refractory and Output Generation

* Without resetting the neuron state, neurons may remain at
high values for an extended period, leading to constant
spiking activity

* Introducing refractory mechanism
« Z|t] = X[t] — AV, 0t — 1]
 O|t] is the output spike, O[t] = H(Z[t] — Vi)

* A controls the strength of the
refractory process (we set it to 0.5)

* If a neuron generates an output
spike at the current time step, then Sensor -
it is less likely to fire in the next time [
step

Reservoir States

Skip Connection Structure

* Limitations of stateful encoder networks

* Due to the recurrent structure of the network, it may take a while for the change
in the input pattern to affect the output activities

* For sequential data, especially long sequence, the accumulated state of early
input can blur the influence of later input.

* Skip connection can mitigate these drawbacks

* The skip connection directly connects the input signals to the output port
* No stateful neuron, no latency

* The only processing is the Heaviside activation function

/i » With the skip connection, we have two sets of outputs {04, 0Y}
- 0% are the outputs from the stateful encoders (e.g., PopEnc or ResEnc)
2 « 0Y = H(U) are the outputs from the skip connection

12

Backend SNN Processor

* SNN model

* Multiple fully connected layers are used to classify the encoded sensor data
* Each neuronis a LIF neuron with PSP similar to the model used for the
PopEnc
* Online learning
* We employ the SOLSA learning algorithm to enable online adaptation

* SOLSA combines backpropagation and three-factor Hebbian learning and
treats the LIF neuron as a recurrent network

* It does not require unrolling the network over time, hence, can fit on edge
devices

13

SOLSA Learning

* At each time step, the L2 error E[t] is evaluated by comparing
classifier’s output and the target output

« Update rule: — Ztu][|- f][t]

dwl]

. ,u}[t] is upper-level gradient backpropagated disregarding temporal dependencies

dE_ 0j|t] = OE[t] 90 [t] oV [t] OF t] 00/ [t]
ol[e1av/ie] <K aof[t] IVt 0F el a0![t] avi[t]

© ujlt]l =

e} [t] is the surrogate gradient of H(Vj [t] — Vin)

. e-lj[t] is local trace updated incrementally, which stores history information
°€ (/1 (Ve - E) 8” t—1]+FL-l'j[t]

l
i,j
* Model can be updated using the partial gradient before receiving the entire input seqyence

» Every time step, partial gradient y; L[t] - €t :[t] are calculated and accumulated

Surrogate Gradient Function

* Heaviside activation function is non-differentiable

» We use the gradient of spiking probability as a surrogate function

* Under a Gaussian noise z~N (0, o), the probability that a neuron with membrane
potential V and threshold V;;, will fire an output spike

s PV +2z>Vy) = %erfc (Vf/%—;v)

* The complementary error function is differentiable:
Y derfc(x) 2 52
dx - m
90{[t] _ dP(V}[t]+z>Vn)
"ovie] avit]

* Use surrogate gradient

l 2
. (Vth—Vl-[t]>
« €lltl= |=e\ Vi

15

Experiment : Datasets

* All datasets are processed by fully connected network

* Multivariate Time Series datasets

 Sequence length varies from 30 to 1000 time steps

* Sequences are recorded sensor readings. The data are floating point real

numbers representing the readings of the sensors

Channels (/) length Classes
. _
5 __
' 12 | 29 | 9 |
__

Experiment: Settings

* Three different types of spike encoders with backend SNN running
SOLSA learning

* Random PopEnc (the connections of the input layer have random weights)

. Ogtimized PopEnc (the connections of the input layer are also optimized using
SOLSA learning)

* ResEnc (with random weight matrices and bias)

* Use Lon%Short-Term Memory (LSTM) with similar complexity (i.e.,
the number of trainable parameters) as baseline

* One LSTM layer and one fully connected layer

* Exact match in complexity is hard to achieve, hence we created two models
* LSTM-Low, which is slightly smaller than SNN
¢ LSTM-High, which is slightly larger than SNN

* The frontend of the LSTM-based system requires high precision analog-to-digital
converters (ADC)

17

Experiment: Performance Comparison

* Overall, the three SNN-based systems deliver similar or even
superior performance compared to the LSTM-based systems

* Optimized PopEnc perform slightly better than the ResEnc

* ResEnc achieves performance comparable to the optimized PopEnc with
lower implementation effort (no optimization)

