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The Challenge of Neuromorphic AI

● SNNs promise energy-efficient computing, but 
hardware constraints make their deployment 
challenging.

● Quantization is essential, but current methods often 
overlook neuron thresholds.

● Can we reduce memory usage by applying 
quantization on SNNs while maintaining the 
accuracy?

*Kosta, A., & Roy, K. (2022). Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking Neural Networks with Learnable Neuronal Dynamics. arXiv (09 2022). arXiv 
preprint arXiv.2209.11741
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Fixed Precision for SNNs: A Necessary Trade-off
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Why Fixed Precision?
 Neuromorphic hardware demands lower bit-widths (e.g., int8) for efficiency.

The Challenge:
 Lower precision can hurt model accuracy — it's a trade-off.

The Opportunity:
 With smart techniques like pruning and threshold tuning, we can stay 
efficient without sacrificing performance.

Our Goal:
 Find the sweet spot between memory savings and model accuracy.
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Balancing Accuracy and Efficiency in Quantized SNNs

                     Post-Training Quantization (PTQ) vs. Quantization Aware Training (QAT)

● PTQ: Simpler, faster, but loses accuracy.

 Model Training

● Train model in full precision

● Quantize weights only at runtime

Validation

Testing

Quantization

Final Model
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Balancing Accuracy and Efficiency in Quantized SNNs

                     Post-Training Quantization (PTQ) vs. Quantization Aware Training (QAT)

● QAT: Trains with quantization, achieving better accuracy but with higher training cost.

   Key Question: Beyond precision reduction, what other considerations are critical when quantizing SNNs 
for effective implementation on neuromorphic systems?

 Model Training

Quantization

Validation

Testing

Final Model
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The „SpiNNcloud“
5 million core machine at TU Dresden:
8 racks with 5 card frames each. 

Card frame
With 18 boards and water cooling

SpiNNcloud Board

48 SpiNNaker2 chips
with 2 GB DRAM each

SpiNNaker2 Chip

• 152 processing elements with  
low-power ARM Cores and DNN 
accelerators

• SpiNNaker router & 6 chip-to-chip 
interfaces for event-based 
communication

• 22FDX CMOS by GLOBALFOUNDRIES
• 0.5 V operation using Raciycs ABB IP

The SpiNNcloud Neuromorphic Supercomputer
World‘s largest brain-inspired computer
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Spiking neural 
networks Generic Compute Deep learning

S2 Runtime

S2 FrontendCommon

SpiNNaker2 Chip / Board

Chip Application Software

Data flow graphs
Event-based computing

Further details on 
Friday: 

Tutorial: SpiNNaker2 
Tutorial: Beyond 

Neural Simulation

The SpiNNcloud Neuromorphic Supercomputer 
Software Stack
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Neuromorphic IR: A Common Language for Brain-Inspired Computing

*Pedersen, J.E., Abreu, S., Jobst, M. et al. Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired 
computing. Nat Commun 15, 8122 (2024). https://doi.org/10.1038/s41467-024-52259-9

*

https://neuroir.org/

https://neuroir.org/
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From Training to Deployment: Our Pipeline

- Backpropagation Through Time 
- Surrogate Gradients 
- 200 epochs

Dataset: *DVS Gesture 

(11 classes, event-based input).

*Amir, Arnon, et al. "A low power, fully event-based gesture recognition system." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
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Experimental Setup: Scaling Deep SNNs on SpiNNaker2

SpiNNaker2 Network

Py-spinnaker 2

Neuron Model Max Neurons per PE

LIF Conv2d 1024

LIF Neuron 250

Spike List 500

SpiNNaker2 Chip 
          152 PE PE Constraints

Population Max Neurons

LIF(1) 900

LIF(3) 900

LIF(6) 980

LIF(10) 16

Input 17

Partitioning per PE

ethernetboot-up pins

JTAG

STM32

DRAM

S2 Chip

power 
switch

USB power jack

SpiNNaker2 PE
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From Training to Deployment: PTQ / P-SNN
1.

2.

3.
4.

Rescale weights from floating-point [-1.0,1.0] to integer 
[−128,127] using a scaling factor λₛ. Estimate the maximum absolute weight using a 

percentile function to reduce the effect of outliers.

Apply the scaling factor and convert the 
weights to 8-bit integers.

Scale neuron thresholds to maintain spiking 
behavior under quantized weights.

Adjust Neuron Thresholds

Compute Scaling Factor
Percentile-Based Maximum

Scale and Quantize Weights 
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PTQ: Precise but Sensitive

● This approach ensures that 8-bit weights and scaled thresholds maintain compatibility 
and precision on SpiNNaker2. 

High Percentile 

● ✅ Preserves full weight range

● ❌ Sensitive to outliers → may reduce precision

Lower Percentile 

● ✅ More robust to noise → smoother quantization

● ❌ Compresses dynamic range → may limit expressiveness
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From Training to Deployment: QAT / Q-SNN

● The Q-SNN model retains the structure of the 
P-SNN model (node types, quantities, and layer 
indices).

● Introduces quantized layers that store both 
full-precision and 8-bit weights, along with their 
scaling factors.
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From Training to Deployment: QAT / Q-SNN

● PTQ scaling is disabled at 
deployment

● Quantized weights from 
training are used as-is on 
SpiNNaker2



15

Results: Precision and Performance

● P-SNN Baseline Accuracy: 95.07%

● On-Chip Accuracy after PTQ: 94.0% 
(100th percentile)

● Impact of PTQ: ~1.07% accuracy 
drop on-chip
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Results: Precision and Performance

Key Takeaways
1. Accuracy vs. Quantization Trade-off

● P-SNN (Full Precision) → 95.07% → 94.0% (-1.07%) 
(PTQ)

● Q-SNN (Quantized) → 94.69% → 94.13% (-0.56%) (QAT)

● QAT achieves 94.13% on-chip accuracy, outperforming 
PTQ.

● Memory footprint reduced by 75%, maintaining 
accuracy.

QAT minimizes accuracy degradation compared to PTQ, making it better suited for SpiNNaker2 
deployment.
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Results: Precision and Performance

2. Performance Comparison

● Our models achieve state-of-the-art 
accuracy on DVS Gesture in both 
full-precision and quantized settings.

● SpiNNaker2 deployment shows higher 
accuracy than some other 
neuromorphic platforms.
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Lessons from Pushing SNNs to the Edge

● Neuron threshold scaling plays a key role in preserving accuracy.

● QAT with adaptive threshold scaling achieves the best trade-off

● What surprised us? Memory optimization had a bigger impact than expected.

● Where can we go next? Multi-chip scaling and real-time gesture recognition.
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Q&A / link to gitlab and LinkedIn repo


