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R. Dittmann, JP Strachan, 

APL materials (2019)

Valence change memory
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embedded

non-volatile 

memory

R. Dittmann, St. Menzel, R. Waser, Adv. Physics (2023)
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Applications of memristor cross-bar arrays
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CMOS co-integrated memristor arrays are 

core blocks to serve many applications

Low-energy matrix multiplication "in-memory”

→ core operation of deep learning, signal processing, etc.e 

operation of deep learning, signal processing, etc.

Spiking Neural Networks  

→ peripheral blocks for quasi-continuous time processing

Associative Memories / Content Addressable Memory

→ novel memory arrays addressed by content

RISC-V Processors and Network-on-Chip

→ flexible digital support and off-chip communication

Cooperation:

Stefan van Waasen

John Paul Strachan

Emre Neftci
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CMOS Co-integration

Collaboration AMO GmbH 

Process flow
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Memristive device

fabrication as

100 nm x 100 nm 

crossbar

Contact pad 

deposition

Connecting the 

memristive device 

with  the contact 

pads to CMOS

Delivered 

MPW 

Chips

1 µm
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TSMC 28 nm technology (X-Fab 180nm)
Susanne 

Hoffmann-Eifert
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Interplay between transistors and ReRAM cells

in 1T1R cells
In

p
u

t

Output

W / L 20

W / L 1 W / L 0.44

• One-transistor-one-resistor (1T1R) structures are the basic working 

elements of memristive arrays.

• Transitors act as selector and current compliance

• Transistors of different sizes exhibit varying transfer characteristics, which  

influence the electrical properties of memristor cells.

X-Fab 

180nm

Stefan Wiefels Xiaohua Liu
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Intrinsic memristor voltage during SET process

• Interplay of ReRAM cell and transistor analyzed using load line concept.

• Large-current transistors -> transistors work in saturation regime -> Transistors work as current compliance

• Small-current transistors -> From saturation regime to linear regime -> Transistors behave more like an ohmic resistor

W / L 20

W / L 1 W / L 0.44

Liu et al., IEEE TRANSACTIONS ON ELECTRON DEVICES (2024)

Cüppers et al. 

APL Mater. 2019

CMOS: 

X-Fab 180nm
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Incremental step pulse programming scheme

for multilevel switching
Sample: HOTO-based NEUROTEC I chip 

SET algorithm with program verify and incrementally increasing gate voltage applied to 1T1R samples

95 percentile

5 percentile

75 percentile

Liu et al., IEEE TRANSACTIONS ON ELECTRON DEVICES (2024)
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Statistical results

Evolution of the voltage division in 1T1R structure and correlation with transistor characteristics

95 percentile

5 percentile

25 percentile

75 percentile
• The statistics of the 200-cycle SET algorithm test for 1T1R structures  

• Voltage over ReRAM cell (VMEM,SET) stays around 0.7 V. 

• V1T1R affects the voltage over the transistor (VTR,SET). → High V1T1R puts more stress to the transistor, but 

low V1T1R might shift the switching characteristics to the voltage limited regime

V1T1R = 2 V V1T1R = 1.2 V Cüppers et al. 

APL Mater. 2019

CMOS: 

X-Fab 180nm
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Statistical results

Impact of transistor characteristic and biasing conditions on 1T1R structures

95 percentile

5 percentile

25 percentile

75 percentile • Lower V1T1R or lower W/L both shift the switching path away from the saturation regime, towards the 

ohmic / linear regime

➢ More SET variability due to worse current control

Decreasing transistor W / L ratio

W / L 20 W / L 1 W / L 0.44
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Matrix array characterization
VMM demo on memristor array

Slide 13

• 64 ch DAC: 200 MS/s, 16 bits → fast (100 ns) CC

• 32 ch ADC: 100 MS/s, 16 bits → I amp, 1 µA-10 mA

S. Wiefels et al., MetroXRAINE, IEEE, 2023.
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Outline

1T1R memristor

cross-bar arrays
Spatio-temporal effects in 

cross-bar arrays
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Valence change memory

15

JART VCM v1b model

https://www.fz-juelich.de/en/pgi/pgi-
7/research/research-groups-1/ag-
menzel/jart-model

S. Menzel et al., Adv. Funct. Mater. (2011)

Stephan Menzel

Thermally accelerated ion drift and diffusion
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Memristive arrays for computing in memory

Memristive device

f(E,T)

Daniel Schön
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Crossbar array model

Switching mechanism: JART VCM v1b

Variable electrical conductivity

Oxygen vacancy concentration

Transient heat transfer equation

Current continuity equation

Electrothermal equations

Could also be any other

memristive device!

here: VCM



18

→ Heat transport via electrodes to   

adjacent devices

→ Additional heat contribution due to 

    Joule heat of the line
HRS → Ndisc = 1x1024 m-3

LRS → Ndisc = 2x1027 m-3

Fully-selected cell

Schön et al., Advanced functional materials 33 (22), 2213943 (2023)

Origin of thermal crosstalk
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Thermal crosstalk for different distances

→ Joule heat of line is encoded in alpha value

→ Thermal crosstalk relevant for very spacings <100nm

Thermal resistance

Heat transfer coefficient
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Crosstalk in 1x3 line arrays

→ Gradual switching in adjacent cells

→ Synaptic potentiation in adjacent cells due to Thermal Crosstalk

→ RESET operation: Process is reversed → depression



21

Thermal accumulation effect

Schön et al., Advanced functional materials 33 (22), 2213943 (2023)
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Thermal Accumulation Effect in one Cell: SET

→ Frequency-dependent switching time due to thermal accumulation 

effect
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Thermal Accumulation Effect in one Cell: RESET

→ Frequency-dependent switching

due to thermal accumulation effect
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Spatio-Temporal Correlations in a 1x3 Line Array

Ndisc & Tdisc in C12

→ T as second state variable is

     transferred to surrounding cells

Schön et al., Adv. Function. Mater. 33 (22), 2213943 (2023)
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Summary

Spatio-temporal effects in memristor arrays

✓ Thermal correlation effects (crosstalk)

occur below 100-200 nm due to heat transport 

along metal electrodes

✓ Thermal accumulation effects if pulse 

length and delays are below the 

thermal time constant

✓ Spatial-temporal thermal effects occur 

for small distances and delays below 

the thermal time constant

 learning in memristor networks

1T1R elements in memristor crossbar arrays

✓ Successful CMOS integration of memristors on 

180nm X-Fab and 28nm TSCM

✓ Interplay between memristor and transistor

 design rules for 1T1R blocks

✓ Programming algorithm for analog programming 

 demonstration of VM multiplication
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Great thanks to the team @ PGI-7

contact: r.dittmann@fz-juelich.de 

Cooperations:

Stefan van Waasen, Christian Grewing, Andre Zambanini (PGI-4)

John Paul Strachan, Michael Schiek (PGI-14)

Emre Neftci (PGI-15)

SPP2262 
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