Exploring Spike Encoder Designs for Near-Sensor Edge Computing

JINGANG JIN, ZHENHANG ZHANG, QINRU QIU SYRACUSE UNIVERSITY, USA

Outline

- Introduction and Motivation
- Proposed Method
- Experiments
- Conclusions

Neuromorphic Computing

- Cyber-physical-systems and embodied AI call for edge capabilities
 - Continuous sensing, monitoring, detecting and responding to temporal and spatial patterns in physical environment.
 - Low cost, small footprint, high energy efficiency.
 - Flexibility and adaptivity to users and application context.
- Neuromorphic computing offers a promising solution by leveraging spiking neural networks (SNNs)
 - Information is represented through sequences of sparse spiking activities
 - Neurons communicate and compute only when there are output or input activities.
 - Event-driven approach, combined with closely integrated memory and computation, results in reduced workload and improved energy efficiency.

Spike Encoding

- To effectively utilize SNNs, input signals must be encoded into spike sequence
 - Sparsely project input sequences into hyperdimensional vectors distributed evenly across the feature space for better separation
- Well-designed spike encoder should
 - Convert numerical sensor readings into sparse spike trains
 - Preserve the temporal and spatial features in the input sequence
 - Be built with low-cost hardware, simple operations, and minimum memory

Conventional Spike Encoding

• Spike Rate Coding

- Encoders periodically sample the sensor readings and convert them to floating point numbers in the digital domain (ADC)
- The numerical values are represented by the spike count generated within the sampling interval
- The maximum spike count within a sampling interval defines the data precision
- Cons: High spiking activity and an increased computation workload

Spike Temporal Coding

- Input value is encoded as the interval between consecutive spikes (Spike Interval Coding)
- Input value is encoded as the time delay between a spike and a reference start time (Time to First Spike Coding)
- At most one spike event is generated for each sampling interval
- Sparse communication and computation activities

Temporal Coding Using LIF neurons

 Current-based (CUBA) Leaky Integrate-and-Fire (LIF) neurons can be used for spike interval coding

•
$$\tau \frac{dv(t)}{dt} = -v(t) + \boldsymbol{w} * \boldsymbol{x}(t) + b$$

•
$$O(t) = H(v(t) - v_{th}) = \begin{cases} 1, & \text{if } v(t) > v_{th} \\ 0, & \text{otherwise'} \end{cases} H() \text{ is the Heaviside} \end{cases}$$

activation function.

Limitations of Traditional Approaches

- Mapping each channel of sensor reading to one spike train
 - The one-to-one mapping cannot effectively preserve the spatiotemporal features of input sequences
 - Not every sensor's output will be in the sensitivity range of the LIF neuron
 - Subtle differences between sequences need to be accumulated for a long time before they can affect the spike output
- Use the spike encoder to collect training dataset for offline training
 - Difficult to guarantee that the training dataset provides an unbiased and comprehensive representation of the testing data distribution
 - If the encoder is implemented using the analog or mixed signal circuit design, significant device-to-device variations and limited hardware precision are typically expected
 - The frontend sensor and backend processor often operate asynchronously, relying on independent local clocks, no predetermined timing relationship can be assumed

Our Approaches to Address the Limitations

- New spike encoder designs
 - Population coding-based encoder (PopEnc): a layer of LIF neurons fully connected to the sensor inputs
 - Compared optimized and random PopEnc
 - Reservoir encoder (ResEnc): inspired by Reservoir Computing models using a recurrent network with randomly generated weight coefficients
 - With and without skip connections which directly connects the input to the output port

Training on the edge, directly in conjunction with the encoder

 Utilize online learning algorithm to train the backend classifier alongside the encoder to address encoders' variability

Population Encoder (PopEnc)

- Neuron Model: LIF neuron with post-synaptic potential (PSP)
 - Model synaptic dynamics as a first order IIR (Infinite Impulse Response) filter:
 - $F_i[t] = \alpha F_i[t-1] + \beta U_i[t]$, $U_i[t] i$ th input of the neuron
 - Membrane potential is the leaky accumulation of PSP with weight w:
 - $V_j[t] = \lambda V_j[t-1] + \sum_i w_{i,j} F_i[t] \zeta V_{th} O_j[t-1], \zeta$ reset strength, empirically set to 0.5

• Population coding: using N neurons to jointly encode M inputs

Optimized PopEnc

- Optimized $w_{i,j}$ and α , β
- Better theoretical performance
- High implementation effort

Random PopEnc

- Random $w_{i,j}$ and α , β
- Lower performance
- Less implementation effort

Reservoir Encoder

- Reservoir network structure
 - Total *I* input channels (represented as U[t], $U[t] \in \mathbb{R}^{I}$).
 - The *J* neurons form a complete directed graph
- Neuron states $(X[t] \in \mathbb{R}^J)$ are determined by the previous state of the reservoir and the current input
 - $X[t] = (1-k)W^X X[t-1] + kW^{in}U[t] + B$
 - B is drawn from a uniform distribution in the range [0, 1)
 - W^X and W^{in} are random matrices following uniform distribution in the range $[-\varepsilon, \varepsilon], \varepsilon = \sqrt{\frac{C}{fanin+fanout}}$
 - To ensure bounded neuron states, k lies within the range of [0, 1] (set to 0.9 in experiment)

