

Efficient Deployment of Spiking Neural Networks on SpiNNaker2 for **DVS** Gesture Recognition Using NIR

Sirine Arfa, Bernhard Vogginger, Chen Liu, Johannes Partzsch, Mark Schone and Christian Mayr

Chair of Highly-Parallel VLSI-Systems and Neuro-Microelectronics Technical University of Dresden, Germany

The Challenge of Neuromorphic AI

- SNNs promise **energy-efficient computing**, but hardware constraints make their deployment **challenging**.
- Quantization is essential, but current methods often overlook neuron thresholds.
- Can we reduce memory usage by applying quantization on SNNs while maintaining the accuracy?

Fixed Precision for SNNs: A Necessary Trade-off

Why Fixed Precision?

Neuromorphic hardware demands lower bit-widths (e.g., int8) for efficiency.

The Challenge:

Lower precision can hurt model accuracy — it's a trade-off.

The Opportunity:

With smart techniques like pruning and threshold tuning, we can stay efficient **without** sacrificing performance.

Our Goal:

Find the sweet spot between memory savings and model accuracy.

Balancing Accuracy and Efficiency in Quantized SNNs

Post-Training Quantization (PTQ) vs. Quantization Aware Training (QAT)

• **PTQ**: Simpler, faster, but loses accuracy.

Train model in full precision

Quantize weights only at runtime

Balancing Accuracy and Efficiency in Quantized SNNs

Post-Training Quantization (PTQ) vs. Quantization Aware Training (QAT)

QAT: Trains with quantization, achieving better accuracy but with higher training cost.

Key Question: Beyond precision reduction, what other considerations are critical when quantizing SNNs for effective implementation on neuromorphic systems?

The SpiNNcloud Neuromorphic Supercomputer World's largest brain-inspired computer

SpiNNaker2 Chip

- 152 processing elements with low-power ARM Cores and DNN accelerators
- SpiNNaker router & 6 chip-to-chip interfaces for event-based communication
- 22FDX CMOS by GLOBALFOUNDRIES
- 0.5 V operation using Raciycs ABB IP

SpiNNcloud Board

48 SpiNNaker2 chips with 2 GB DRAM each

6

Card frame

With 18 boards and water cooling

The "SpiNNcloud"

5 million core machine at TU Dresden: 8 racks with 5 card frames each.

The SpiNNcloud Neuromorphic Supercomputer **Software Stack**

Chip Application Software

Further details on Friday:

Tutorial: **SpiNNaker2 Tutorial: Beyond Neural Simulation**

Neuromorphic IR: A Common Language for Brain-Inspired Computing

*Pedersen, J.E., Abreu, S., Jobst, M. et al. Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired computing. Nat Commun 15, 8122 (2024). https://doi.org/10.1038/s41467-024-52259-9

https://neuroir.org/

From Training to Deployment: Our Pipeline

Experimental Setup: Scaling Deep SNNs on SpiNNaker2

SpiNNaker2 PE

From Training to Deployment: PTQ / P-SNN

1. Compute Scaling Factor

Rescale **weights** from floating-point [-1.0,1.0] to integer [-128,127] using a scaling factor λ_s .

4. Adjust Neuron Thresholds

2.

Percentile-Based Maximum

3. Scale and Quantize Weights

 $w_{S2} = \lambda_s w_{NIR}$

Apply the **scaling factor** and convert the weights to 8-bit integers.

PTQ: Precise but Sensitive

• This approach ensures that 8-bit weights and scaled thresholds maintain compatibility and precision on SpiNNaker2.

High Percentile

- **V** Preserves full weight range
- \times Sensitive to outliers \rightarrow may reduce precision

Lower Percentile

 \checkmark More robust to noise \rightarrow smoother quantization

• \times Compresses dynamic range \rightarrow may limit expressiveness

From Training to Deployment: QAT / Q-SNN

- The **Q-SNN** model retains the structure of the **P-SNN** model (node types, quantities, and layer indices).
- Introduces **quantized layers** that store both full-precision and 8-bit weights, along with their **scaling factors**.

QuantConv / QuantLinear (Brevitas)

From Training to Deployment: QAT / Q-SNN

• PTQ scaling is **disabled** at deployment Quantized weights from training are used as-is on SpiNNaker2

Results: Precision and Performance

- P-SNN Baseline Accuracy: 95.07%
- **On-Chip Accuracy after PTQ: 94.0%** (100th percentile)
- Impact of PTQ: ~1.07% accuracy drop on-chip

Results: Precision and Performance

Key Takeaways **1. Accuracy vs. Quantization Trade-off**

- **P-SNN (Full Precision)** \rightarrow 95.07% \rightarrow 94.0% (-1.07%) (PTQ)
- **Q-SNN (Quantized)** → 94.69% → 94.13% **(-0.56%)** (QAT)
- **QAT** achieves **94.13%** on-chip accuracy, outperforming PTQ.
- Memory footprint reduced by **75%**, maintaining accuracy.

QAT minimizes accuracy degradation compared to PTQ, making it **better suited for SpiNNaker2** deployment.

Comparison of P-SNN and Q-SNN

Results: Precision and Performance

2. Performance Comparison

- Our models achieve **state-of-the-art** accuracy on DVS Gesture in both full-precision and quantized settings.
- SpiNNaker2 deployment shows **higher accuracy** than some other neuromorphic platforms.

Lessons from Pushing SNNs to the Edge

- Neuron threshold scaling plays a key role in preserving accuracy.
- QAT with adaptive threshold scaling achieves the best trade-off
- What surprised us? Memory optimization had a bigger impact than expected.
- Where can we go next? Multi-chip scaling and real-time gesture recognition.

Q&A / link to gitlab and LinkedIn repo

