Integrating programmable plasticity in experiment
descriptions for analog neuromorphic hardware

Philipp Spilger>*, Eric Miiller!, Johannes Schemmel?

2025-03-25
*pspilger(@kip.uni—heidelberg.de

IKirchhoff-Institute for Physics, Heidelberg University.
?Institute of Computer Engineering, Heidelberg University.

‘ § SR\ Efectronic -
“@ | EBRAINS %%V %\/ﬁ i

Programmable plasticity

e plasticity: altering topology or parameterization during
experiment runtime according to decisions made on real

time observations

Programmable plasticity for analog neuromorphic hardware 1

Programmable plasticity

e plasticity: altering topology or parameterization during
experiment runtime according to decisions made on real

time observations

e programmable: "freely"-configurable algorithm and

dw = f(w, r)
I execution schedule
r
w /-ANM
O—a—0
pre syn post

Programmable plasticity for analog neuromorphic hardware 1

Using mixed-signal neuromorphic hardware

AB e topology description

A e populations of neurons, projections of synapses

e pre-defined experiment protocol

Programmable plasticity for analog neuromorphic hardware 2

Using mixed-signal neuromorphic hardware

e topology description

e populations of neurons, projections of synapses
+ plasticity

e pre-defined experiment protocol

Programmable plasticity for analog neuromorphic hardware 2

Using mixed-signal neuromorphic hardware

e topology description
e populations of neurons, projections of synapses
+ plasticity

e unplaced!

e pre-defined experiment protocol

e automated translation/mapping to/from hardware

e placement
calibration

routing

data transform

Programmable plasticity for analog neuromorphic hardware 2

BrainScaleS-2 neuromorphic system

e developed in Heidelberg

e analog AdEx neurons and COBA/CUBA synapses
e 1000x network dynamic speed-up

HW: Pehle et al. SW: Miiller et al.

Programmable plasticity for analog neuromorphic hardware 3

BrainScaleS-2 neuromorphic system

e 512 neurons with 256 synapses each
e two embedded SIMD plasticity processors

e layered software, multiple front ends

HW: Pehle et al. SW: Miiller et al.

Programmable plasticity for analog neuromorphic hardware

BrainScaleS-2 ASIC

rivers\ /
v
)

v

synapse array

i

ynapse d
v
v

)

¢¢¢¢¢¢¢¢3
OOOESBOO0!

neuron backend

analog parameter storage '

analog network core!

FPGA
host
link }owayb“k <—> computer
executor

Plasticity on BrainScaleS-2: Embedded processor observables

controllables:
e synaptic weight (6 bit)
e neuron parameterization
o ...

observables:
e parallel ADC recording (8 bit)

e synaptic correlation (causal, acausal)
e neuron membrane/adaptation/synaptic inputs

e firing rate per neuron (spike counter, 148 bit)

Programmable plasticity for analog neuromorphic hardware 4

Plasticity on BrainScaleS-2: Restrictions/Limitations

learning rule
u —»
. . . o BrainScaleS-2 W
e learning rule execution duration limited: e
. . . u —p
concurrent time-continuous evolution of simulation - I
network dynamics experiment time

Programmable plasticity for analog neuromorphic hardware 5

Plasticity on BrainScaleS-2: Restrictions/Limitations

learning rule

u — >
. . . o BrainScaleS-2 W
e learning rule execution duration limited: e

. . . u —p
concurrent time-continuous evolution of simulation o~ I
network dynamics experiment time

e physical locality |

e available memory syns o
nrns

e calculation accuracy (no hardware float)

SYNS botom

Programmable plasticity for analog neuromorphic hardware 5

Plasticity abstraction:

execution model

host computer

static config sayback
1yl

time evolution program FPGA

synchronized
execution

execution of
realtime
section

recorded
observable

readout
responses

delayed
post-execution
computation

BrainScaleS-2

neural embedded
network processor
core

e JIT-compiled program for embedded

\7*
~~ program

processors

network evolution and timed plasticity

_9\ e synchronized execution of neural

= on processors

e scheduling of potentially multiple

network scheduled
time evolution plasticity rule

(sequential or alternating) plasticity
rules

Programmable plasticity for analog neuromorphic hardware 6

Plasticity abstraction: execution model

execution earliest-deadline-first scheduler
scheduled | | | | e fixed latency from passed deadline to
events .
T — T > rule execution
t
new events? tearieos event > 2 e low computational overhead

e supports dynamic rule execution
schedule

Programmable plasticity for analog neuromorphic hardware 7

Plasticity abstraction: user interface in PyNN

import pynn_brainscales.brainscales2 as pynn
class MyPlasticity(pynn.PlasticityRule):
def __init__(self, timing, recording):
def generate kernel(self) -> str:
return "... embedded processor code ...
my_plasticity = MyPlasticity(...)
pop = pynn.Population(
.
Neuron(plasticity.rule=my_plasticity))
proj = pynn.Projection(
Synapse(plasticity.rule=my_plasticity))
... experiment protocol
proj.get_data("my_syn_obsv")

pop.get-data("my.nrn_obsv")