Refractory and Output Generation

 Without resetting the neuron state, neurons may remain at high values for an extended period, leading to constant spiking activity

Introducing refractory mechanism

- $Z[t] = X[t] \lambda V_{th}O[t-1]$
- O[t] is the output spike, $O[t] = H(Z[t] V_{th})$
- λ controls the strength of the refractory process (we set it to 0.5)
- If a neuron generates an output spike at the current time step, then it is less likely to fire in the next time step

Skip Connection Structure

- Limitations of stateful encoder networks
 - Due to the recurrent structure of the network, it may take a while for the change in the input pattern to affect the output activities
 - For sequential data, especially long sequence, the accumulated state of early input can blur the influence of later input.

• Skip connection can mitigate these drawbacks

- The skip connection directly connects the input signals to the output port
 - No stateful neuron, no latency
- The only processing is the Heaviside activation function
- With the skip connection, we have two sets of outputs $\{O^X, O^U\}$
 - O^X are the outputs from the stateful encoders (e.g., PopEnc or ResEnc)
 - $O^U = H(U)$ are the outputs from the skip connection

Backend SNN Processor

• SNN model

- Multiple fully connected layers are used to classify the encoded sensor data
- Each neuron is a LIF neuron with PSP similar to the model used for the PopEnc

Online learning

- We employ the SOLSA learning algorithm to enable online adaptation
- SOLSA combines backpropagation and three-factor Hebbian learning and treats the LIF neuron as a recurrent network
- It does not require unrolling the network over time, hence, can fit on edge devices

SOLSA Learning

• At each time step, the L₂ error *E*[*t*] is evaluated by comparing classifier's output and the target output

• Update rule:
$$\frac{dE}{dw_{ij}^l} = \sum_t \mu_j^l[t] \cdot \varepsilon_{i,j}^l[t]$$

- $\mu_j^l[t]$ is upper-level gradient backpropagated disregarding temporal dependencies
- $\mu_j^l[t] = \frac{dE}{dO_j^l[t]} \frac{\partial j[t]}{\partial V_j^l[t]} = \sum_k \frac{\partial E[t]}{\partial O_k^{l+1}[t]} \frac{\partial O_k^{l+1}[t]}{\partial V_k^{l+1}[t]} \frac{\partial V_k^{l+1}[t]}{\partial F_{ki}^{l+1}[t]} \frac{\partial F_{jk}^{l+1}[t]}{\partial O_j^l[t]} \frac{\partial O_j^l[t]}{\partial V_j^l[t]}$

• $\epsilon_j^l[t]$ is the surrogate gradient of $H(V_j^l[t] - V_{th})$

- ε^l_{i,j}[t] is local trace updated incrementally, which stores history information
 ε^l_{i,j}[t] = (λ − ζ · v_{th} · ε^l_j[t]) · ε^l_{i,j} [t − 1] + F^l_{i,j}[t]
- Every time step, partial gradient $\mu_j^l[t] \cdot \varepsilon_{i,j}^l[t]$ are calculated and accumulated
 - Model can be updated using the partial gradient before receiving the entire input sequence

Surrogate Gradient Function

- Heaviside activation function is non-differentiable
- We use the gradient of spiking probability as a surrogate function
 - Under a Gaussian noise $z \sim N(0, \sigma)$, the probability that a neuron with membrane potential V and threshold V_{th} will fire an output spike

•
$$P(V + z > V_{th}) = \frac{1}{2} \operatorname{erfc}\left(\frac{V_{th} - V}{\sqrt{2}\sigma}\right)$$

• The complementary error function is differentiable:

•
$$\frac{d \operatorname{erfc}(\mathbf{x})}{dx} = -\frac{2}{\sqrt{\pi}}e^{-x^2}$$

• Use surrogate gradient, $\frac{\partial O_i^l[t]}{\partial V_i^l[t]} \approx \frac{dP(V_i^l[t]+z>V_{th})}{dV_i^l[t]}$ • $\epsilon_i^l[t] = \sqrt{\frac{2}{\pi\sigma^2}} e^{\left(\frac{V_{th}-V_i^l[t]}{\sqrt{2}\sigma}\right)^2}$

Experiment : Datasets

- All datasets are processed by fully connected network
 - Multivariate Time Series datasets
 - Sequence length varies from 30 to 1000 time steps
 - Sequences are recorded sensor readings. The data are floating point real numbers representing the readings of the sensors

	Dataset Name	# of Input Channels (<i>I</i>)	Sequence length	# of Classes		
	Finger mov.[24]	28	50	2		
Regular	Basic motion[22]	6	100	4		
	Epilepsy[23]	3	207	4		
	Jap. Vowel[26]	12	29	9		
	RacketSports[22]	6	30	4		
Long	Self reg. scp1[25]	6	896	2		
	EMG action[27]	8	1000	10		

