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• What is a good weight initialization for a spiking neural network (SNN)?

• SNNs are often initialized following standard strategies designed for conventional networks (ANNs)

Xavier Glorot [1]  Sigmoid

Kaiming He [2]  ReLu

ANN initialization schemes are inadequate for SNNs
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1. Analytically derive a weight initialization method tailored for SNNs

2. Empirically validate on simulations that our method ensures stable spike propagation in deep 

SNNs, preventing dissipation or amplification

3. Show that our weight initialization enhances training speed and improves classification accuracy 

on 4 different datasets

In this paper
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1. Proposed SNN initialization method
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• 100 layers fully-connected SNN with Leaky Integrate-and-Fire (LIF) neurons

• Input      drawn from                                ,    ∈ [0,1]  

With the proposed method, unlike Kaiming, the variance of the membrane potentials stays constant across layers

2. Empirical validation: t=0 
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• 100 layers fully-connected SNN of Leaky Integrate-and-fire (LIF) neurons with soft reset

• Input      drawn from  

• Time steps T=20

While our method doesn’t explicitly account for time,

it approximately conserves variance and spike count  

0

0

2. Empirical validation: t>0 



2. Empirical validation: t>0 

8Deep activity propagation via weight initialization in spiking neural networks

• 100 layers fully-connected SNN of Leaky Integrate-and-fire (LIF) neurons with soft reset

• Input      drawn from  

• Time steps T=20

While our method doesn’t explicitly account for time,

it approximately conserves variance and spike count  

0

0



3. Evaluation on classification datasets
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• Image classification on 4 datasets: MNIST, Fashion-MNIST, Neuromorphic-MNIST, CIFAR10

• Fully-connected (MLP) and Convolutional (CNN) SNNs trained with backpropagation 

Our weight initialization can improve the classification accuracy with only T = 3 time steps



10Deep activity propagation via weight initialization in spiking neural networks

Conclusions

• Derive a new variance-conserving weight initialization method tailored to the activation function of SNNs

• Numerically validate that our method ensures stable spike propagation in deep SNNs, unlike baseline 

methods

• Show effectiveness of proper weight initialization on training across four image classification datasets
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