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Programmable plasticity

e plasticity: altering topology or parameterization during
experiment runtime according to decisions made on real

time observations
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Using mixed-signal neuromorphic hardware

AB e topology description

A e populations of neurons, projections of synapses

e pre-defined experiment protocol
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Using mixed-signal neuromorphic hardware

e topology description
e populations of neurons, projections of synapses
+ plasticity

e unplaced!

e pre-defined experiment protocol

e automated translation/mapping to/from hardware

e placement
calibration

routing

data transform
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BrainScaleS-2 neuromorphic system

e developed in Heidelberg

e analog AdEx neurons and COBA/CUBA synapses
e 1000x network dynamic speed-up

HW: Pehle et al. SW: Miiller et al.
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BrainScaleS-2 neuromorphic system

e 512 neurons with 256 synapses each
e two embedded SIMD plasticity processors

e layered software, multiple front ends

HW: Pehle et al. SW: Miiller et al.
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Plasticity on BrainScaleS-2: Embedded processor observables

controllables:
e synaptic weight (6 bit)
e neuron parameterization
o ...

observables:
e parallel ADC recording (8 bit)

e synaptic correlation (causal, acausal)
e neuron membrane/adaptation/synaptic inputs

e firing rate per neuron (spike counter, 148 bit)
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Plasticity on BrainScaleS-2: Restrictions/Limitations

learning rule
u —»
. . . o BrainScaleS-2 W
e learning rule execution duration limited: e
. . . u —p
concurrent time-continuous evolution of simulation - I
network dynamics experiment time
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Plasticity on BrainScaleS-2: Restrictions/Limitations

learning rule

u — >
. . . o BrainScaleS-2 W
e learning rule execution duration limited: e

. . . u —p
concurrent time-continuous evolution of simulation o~ I
network dynamics experiment time

e physical locality |

e available memory syns o
nrns

e calculation accuracy (no hardware float)

SYNS botom
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Plasticity abstraction:

execution model

host computer

static config sayback
1yl

time evolution program FPGA
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neural embedded
network processor
core

e JIT-compiled program for embedded
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~~ program

processors

network evolution and timed plasticity

\_9\ e synchronized execution of neural

= on processors

e scheduling of potentially multiple

network scheduled
time evolution plasticity rule

(sequential or alternating) plasticity
rules
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Plasticity abstraction: execution model

execution earliest-deadline-first scheduler
scheduled | | | | e fixed latency from passed deadline to
events .
T — T > rule execution
t
new events?  tearieos event > 2 e low computational overhead

e supports dynamic rule execution
schedule
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Plasticity abstraction: user interface in PyNN

import pynn_brainscales.brainscales2 as pynn
class MyPlasticity(pynn.PlasticityRule):
def __init__(self, timing, recording):
def generate kernel(self) -> str:
return "... embedded processor code ...
my_plasticity = MyPlasticity(...)
pop = pynn.Population(
.
Neuron(plasticity.rule=my_plasticity))
proj = pynn.Projection(
Synapse(plasticity.rule=my_plasticity))
# ... experiment protocol
proj.get_data("my_syn_obsv")

pop.get-data("my.nrn_obsv")

Programmable plasticity for analog neuromorphic hardware

e plasticity rule
e timing
e recording
e code for the embedded processor

e acting on network elements

e post-execution access to recorded data



Plasticity abstraction: kernel code & data flow

e embedded processor code
e functional interface
e access to network entities

void PLASTICITY_RULE_KERNEL (
array<Syn ewHandle, N> const& synapses,

array<Neuror andle, M> const& neurons)

{...}
e code generation for

o rule scheduling
e network entity handles
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Plasticity abstraction: kernel code & data flow

void PLASTICITY_RULE_KERNEL(
array<Syna;

ViewHandle, N> const& synapses,
array<NeuronViewHandle, M> const& neurons,
Recording& recording)

{...}

observables = {
"my_obsv": PlasticityRule.ObservablePerSynapse (
uint8, LayoutPerRow.packed),

struct Recording
{
ObsvPerSynPacked<uint8_t> my_obsv;

};
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e embedded processor code

e functional interface
e access to network entities
e access to recording

e customizable observable specification

e code generation for

o rule scheduling
e network entity handles
e recording structure



Evaluation via simple homeostatic rule
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Application

Application Atoui et al. Multi-timescale synaptic plasticity on analog neuromorphic hardware, NICE 2025.
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Dietrich et al. Sequence Learning with Analog Neuromorphic Multi-Compartment Neurons and On-Chip Structural STDP, ACAIN 2024.
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Poster: Atoui et al. Multi-timescale synaptic plasticity on analog NMHW

Plasticity in biology
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Plasticity on BrainScaleS-2
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plasticity rule
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Summary

class MyRule(pynn.PlasticityRule):

pop = pynn.Population(...(my_rule))

pop.get_data("'my_obsv")
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Summary
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Outlook

e embedded processor hardware optimizations

e SIMD unit instruction set enhancements (floats?)
e domain-specific language for plasticity rule code

e removes need for low-level knowledge about the embedded processors
e combining online plasticity and gradient-based learning

e meta-learning on plasticity rule hyperparameters, local regularization
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application of homeostatic rule:
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