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Neuromorphic Computing

* Cyber-physical-systems and embodied Al call for edge capabilities

* Continuous sensing, monitoring, detecting and responding to temporal and
spatial patterns in physical environment.

* Low cost, small footprint, high energy efficiency.

* Flexibility and adaptivity to users and application context.

* Neuromorphic computing offers a promising solution by
leveraging spiking neural networks (SNNs)

* Information is represented through sequences of sparse spiking activities

* Neurons communicate and compute only when there are output or input
activities.

 Event-driven approach, combined with closely integrated memory and
computation, results in reduced workload and improved energy efficiency.




Spike Encoding

* To effectively utilize SNNs, input signals must be encoded
into spike sequence

* Sparsely project input sequences into hyperdimensional vectors
distributed evenly across the feature space for better separation

* Well-designed spike encoder should
 Convert numerical sensor readings into sparse spike trains
* Preserve the temporal and spatial features in the input sequence

* Be built with low-cost hardware, simple operations, and minimum memory
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Conventional Spike Encoding

* Spike Rate Coding

* Encoders periodically sample the sensor readings and convert them to floating
point numbers in the digital domain (ADC)

* The numerical values are represented by the spike count generated within the
sampling interval

* The maximum spike count within a sampling interval defines the data precision
* Cons: High spiking activity and an increased computation workload

* Spike Temporal Coding

: IgpctlJ_t v?lue is encoded as the interval between consecutive spikes (Spike Interval
oding

* Input value is encoded as the time delay between a spike and a reference start
time (Time to First Spike Coding)

* At most one spike event is generated for each sampling interval
» Sparse communication and computation activities




Temporal Coding Using LIF neurons

* Current-based (CUBA) Leaky Integrate-and-Fire (LIF) neurons
can be used for spike interval coding

dv(t)
dt
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activation function.
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Limitations of Traditional Approaches

* Mapping each channel of sensor reading to one spike train

* The one-to-one mapping cannot effectively preserve the spatiotemporal features of input
sequences

* Not every sensor’s output will be in the sensitivity range of the LIF neuron
* Subtle differences between sequences need to be accumulated for a long time before
they can affect the spike output
* Use the spike encoder to collect training dataset for offline training

* Difficult to guarantee that the training dataset provides an unbiased and comprehensive
representation of the testing data distribution

* If the encoder is implemented using the analog or mixed signal circuit design, significant
device-to-device variations and limited hardware precision are typically expected

* The frontend sensor and backend processor often operate asynchronously, relying on
independent local clocks, no predetermined timing relationship can be assumed




Our Approaches to Address the Limitations

* New spike encoder designs

* Population coding-based encoder (PopEnc): a layer of LIF neurons fully
connected to the sensor inputs
* Compared optimized and random PopEnc

* Reservoir encoder (ResEnc): inspired by Reservoir Computing models using
a recurrent network with randomly generated weight coefficients

* With and without skip connections which directly connects the input to the output port

* Training on the edge, directly in conjunction with the encoder

* Utilize online learning algorithm to train the backend classifier alongside
the encoder to address encoders’ variability




Population Encoder (PopEnc)

* Neuron Model: LIF neuron with post-synaptic potential (PSP)

* Model synaptic dynamics as a first order IIR (Infinite Impulse Response) filter:
* F;[t] = oF;[t — 1] + BU;[t], U;[t] -- ith input of the neuron

* Membrane potential is the leaky accumulation of PSP with weight w:

- Vi[t] = AV; [t — 1]+ 3, w; ;F;[€] = (Vi Ot — 1], { — reset strength, empirically set to 0.5

* Population coding: using N neurons to jointly encode M inputs

* Optimizedw; ;and a, 8
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Reservoir Encoder

* Reservoir network structure

e Total I input channels (represented as U[t], U[t] € RY).
* The J neurons form a complete directed graph

* Neuron states (X[t] € R/) are determined by the previous state of
the reservoir and the current input

« X[t] = (1 - k)WXX[t — 1] + kW™ U[t] + B
* Bisdrawn from a uniform distribution in the range [o, 1)

« WX and W™ are random matrices following uniform distribution in the

C
range [-€,&], € = \/f

anin+fanout
* To ensure bounded neuron states, k lies within the range of [0, 1] (set to 0.9
In experiment)
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Refractory and Output Generation

* Without resetting the neuron state, neurons may remain at
high values for an extended period, leading to constant
spiking activity

* Introducing refractory mechanism
« Z|t] = X[t] — AV, 0t — 1]
 O|t] is the output spike, O[t] = H(Z[t] — Vi)

* A controls the strength of the
refractory process (we set it to 0.5)

* If a neuron generates an output
spike at the current time step, then Sensor -
it is less likely to fire in the next time [
step

Reservoir States




Skip Connection Structure

* Limitations of stateful encoder networks

* Due to the recurrent structure of the network, it may take a while for the change
in the input pattern to affect the output activities

* For sequential data, especially long sequence, the accumulated state of early
input can blur the influence of later input.

