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The Challenge of Neuromorphic Al

e SNNSs promise energy-efficient computing, but
hardware constraints make their deployment
challenging.

e Quantization is essential, but current methods often
overlook neuron thresholds.

e (Can we reduce memory usage by applying
quantization on SNNs while maintaining the
accuracy?
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Fixed Precision for SNNs: A Necessary Trade-off

Why Fixed Precision?
Neuromorphic hardware demands lower bit-widths (e.g., int8) for efficiency.

The Challenge:
Lower precision can hurt model accuracy — it's a trade-off.

The Opportunity:

With smart techniques like pruning and threshold tuning, we can stay
efficient without sacrificing performance.

Our Goal:
Find the sweet spot between memory savings and model accuracy.
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Balancing Accuracy and Efficiency in Quantized SNNs

Post-Training Quantization (PTQ) vs. Quantization Aware Training (QAT)

e PTQ: Simpler, faster, but loses accuracy.

Model Training

/
Validation
e Train model in full precision
| < > < o |
Testing e Quantize weights only at runtime
Quantization
\

Final Model
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Balancing Accuracy and Efficiency in Quantized SNNs

Post-Training Quantization (PTQ) vs. Quantization Aware Training (QAT)

e QAT: Trains with quantization, achieving better accuracy but with higher training cost.

Model Training

INT8 Forward

et

FP32 Backward

Quantization

SSOT

Validation % S

i

Testing

Final Model

Key Question: Beyond precision reduction, what other considerations are critical when quantizing SNNs
for effective implementation on neuromorphic systems?
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The SpiNNcloud Neuromorphic Supercomputer

World's largest brain-inspired computer
Card frame

With 18 boards and water cooling
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SpiNNaker2 Chip SpiNNcloud Board

RTRONL.

The ,,SpiNNcloud”

5 million core machine at TU Dresden:
8 racks with 5 card frames each.
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« 152 processing elements with
low-power ARM Cores and DNN
accelerators

« SpiNNaker router & 6 chip-to-chip
interfaces for event-based
communication =

+  22FDX CMOS by GLOBALFOUNDRIES 48 SpiNNaker2 chips
with 2 GB DRAM each
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The SpiNNcloud Neuromorphic Supercomputer

Software Stack .
TR0
Gy Data flow graphs
Event-based computing @ O N N X

Generic Compute Deep learning

Spiking neural
networks

Further details on
Friday:
S2 FrontendCommon
Tutorial: SpiNNaker2
Tutorial: Beyond

_ Neural Simulation
S2 Runtime

SpiNNaker2 Chip / Board

Chip Application Software
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Neuromorphic IR: ACommon Language for Brain-Inspired Computing
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*Pedersen, J.E., Abreu, S., Jobst, M. et al. Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired
computing. Nat Commun 15, 8122 (2024). https://doi.org/10.1038/s41467-024-52259-9
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From Training to Deployment: Our Pipeline

Il snnTorch
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Experimental Setup: Scaling Deep SNNs on SpiNNaker2

Partitioning per PE LIF()
LIF(3)
LIF(6)
Pop_2 { Pop_3 { Pop_4 { Pop 5
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Input
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SpiNNaker2 Network
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From Training to Deployment: PTQ / P-SNN

. 2. Percentile-Based Maximum
1. Compute Scaling Factor
100 «
)\ — 127 80 \
Rescale 'S |[W|max S 6
' ' > S 40
-
| 1
1 1 1 1 Il : . | b
-128 -].oO 1.0 127 OO 3|2 64 96 197
. : : : Absolute Weight Value
Rescale weights from floating-point [-1.0,1.0] to integer . ] O THOEH e ] .
[-128,127] using a scaling factor As. Est|mate.the ma)flmum absolute weight usmg.a
percentile function to reduce the effect of outliers.
. 3.  Scale and Quantize Weights
4. Adjust Neuron Thresholds
Ws2 = AsWNIR
Neinbratne Potoiititle « asssie s am siesims s e b 4 o= X. T 190
‘ ' O0wnrr
100 + 0o wgo
2 80
% = o0
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pal'l 1
SN —128 —64 0 64 127
Time Weight Value
Scale neuron thresholds to maintain spiking Apply the scaling factor and convert the
behavior under quantized weights. weights to 8-bit integers.
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PTQ: Precise but Sensitive

e This approach ensures that 8-bit weights and scaled thresholds maintain compatibility
and precision on SpiNNaker2.

High Percentile Lower Percentile

e [ Preserves full weight range o More robust to noise — smoother quantization

. . . O Compresses dynamic range — may limit expressiveness
o X Sensitive to outliers — may reduce precision X P y 2 y p
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From Training to Deployment: QAT / Q-SNN

e The Q-SNN model retains the structure of the
P-SNN model (node types, quantities, and layer
indices).

e Introduces quantized layers that store both
full-precision and 8-bit weights, along with their
scaling factors.
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From Training to Deployment: QAT / Q-SNN
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» Append]I’; to I,

PTQ scaling is disabled at

deployment
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Results: Precision and Performance

Test Accuracy Variation Across Weight Percentiles on SpiNNaker2 for P-SNN

100 - 1 10% 9“.0&/o
g5.20% o
80 - o 18.90% 11.30%
;\? 10.30
e P-SNN Baseline Accuracy: 95.07% g 60-
5
e On-Chip Accuracy after PTQ: 94.0% P
(100th percentile) §
e Impact of PTQ: ~1.07% accuracy e
drop on-chip
O_

90 91 92 93 94 95 96 97 98 99 100
Percentiles of Weights
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Results: Precision and Performance

Key Ta keaways S5 Comparison of P-SNN and Q-SNN - -
1. Accuracy vs. Quantization Trade-off el i o |
984 e e ———————————— 5 - 0.8
e P-SNN (Full Precision) — 95.07% — 94.0% (-1.07%) | i
(PTQ) R o g | 5
o ' ' |
e Q-SNN (Quantized) — 94.69% — 94.13% (-0.56%) (QAT) 5 _ | Bbe: S i g
< | ' |
: |
e QAT achieves 94.13% on-chip accuracy, outperforming i l 0.17
FTT(Q, 92 : : - 0.2
| : 0.04
' |
e Memory footprint reduced by 75%, maintaining % S ' S ; it =
dCCura Cy. » S Test Accufac Crip Test pccu‘a N\ode\ G\ze
)ft- o

QAT minimizes accuracy degradation compared to PTQ, making it better suited for SpiNNaker2
deployment.
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Results: Precision and Performance

Comparison of SNN Implementations
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Lessons from Pushing SNNs to the Edge

e Neuron threshold scaling plays a key role in preserving accuracy.
e QAT with adaptive threshold scaling achieves the best trade-off
e What surprised us? Memory optimization had a bigger impact than expected.

e Where can we go next? Multi-chip scaling and real-time gesture recognition.
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Q&A / link to gitlab and LinkedIn repo
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