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Introduction

* Whatis a good weight initialization for a spiking neural network (SNN)?

* SNNs are often initialized following standard strategies designed for conventional networks (ANNS)

Xavier Glorot [11 = Sigmoid
Kaiming He [21 2 Relu

[1] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks
[2] K. He, X. Zhang, S. Ren, J. Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
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* SNNs are often initialized following standard strategies designed for conventional networks (ANNS)

Xavier Glorot [11 = Sigmoid
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In this paper

1. Analytically derive a weight initialization method tailored for SNNs

2. Empirically validate on simulations that our method ensures stable spike propagation in deep

SNNs, preventing dissipation or amplification

3. Show that our weight initialization enhances training speed and improves classification accuracy

on 4 different datasets
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1. Proposed SNN initialization method

* Feed-forward fully-connected SNN initialized at t=0. For a generic layer {:
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U = w,x

x; = f(ui_1)

1, if w_, >0
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Deep activity propagation via weight initialization in spiking neural networks

u; € R™  : membrane potentials
w; € R™X™: weight matrix

x; € {0,1}"™ :input spikes
f : activation function
0 . firing threshold



1. Proposed SNN initialization method

* Feed-forward fully-connected SNN initialized at t=0. For a generic layer {:

U] = WT; u; € R™  : membrane potentials
w; € R™X™: weight matrix
x; = f(ur-1) * WeIght
x; € {0,1}"™ :input spikes
1, if w_q >0 f : activation function
f(ut—l) = ) : firing threshold

0, if w_1<8

(21 Good initialization method: avoid reducing or amplifying the magnitudes of the input signals ...

[2] K. He, X. Zhang, S. Ren, J. Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
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(21 Good initialization method: avoid reducing or amplifying'the magnitudes of the input signals ...

Var|u;] = n;Var[w;z;] = constant ny :input size

... by keeping the variance of the input to each layer constant
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1. Proposed SNN initialization method

2 Pre-activation distribution Activation function Post-activation distribution
Var[u;] = n;Var|w;|E[z}]  [2]
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1. Proposed SNN initialization method
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2. Empirical validation: t=0

* 100 layers fully-connected SNN with Leaky Integrate-and-Fire (LIF) neurons
* Input I, drawn from N (u = 0,02 = 1), § €[0,1]

Our initialization Kaiming
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With the proposed method, unlike Kaiming, the variance of the membrane potentials stays constant across layers
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2. Empirical validation: t=0

* 100 layers fully-connected SNN with Leaky Integrate-and-Fire (LIF) neurons
* Input I drawn from N (= 0,02 = 1)
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Unlike other commonly used schemes, our initialization enables spiking activity to propagate from input to output
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2. Empirical validation: t=0

* 100 layers fully-connected SNN with Leaky Integrate-and-Fire (LIF) neurons

* Input I drawn from N (= 0,02 = 1)
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2. Empirical validation: t=0
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2. Empirical validation:}@ t>0
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2. Empirical validation: t>0

¢ 100 layers fully-connected SNN of Leaky Integrate-and-fire (LIF) neurons with soft reset
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2. Empirical validation: t>0
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3. Evaluation on classification datasets

* Image classification on 4 datasets: MNIST, Fashion-MNIST, Neuromorphic-MNIST, CIFAR10
* Fully-connected (MLP) and Convolutional (CNN) SNNs trained with backpropagation
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Our weight initialization can improve the classification accuracy with only T = 3 time steps
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Conclusions

* Derive a new variance-conserving weight initialization method tailored to the activation function of SNNs

* Numerically validate that our method ensures stable spike propagation in deep SNNs, unlike baseline

methods

* Show effectiveness of proper weight initialization on training across four image classification datasets
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Limitations & future work

* Our method does not explicitly account for temporal dynamics - extend theory

* Validation on more complex architectures and datasets
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2. Empirical validation: t>0

¢ 100 layers fully-connected SNN of Leaky Integrate-and-fire (LIF) neurons with soft reset

* Input Ip drawn from N (p = 0,02 = 1)
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