* Skip connection can mitigate these drawbacks

* The skip connection directly connects the input signals to the output port
* No stateful neuron, no latency

* The only processing is the Heaviside activation function

/i » With the skip connection, we have two sets of outputs {04, 0Y}
- 0% are the outputs from the stateful encoders (e.g., PopEnc or ResEnc)
2 « 0Y = H(U) are the outputs from the skip connection
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Backend SNN Processor

* SNN model

* Multiple fully connected layers are used to classify the encoded sensor data
* Each neuronis a LIF neuron with PSP similar to the model used for the
PopEnc
* Online learning
* We employ the SOLSA learning algorithm to enable online adaptation

* SOLSA combines backpropagation and three-factor Hebbian learning and
treats the LIF neuron as a recurrent network

* It does not require unrolling the network over time, hence, can fit on edge
devices
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SOLSA Learning

* At each time step, the L2 error E[t] is evaluated by comparing
classifier’s output and the target output

« Update rule: — Ztu][ |- f][t]

dwl]

. ,u}[t] is upper-level gradient backpropagated disregarding temporal dependencies

dE_ 0j|t] = OE[t] 90 [t] oV [t] OF t] 00/ [t]
ol[e1av/ie] <K aof[t] IVt 0F el a0![t] avi[t]

© ujlt]l =

e} [t] is the surrogate gradient of H(Vj [t] — Vin)

. e-lj[t] is local trace updated incrementally, which stores history information
°€ (/1 (Ve - E ) 8” t—1]+FL-l'j[t]

l
i,j
* Model can be updated using the partial gradient before receiving the entire input seqyence

» Every time step, partial gradient y; L[t] - €t :[t] are calculated and accumulated




Surrogate Gradient Function

* Heaviside activation function is non-differentiable

» We use the gradient of spiking probability as a surrogate function

* Under a Gaussian noise z~N (0, o), the probability that a neuron with membrane
potential V and threshold V;;, will fire an output spike

s PV +2z>Vy) = %erfc (Vf/%—;v)

* The complementary error function is differentiable:
Y derfc(x) 2 52
dx - m
90{[t] _ dP(V}[t]+z>Vn)
"ovie] avit]

* Use surrogate gradient

l 2
. (Vth—Vl-[t]>
« €lltl= |=e\ Vi

15




Experiment : Datasets

* All datasets are processed by fully connected network

* Multivariate Time Series datasets

 Sequence length varies from 30 to 1000 time steps

* Sequences are recorded sensor readings. The data are floating point real

numbers representing the readings of the sensors
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Experiment: Settings

* Three different types of spike encoders with backend SNN running
SOLSA learning

* Random PopEnc (the connections of the input layer have random weights)

. Ogtimized PopEnc (the connections of the input layer are also optimized using
SOLSA learning)

* ResEnc (with random weight matrices and bias)

* Use Lon%Short-Term Memory (LSTM) with similar complexity (i.e.,
the number of trainable parameters) as baseline

* One LSTM layer and one fully connected layer

* Exact match in complexity is hard to achieve, hence we created two models
* LSTM-Low, which is slightly smaller than SNN
¢ LSTM-High, which is slightly larger than SNN

* The frontend of the LSTM-based system requires high precision analog-to-digital
converters (ADC)
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Experiment: Performance Comparison

* Overall, the three SNN-based systems deliver similar or even
superior performance compared to the LSTM-based systems

* Optimized PopEnc perform slightly better than the ResEnc

* ResEnc achieves performance comparable to the optimized PopEnc with
lower implementation effort (no optimization)

* Random PopEnc has lowest performance among the three encoders
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Ablation Study: Skip Connection

* Compared the performance of random PopEnc and the ResEnc
with and without skip connections, and a skip only frontend

* Results show that the skip connection by itself is insufficient to function as a
general-purpose spike encoder

* However, in average, it improves the classification accuracy by 4% and 3% for
systems with random PopEnc and ResEnc respectively
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Ablation Study: Reservoir Network Complexity

* Compare our simplified reservoir encoder with encoders based on
some traditional reservoir models

* All encoders are implemented using the same number of neurons and same
method of weight coefficient generation

Hardware complexity is expressed as a function of input channel size I
* For all encoders, the output size is 51

Our encoder requires much less memory and simpler activation functions

Distance

Ours ESN Cyclic  Hierarchical Modular Constrained

# of connections 20 - I? 30-12 301 80 - > 10 - I? 30 - I?
# of neurons 4] 5-1 5-1 15-1 5-1 5-1

Memory 1 1 5 1 1 1
Activation

. Heaviside  tanh tanh tanh tanh tanh
function




Ablation Study: Reservoir Network Performance

* We compared the classification accuracy achieved when different
reservoir-based encoders are used as the frontend

* Our ResEnc consistently delivers the highest or near-highest performance across
all datasets

* The simplification of our ResEnc network structure does not compromise its
sparse coding capabilities
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Experiment. Hardware Variations (ResEnc)

* Variation arises from the random weights in the encoders
* Three different versions of ResEnc’s are created

* For each encoder, a backend SNN classifier was trained, and the combinations of
different encoders and classifiers were then tested

When the classifier and encoder do not match, performance drops significantly
(from around 15% to over 80%)

Without in-hardware adaptability, variations in the encoder hardware have a
profoundly negative impact on model performance
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Experiment: Timing Variations (PopEnc)

* Variation arises from sampling rate deviation of the sensor output
* Train the model using sequences sampled using nominal sampling rate

* We varied the sampling rate from 150% to 50% of the nominal valueand
regenerated sequences of sensor readings using linear interpolation for testing

* In extreme cases, offline approaches accuracy drop 8.3%, while the systems with
online adaptation only drop 3%
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Conclusion

* We proposed two new spike encoder designs
* Population Coding-based encoder (PopEnc)

* Reservoir Computing-based encoder (ResEnc)

* Experiment results show that

* Encoders effectively preserve the temporal and spatial features of the sensor
sequences and enhancing the performance of the SNN-based backend classifiers

* Skip connection structure can enhance the performance of spike encoder

* We also showed the importance of the backend SNN'’s online
learning capability, which enables adaptation to the frontend
encoder

* The adaptability accommodates randomness and variations in the encoder,
significantly reduce design and implementation complexity
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