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Programmable plasticity
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• plasticity: altering topology or parameterization during

experiment runtime according to decisions made on real

time observations

• programmable: ”freely”-configurable algorithm and

execution schedule
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Using mixed-signal neuromorphic hardware

A

B

AB • topology description

• populations of neurons, projections of synapses

+ plasticity

• unplaced!

• pre-defined experiment protocol

• automated translation/mapping to/from hardware

• placement

• calibration

• routing

• data transform
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BrainScaleS-2 neuromorphic system

• developed in Heidelberg

• analog AdEx neurons and COBA/CUBA synapses

• 1000 x network dynamic speed-up

HW: Pehle et al. SW: Müller et al.
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BrainScaleS-2 neuromorphic system

• 512 neurons with 256 synapses each

• two embedded SIMD plasticity processors

• layered software, multiple front ends

HW: Pehle et al. SW: Müller et al.
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Plasticity on BrainScaleS-2: Embedded processor observables

controllables:

• synaptic weight (6 bit)

• neuron parameterization

• . . .

observables:

• parallel ADC recording (8 bit)

• synaptic correlation (causal, acausal)

• neuron membrane/adaptation/synaptic inputs

• firing rate per neuron (spike counter, 1+8 bit)
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Plasticity on BrainScaleS-2: Restrictions/Limitations

• learning rule execution duration limited:

concurrent time-continuous evolution of

network dynamics

• physical locality

• available memory

• calculation accuracy (no hardware float)

learning rule

simulation

BrainScaleS-2

real time

experiment time

u

u
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Plasticity abstraction: execution model
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• JIT-compiled program for embedded

processors

• synchronized execution of neural

network evolution and timed plasticity

on processors

• scheduling of potentially multiple

(sequential or alternating) plasticity

rules
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Plasticity abstraction: execution model

t

execution

scheduled
events

new events? tearliest event > t?

...

earliest-deadline-first scheduler

• fixed latency from passed deadline to

rule execution

• low computational overhead

• supports dynamic rule execution

schedule
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Plasticity abstraction: user interface in PyNN

import pynn_brainscales.brainscales2 as pynn

class MyPlasticity(pynn.PlasticityRule):

def __init__(self, timing, recording):

...

def generate kernel(self) -> str:

return "... embedded processor code ..."

my_plasticity = MyPlasticity(...)

pop = pynn.Population(

...,

Neuron(plasticity rule=my plasticity))

proj = pynn.Projection(

...,

Synapse(plasticity rule=my plasticity))

# ... experiment protocol

proj.get data("my syn obsv")

pop.get data("my nrn obsv")

• plasticity rule

• timing

• recording

• code for the embedded processor

• acting on network elements

• post-execution access to recorded data
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Plasticity abstraction: kernel code & data flow

void PLASTICITY RULE KERNEL(

array<SynapseArrayViewHandle, N> const& synapses,

array<NeuronViewHandle, M> const& neurons)

{ ... }

• embedded processor code

• functional interface

• access to network entities

• access to recording

• customizable observable specification

• code generation for

• rule scheduling

• network entity handles

• recording structure
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Plasticity abstraction: kernel code & data flow

void PLASTICITY RULE KERNEL(

array<SynapseArrayViewHandle, N> const& synapses,

array<NeuronViewHandle, M> const& neurons,

Recording& recording)

{ ... }

observables = {

"my obsv": PlasticityRule.ObservablePerSynapse(

uint8, LayoutPerRow.packed),

...

}

struct Recording

{

ObsvPerSynPacked<uint8_t> my obsv;

...

};

• embedded processor code

• functional interface

• access to network entities

• access to recording

• customizable observable specification

• code generation for

• rule scheduling

• network entity handles

• recording structure
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Evaluation via simple homeostatic rule
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Application Dietrich et al. Sequence Learning with Analog Neuromorphic Multi-Compartment Neurons and On-Chip Structural STDP, ACAIN 2024.

Application Atoui et al. Multi-timescale synaptic plasticity on analog neuromorphic hardware, NICE 2025.
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Poster: Atoui et al. Multi-timescale synaptic plasticity on analog NMHW

Plasticity in biology
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Plasticity on BrainScaleS-2
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Summary
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class MyRule(pynn.PlasticityRule):
   ...

pop = pynn.Population(...(my_rule))

pop.get_data("my_obsv")

Programmable plasticity for analog neuromorphic hardware 12



Summary

A

B

AB

class MyRule(pynn.PlasticityRule):
   ...

pop = pynn.Population(...(my_rule))

pop.get_data("my_obsv")

t

execution

scheduled
events

new events? tearliest event > t?

...

host computer BrainScaleS-2

FPGA
neural

network
core

embedded
processor

static config

time evolution

execution

delayed
post-execution

computation

playback
program

responses

program

recorded
observable

readout

network
time evolution

scheduled
plasticity rule
executions

synchronize start time

update parameter

store recorded

observables

get observables

t

synchronized
execution

of
realtime
section

Programmable plasticity for analog neuromorphic hardware 12



Summary

A

B

AB

class MyRule(pynn.PlasticityRule):
   ...

pop = pynn.Population(...(my_rule))

pop.get_data("my_obsv")

t

execution

scheduled
events

new events? tearliest event > t?

...

host computer BrainScaleS-2

FPGA
neural

network
core

embedded
processor

static config

time evolution

execution

delayed
post-execution

computation

playback
program

responses

program

recorded
observable

readout

network
time evolution

scheduled
plasticity rule
executions

synchronize start time

update parameter

store recorded

observables

get observables

t

synchronized
execution

of
realtime
section

0 200 400 600 800

t [ms]

0

2

4

6

8

𝜈
[k
H
z
]

𝜈target

Δw = sign
(
𝜈target − 𝜈

)
Poster Multi-timescale synaptic plasticity

0

50

100

150

200

Sy
na

pt
ic 

we
ig

ht
 (%

)

STET WTET
Simulation
Emulation-h
Emulation-z

0 10 20 30
Time (s)

0

50

100

150

200

Sy
na

pt
ic 

we
ig

ht
 (%

)

SLFS

0 10 20 30
Time (s)

WLFS

Programmable plasticity for analog neuromorphic hardware 12



Outlook

• embedded processor hardware optimizations

• SIMD unit instruction set enhancements (floats?)

• domain-specific language for plasticity rule code

• removes need for low-level knowledge about the embedded processors

• combining online plasticity and gradient-based learning

• meta-learning on plasticity rule hyperparameters, local regularization
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application of homeostatic rule:

interactive notebook EBRAINS access
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