

MEMRISTIVE VALENCE CHANGE MEMORY CROSS-BAR ARRAYS FOR NEUROMORPHIC COMPUTING

R. DITTMANN, S. WIEFELS, S. HOFFMANN-EIFERT, V. RANA, S. MENZEL PGI 7, FORSCHUNGSZENTRUM JÜLICH GMBH

Institute of Electronic Materials @ FZ Jülich

Materials and phenomena

Devices and integration technology

Memristive neuromorphic hardware

Valence change memory

R. Dittmann, St. Menzel, R. Waser, Adv. Physics (2023)

ReRAM: embedded non-volatile memory

Outline

4

Outline

1T1R memristor Spatio-temporal effects cross-bar arrays in cross-bar arrays ARRAY 1

Applications of memristor cross-bar arrays

CMOS co-integrated memristor arrays are core blocks to serve many applications

Low-energy matrix multiplication "in-memory"

 \rightarrow core operation of deep learning, signal processing, etc.

Spiking Neural Networks

 \rightarrow peripheral blocks for quasi-continuous time processing

Associative Memories / Content Addressable Memory

 \rightarrow novel memory arrays addressed by content

RISC-V Processors and Network-on-Chip

 \rightarrow flexible digital support and off-chip communication

Memristor crossbar array

Cooperation: Stefan van Waasen John Paul Strachan Emre Neftci

JÜLICH **CMOS Co-integration** ORSCHUNGSZENTRUM TSMC 28 nm technology (X-Fab 180nm) Susanne **Process flow** Hoffmann-Eifert Delivered MPW Opening of Chips metal contacts to CMOS vias **1T1R Structure** Pt/Ta/Ta₂O₅/Pt Contact pad Reference sample or NEUROTEC-1 chip deposition ReRAM cross point Via to the 2 µm Transistor Memristive device -0.5 0 0.5 Voltage [V] -1.5 -1 1.5 fabrication as 100 nm x 100 nm **Finished Chip** crossbar Connecting the memristive device with the contact Array pads to CMOS

Collaboration AMO GmbH

7

Interplay between transistors and ReRAM cells in 1T1R cells

- One-transistor-one-resistor (1T1R) structures are the basic working elements of memristive arrays.
- Transitors act as selector and current compliance
- Transistors of different sizes exhibit varying transfer characteristics, which influence the electrical properties of memristor cells.

CH

Stefan Wiefels Xiaohua Liu

Intrinsic memristor voltage during SET process

- Interplay of ReRAM cell and transistor analyzed using load line concept.
- Large-current transistors -> transistors work in saturation regime -> Transistors work as current compliance
- Small-current transistors -> From saturation regime to linear regime -> Transistors behave more like an ohmic resistor

Incremental step pulse programming scheme for multilevel switching

SET algorithm with program verify and incrementally increasing gate voltage applied to 1T1R samples

Statistical results

Evolution of the voltage division in 1T1R structure and correlation with transistor characteristics

 V_{1T1R} affects the voltage over the transistor (V_{TR,SET}). → High V_{1T1R} puts more stress to the transistor, but low V_{1T1R} might shift the switching characteristics to the voltage limited regime

5 percentile

Statistical results

Impact of transistor characteristic and biasing conditions on 1T1R structures

LICH

 V_{1T1R}

V_{GATE,SET}

V_{TR.SET}

GND

Decreasing transistor W/L ratio

95 percentile

75 percentile

25 percentile

5 percentile

- Lower V_{1T1R} or lower W/L both shift the switching path away from the saturation regime, towards the ohmic / linear regime
 - More SET variability due to worse current control

Matrix array characterization

VMM demo on memristor array

- 64 ch DAC: 200 MS/s, 16 bits \rightarrow fast (100 ns) CC
- 32 ch ADC: 100 MS/s, 16 bits \rightarrow / amp, 1 µA-10 mA