Programmable plasticity for analog neuromorphic hardware

e plasticity rule
e timing
e recording
e code for the embedded processor

e acting on network elements

e post-execution access to recorded data

Plasticity abstraction: kernel code & data flow

e embedded processor code
e functional interface
e access to network entities

void PLASTICITY_RULE_KERNEL (
array<Syn ewHandle, N> const& synapses,

array<Neuror andle, M> const& neurons)

{...}
e code generation for

o rule scheduling
e network entity handles

Programmable plasticity for analog neuromorphic hardware 9

Plasticity abstraction: kernel code & data flow

void PLASTICITY_RULE_KERNEL(
array<Syna;

ViewHandle, N> const& synapses,
array<NeuronViewHandle, M> const& neurons,
Recording& recording)

{...}

observables = {
"my_obsv": PlasticityRule.ObservablePerSynapse (
uint8, LayoutPerRow.packed),

struct Recording
{
ObsvPerSynPacked<uint8_t> my_obsv;

};

Programmable plasticity for analog neuromorphic hardware

e embedded processor code

e functional interface
e access to network entities
e access to recording

e customizable observable specification

e code generation for

o rule scheduling
e network entity handles
e recording structure

Evaluation via simple homeostatic rule

target 8 7

Vtar

got

neurons 6

Poisson

source

T T
10° 10 10°
target neurons

T
0 200 400 600 800
t [ms]

=40
& 107!
plastic z]
E E
: E
synapses : g 0
£ g
E
. ——
A W — Slgn (Vtarget — V) 0 200 400 600 800 1000 0 10 20 30 40

t [ms] rule execution latency [us]

Application

Application Atoui et al. Multi-timescale synaptic plasticity on analog neuromorphic hardware, NICE 2025.

Programmable plasticity for analog neuromorphic hardware

Dietrich et al. Sequence Learning with Analog Neuromorphic Multi-Compartment Neurons and On-Chip Structural STDP, ACAIN 2024.

10

Poster: Atoui et al. Multi-timescale synaptic plasticity on analog NMHW

Plasticity in biology

Early-phase weight

Spike times Synapse Late-phase weight

Protein
‘amount

Soma

concentration

Total synaptic
weight Spike times "":D’&"":;‘f

dh(t)
dt

dp(t)
dt

dz(t)
dt

a(h(t),c(t))

Blp(®).h(v)

NEONIGNIO)

Plasticity on BrainScaleS-2

are Synaptic
T Theight

Presynaptic spikes l
Projection
—

Postsynaptic
o Neuron

e

Parrot Postsynaptic calcium trace
Neuron
Bypass spikes l
Pirrw mon Calcium st

c
— samples e— ariables

Presynaptic calcium trace

e Adaptation traces for
emulating calcium

e Reduced precision (integer
arithmetics)

Programmable plasticity for analog neuromorphic hardware

Synaptic weight (%)

Synaptic weight (%)

Results
STET WTET
200 | —— Simulation
150 4 1 —— Emulation-z
100 4 B g—
50 o -1
o T T T T T T
SLFS WLFS
200 o E|
150 1
100 T
50 4 : -1
o T T T T T T
o 10 20 30 o 10 20 30
Time (s) Time (s)

e Accurate emulation of the
plasticity rule

11

Summary

class MyRule(pynn.PlasticityRule):

pop = pynn.Population(...(my_rule))

pop.get_data("'my_obsv")

Programmable plasticity for analog neuromorphic hardware

12

Summary

B
. host computer BrainScaleS-2
AB
static confi
9 playback neural gmpeqded
time evolution program FPGA network processor

core

~J__

class MyRule(pynn.PlasticityRule): J— \

pop = pynn.Population(...(my_rule))

pop.get_data("'my_obsv")

«
ime evoluton

delayed
post-execution
computation

executon - . . .

scheduled
events

new events? tearliest event > t?

Programmable plasticity for analog neuromorphic hardware 12

Summary

AB .

class MyRule(pynn.PlasticityRule):

pop = pynn.Population(...(my_rule))

pop.get_data("'my_obsv")

host computer BrainScaleS-2
static confi
9 playback neural embedded
time evolution progem FPGA nework processor

core

~J__

synchonized \
execution of
reatme

nenwork
imo evolton
delayed
post-execution
computation
executon - . . -
scheduled
events -

new events? tearliest event > t?

Programmable plasticity for analog neuromorphic hardware

v [kHz)

T T
0 200 400

T T
600 800

t [ms]

Aw = sign (Viarget — v)

Poster Muiti-timescale synaptic plasticity

STET

wreT

g
£ 150

s0

Synaptic

]

s wiss
£
) P
L=
T % m woe n w
et e

12

Outlook

e embedded processor hardware optimizations

e SIMD unit instruction set enhancements (floats?)
e domain-specific language for plasticity rule code

e removes need for low-level knowledge about the embedded processors
e combining online plasticity and gradient-based learning

e meta-learning on plasticity rule hyperparameters, local regularization

Programmable plasticity for analog neuromorphic hardware 13

Outlook

e embedded processor hardware optimizations

e SIMD unit instruction set enhancements (floats?)
e domain-specific language for plasticity rule code

e removes need for low-level knowledge about the embedded processors
e combining online plasticity and gradient-based learning

e meta-learning on plasticity rule hyperparameters, local regularization

application of homeostatic rule:

(O] Pl

interactive notebook

s
iz

Programmable plasticity for-analog neuromorphic hardware 13