Experiment: Settings

- Three different types of spike encoders with backend SNN running SOLSA learning
 - Random PopEnc (the connections of the input layer have random weights)
 - Optimized PopEnc (the connections of the input layer are also optimized using SOLSA learning)
 - ResEnc (with random weight matrices and bias)
- Use Long Short-Term Memory (LSTM) with similar complexity (i.e., the number of trainable parameters) as baseline
 - One LSTM layer and one fully connected layer
 - Exact match in complexity is hard to achieve, hence we created two models
 - LSTM-Low, which is slightly smaller than SNN
 - LSTM-High, which is slightly larger than SNN
 - The frontend of the LSTM-based system requires high precision analog-to-digital converters (ADC)

Experiment: Performance Comparison

- Overall, the three SNN-based systems deliver similar or even superior performance compared to the LSTM-based systems
 - Optimized PopEnc perform slightly better than the ResEnc
 - ResEnc achieves performance comparable to the optimized PopEnc with lower implementation effort (no optimization)
 - Random PopEnc has lowest performance among the three encoders

Ablation Study: Skip Connection

- Compared the performance of random PopEnc and the ResEnc with and without skip connections, and a skip only frontend
 - Results show that the skip connection by itself is insufficient to function as a general-purpose spike encoder
 - However, in average, it improves the classification accuracy by 4% and 3% for systems with random PopEnc and ResEnc respectively

Ablation Study: Reservoir Network Complexity

- Compare our simplified reservoir encoder with encoders based on some traditional reservoir models
 - All encoders are implemented using the same number of neurons and same method of weight coefficient generation
 - Hardware complexity is expressed as a function of input channel size *I*
 - For all encoders, the output size is 5*I*
 - Our encoder requires much less memory and simpler activation functions

	Ours	ESN	Cyclic	Hierarchical	Modular	Distance Constrained		
# of connections	$20 \cdot I^2$	$30 \cdot I^2$	$30 \cdot I^2$	$80 \cdot I^2$	$10 \cdot I^2$	$30 \cdot I^2$		
# of neurons	$4 \cdot I$	$5 \cdot I$	$5 \cdot I$	15 · I	$5 \cdot I$	5 · <i>I</i> 1		
Memory	1	1	5	1	1			
Activation function	Heaviside	tanh	tanh	tanh	tanh	tanh		

Ablation Study: Reservoir Network Performance

- We compared the classification accuracy achieved when different reservoir-based encoders are used as the frontend
 - Our ResEnc consistently delivers the highest or near-highest performance across all datasets
 - The simplification of our ResEnc network structure does not compromise its sparse coding capabilities

Experiment: Hardware Variations (ResEnc)

- Variation arises from the random weights in the encoders
 - Three different versions of ResEnc's are created
 - For each encoder, a backend SNN classifier was trained, and the combinations of different encoders and classifiers were then tested
 - When the classifier and encoder do not match, performance drops significantly (from around 15% to over 80%)
 - Without in-hardware adaptability, variations in the encoder hardware have a profoundly negative impact on model performance

0.99	0.46	0.41	0.97	0.17	0.22	0.89	0.5	0.41	0.92	0.18	0.18	1	0.45	0.45	0.61	0.48	0.51	0.85	0.31	0.28
0.47	0.96	0.36	0.19	0.95	0.21	0.3	0.89	0.82	0.12	0.92	0.14	0.36	1	0.4	0.47	0.62	0.42	0.27	0.86	0.36
0.44	0.26	0.99	0.11	0.22	0.91	0.61	0.48	0.89	0.21	0.11	0.93	0.61	0.26	1	0.53	0.56	0.63	0.32	0.30	0.84
Epilepsy EMG /			MG Actio	n	SelfRegualtionSCP1			Japanese Vowels		Basic Motions			Finger Movements			Racket Sport				

22

Experiment: Timing Variations (PopEnc)

• Variation arises from sampling rate deviation of the sensor output

- Train the model using sequences sampled using nominal sampling rate
- We varied the sampling rate from 150% to 50% of the nominal value and regenerated sequences of sensor readings using linear interpolation for testing
- In extreme cases, offline approaches accuracy drop 8.3%, while the systems with online adaptation only drop 3%

PopEnc+SNN with online adapted frontend and backend
 PopEnc+SNN without online adaptation

(3) Fixed LSTM-high model(4) Fixed LSTM-low model

Conclusion

- We proposed two new spike encoder designs
 - Population Coding-based encoder (PopEnc)
 - Reservoir Computing-based encoder (ResEnc)
- Experiment results show that
 - Encoders effectively preserve the temporal and spatial features of the sensor sequences and enhancing the performance of the SNN-based backend classifiers
 - Skip connection structure can enhance the performance of spike encoder
- We also showed the importance of the backend SNN's online learning capability, which enables adaptation to the frontend encoder
 - The adaptability accommodates randomness and variations in the encoder, significantly reduce design and implementation complexity

Thank you!