S. Wiefels et al., MetroXRAINE, IEEE, 2023.

Outline

14

Valence change memory

Thermally accelerated ion drift and diffusion

Stephan Menzel

S. Menzel et al., Adv. Funct. Mater. (2011)

JART VCM v1b model

https://www.fz-juelich.de/en/pgi/pgi-7/research/research-groups-1/agmenzel/jart-model

Memristive arrays for computing in memory

Crossbar array model Could also be any other memristive device! $T_0 = 293 \,\mathrm{K}$ --Padding (2000 nm) Filament (r = 35 nm, h = 3 nm) Ohmic electrode (OE) SiO₂ (100 nm). Si (100 nm)~ Plug MO Memristive device Disc $j_{\rm n} = 0 \,{\rm A}/{\rm m}^2$ here: VCM *all boundaries Active electrode (AE) except contacts $V = V_{app}, T_0 = 293 \text{ K}$ SiO_2 $V = 0 V, T_0 = 293 K$ Bottom electrode (30 nm)-Si Top electrode (30 nm) Metal oxide (35 nm) T₀ = 293 K

Electrothermal equations

Transient heat transfer equation

$$\rho_{\rm m} C_{\rm p} \frac{\partial T}{\partial t} - \nabla k \nabla T = \mathbf{j} \cdot \mathbf{E}$$

Current continuity equation

$$\nabla \cdot \mathbf{j} = -\nabla \sigma \nabla \phi = 0$$

Switching mechanism: JART VCM v1b

Variable electrical conductivity $\sigma_{\rm disc/plug}(N_{\rm disc/plug}) = e z_{\rm Vo} N_{\rm disc/plug} \mu_{\rm n}$ Oxygen vacancy concentration $\frac{\mathrm{d}N_{\mathrm{disc}}}{\mathrm{d}t} = -\frac{I_{\mathrm{ion}}(N_{\mathrm{disc}}, V_{\mathrm{disc}}, T_{\mathrm{disc}})}{z_{\mathrm{V}_{\mathrm{O}}} eAl_{\mathrm{disc}}}$

Origin of thermal crosstalk

Schön et al., Advanced functional materials 33 (22), 2213943 (2023)

Thermal crosstalk for different distances

 \rightarrow Joule heat of line is encoded in alpha value

→ Thermal crosstalk relevant for very spacings <100nm

Crosstalk in 1x3 line arrays

- \rightarrow Gradual switching in adjacent cells
- \rightarrow Synaptic potentiation in adjacent cells due to Thermal Crosstalk
- \rightarrow RESET operation: Process is reversed \rightarrow depression

Thermal accumulation effect

Schön et al., Advanced functional materials 33 (22), 2213943 (2023)

Thermal Accumulation Effect in one Cell: SET

 \rightarrow Frequency-dependent switching time due to thermal accumulation

Thermal Accumulation Effect in one Cell: RESET

Illustration of thermal accumulation effect simulation

→ Frequency-dependent switching due to thermal accumulation effect

Spatio-Temporal Correlations in a 1x3 Line Array

Schön et al., Adv. Function. Mater. 33 (22), 2213943 (2023)

→ T as second state variable is transferred to surrounding cells

Summary

1T1R elements in memristor crossbar arrays

- ✓ Successful CMOS integration of memristors on 180nm X-Fab and 28nm TSCM
- ✓ Interplay between memristor and transistor ⇒ design rules for 1T1R blocks
- ✓ Programming algorithm for analog programming ⇒ demonstration of VM multiplication

Spatio-temporal effects in memristor arrays

- Thermal correlation effects (crosstalk) occur below 100-200 nm due to heat transport along metal electrodes
- Thermal accumulation effects if pulse length and delays are below the thermal time constant
- ✓ Spatial-temporal thermal effects occur for small distances and delays below the thermal time constant
 ⇒ learning in memristor networks

Great thanks to the team @ PGI-7

SPP2262

contact: r.dittmann@fz-juelich.de

Cooperations:

Stefan van Waasen, Christian Grewing, Andre Zambanini (PGI-4) John Paul Strachan, Michael Schiek (PGI-14) Emre Neftci (PGI-15)