* Random PopEnc has lowest performance among the three encoders

1

0.9
0.8

0.7
0.6

0.5
Fingermov Basic motion Epilepsy Jap. Vowel RacketSports Selfreg. scp EMG action

ELSTMlow mLSTMhigh mRandom PopEnc Optimized PopEng ® ResEnc 18

Ablation Study: Skip Connection

* Compared the performance of random PopEnc and the ResEnc
with and without skip connections, and a skip only frontend

* Results show that the skip connection by itself is insufficient to function as a
general-purpose spike encoder

* However, in average, it improves the classification accuracy by 4% and 3% for
systems with random PopEnc and ResEnc respectively

0.95

0.75

0.55

0.35

0.15
Finger mov Basic motion Epilepsy Jap. Vowel RacketSports Self reg. scp EMG action
m Skiponly ~ m Random PopEncw/oskip ® Random PopEnc w/ skip ResEnc w/o skip m ResEnc w/ skip

19

Ablation Study: Reservoir Network Complexity

* Compare our simplified reservoir encoder with encoders based on
some traditional reservoir models

* All encoders are implemented using the same number of neurons and same
method of weight coefficient generation

Hardware complexity is expressed as a function of input channel size I
* For all encoders, the output size is 51

Our encoder requires much less memory and simpler activation functions

Distance

Ours ESN Cyclic Hierarchical Modular Constrained

of connections 20 - I? 30-12 301 80 - > 10 - I? 30 - I?
of neurons 4] 5-1 5-1 15-1 5-1 5-1

Memory 1 1 5 1 1 1
Activation

. Heaviside tanh tanh tanh tanh tanh
function

Ablation Study: Reservoir Network Performance

* We compared the classification accuracy achieved when different
reservoir-based encoders are used as the frontend

* Our ResEnc consistently delivers the highest or near-highest performance across
all datasets

* The simplification of our ResEnc network structure does not compromise its
sparse coding capabilities

0.9

0.1

Finger mov Basic motion Epllepsy Jap. Vowel RacketSports Self reg. scp

0.5

E .

21

MG action

B OurResEnc ®WESN m Cyclic Hierarchical m Modular Distance Constrained

Experiment. Hardware Variations (ResEnc)

* Variation arises from the random weights in the encoders
* Three different versions of ResEnc’s are created

* For each encoder, a backend SNN classifier was trained, and the combinations of
different encoders and classifiers were then tested

When the classifier and encoder do not match, performance drops significantly
(from around 15% to over 80%)

Without in-hardware adaptability, variations in the encoder hardware have a
profoundly negative impact on model performance

-0_46 0.41 089" 05 041 : 045 045 g 061 048 051
Y 047 0.36 03 089 082 ! ; - 047 0.62 042 086 0.36

091 g 061 048 '0.89 0.92 . 0.53 056 0.63

EMG Action SelfRegualtionSCP1 Japanese Vowels Basic Motions Finger Movements

Experiment: Timing Variations (PopEnc)

* Variation arises from sampling rate deviation of the sensor output
* Train the model using sequences sampled using nominal sampling rate

* We varied the sampling rate from 150% to 50% of the nominal valueand
regenerated sequences of sensor readings using linear interpolation for testing

* In extreme cases, offline approaches accuracy drop 8.3%, while the systems with
online adaptation only drop 3%

Epileps EMG Action SelfRequlation Finger Movement Japanese Vowels Racket Sport
plepsy g g p

0.98 0.96 0.92 0.62 0.98 0.95

! R0 0.9 0.96
%2 075
0.92 — a
0.88 o. 0.94 —
0.9 >/ 0.65

.88 0.86 0.92

0.85

0.94
055

DG 6 DEE®W W@ W TR0 6 @6 @ @6 &

H50% M80% M100% M120% M150%

(2) PopEnc+SNN with online adapted frontend and backend (3) Fixed LSTM-high model
'(2) PopEnc+SNN without online adaptation (4) Fixed LSTM-low model

23

Conclusion

* We proposed two new spike encoder designs
* Population Coding-based encoder (PopEnc)

* Reservoir Computing-based encoder (ResEnc)

* Experiment results show that

* Encoders effectively preserve the temporal and spatial features of the sensor
sequences and enhancing the performance of the SNN-based backend classifiers

* Skip connection structure can enhance the performance of spike encoder

* We also showed the importance of the backend SNN'’s online
learning capability, which enables adaptation to the frontend
encoder

* The adaptability accommodates randomness and variations in the encoder,
significantly reduce design and implementation complexity

24

Thank you!

