
Electronic

Visions

Integrating programmable plasticity in experiment

descriptions for analog neuromorphic hardware

Philipp Spilger1,2,*, Eric Müller1, Johannes Schemmel2

2025-03-25

*pspilger@kip.uni-heidelberg.de
1Kirchhoff-Institute for Physics, Heidelberg University.
2Institute of Computer Engineering, Heidelberg University.

Programmable plasticity

A

B

AB

• plasticity: altering topology or parameterization during

experiment runtime according to decisions made on real

time observations

• programmable: ”freely”-configurable algorithm and

execution schedule

Programmable plasticity for analog neuromorphic hardware 1

Programmable plasticity

A

B

AB

w
r

dw = f(w, r)

pre
syn

post

• plasticity: altering topology or parameterization during

experiment runtime according to decisions made on real

time observations

• programmable: ”freely”-configurable algorithm and

execution schedule

Programmable plasticity for analog neuromorphic hardware 1

Using mixed-signal neuromorphic hardware

A

B

AB • topology description

• populations of neurons, projections of synapses

+ plasticity

• unplaced!

• pre-defined experiment protocol

• automated translation/mapping to/from hardware

• placement

• calibration

• routing

• data transform

Programmable plasticity for analog neuromorphic hardware 2

Using mixed-signal neuromorphic hardware

A

B

AB • topology description

• populations of neurons, projections of synapses

+ plasticity

• unplaced!

• pre-defined experiment protocol

• automated translation/mapping to/from hardware

• placement

• calibration

• routing

• data transform

Programmable plasticity for analog neuromorphic hardware 2

Using mixed-signal neuromorphic hardware

A

B

AB

A B

AB

• topology description

• populations of neurons, projections of synapses

+ plasticity

• unplaced!

• pre-defined experiment protocol

• automated translation/mapping to/from hardware

• placement

• calibration

• routing

• data transform

Programmable plasticity for analog neuromorphic hardware 2

BrainScaleS-2 neuromorphic system

• developed in Heidelberg

• analog AdEx neurons and COBA/CUBA synapses

• 1000 x network dynamic speed-up

HW: Pehle et al. SW: Müller et al.

Programmable plasticity for analog neuromorphic hardware 3

BrainScaleS-2 neuromorphic system

• 512 neurons with 256 synapses each

• two embedded SIMD plasticity processors

• layered software, multiple front ends

HW: Pehle et al. SW: Müller et al.

ev
en
t
IF neurons

sy
n
ap
se

d
ri
ve
rs

analog parameter storage

neuron backend

synapse array

CADC

SIMD processor

analog network core
link

ev
en
t

h
an
d
lin
g

co
n
fi
g.

m
em

or
y

co
n
tr
ol
le
rs

BrainScaleS-2 ASIC

link
playback

executor
memory

FPGA
host

computer

Programmable plasticity for analog neuromorphic hardware 3

Plasticity on BrainScaleS-2: Embedded processor observables

controllables:

• synaptic weight (6 bit)

• neuron parameterization

• . . .

observables:

• parallel ADC recording (8 bit)

• synaptic correlation (causal, acausal)

• neuron membrane/adaptation/synaptic inputs

• firing rate per neuron (spike counter, 1+8 bit)

wij

zi

synapse

neuron

uj

zj

rj +1

t

t

t

cij

zi

zj

Programmable plasticity for analog neuromorphic hardware 4

Plasticity on BrainScaleS-2: Restrictions/Limitations

• learning rule execution duration limited:

concurrent time-continuous evolution of

network dynamics

• physical locality

• available memory

• calculation accuracy (no hardware float)

learning rule

simulation

BrainScaleS-2

real time

experiment time

u

u

Programmable plasticity for analog neuromorphic hardware 5

Plasticity on BrainScaleS-2: Restrictions/Limitations

• learning rule execution duration limited:

concurrent time-continuous evolution of

network dynamics

• physical locality

• available memory

• calculation accuracy (no hardware float)

learning rule

simulation

BrainScaleS-2

real time

experiment time

u

u

nrns
syns top

syns bottom

Programmable plasticity for analog neuromorphic hardware 5

Plasticity abstraction: execution model

host computer BrainScaleS-2

FPGA
neural

network
core

embedded
processor

static config

time evolution

execution

delayed
post-execution

computation

playback
program

responses

program

recorded
observable

readout

network
time evolution

scheduled
plasticity rule
executions

synchronize start time

update parameter

store recorded

observables

get observables

t

synchronized
execution

of
realtime
section

• JIT-compiled program for embedded

processors

• synchronized execution of neural

network evolution and timed plasticity

on processors

• scheduling of potentially multiple

(sequential or alternating) plasticity

rules

Programmable plasticity for analog neuromorphic hardware 6

Plasticity abstraction: execution model

t

execution

scheduled
events

new events? tearliest event > t?

...

earliest-deadline-first scheduler

• fixed latency from passed deadline to

rule execution

• low computational overhead

• supports dynamic rule execution

schedule

Programmable plasticity for analog neuromorphic hardware 7

Plasticity abstraction: user interface in PyNN

import pynn_brainscales.brainscales2 as pynn

class MyPlasticity(pynn.PlasticityRule):

def __init__(self, timing, recording):

...

def generate kernel(self) -> str:

return "... embedded processor code ..."

my_plasticity = MyPlasticity(...)

pop = pynn.Population(

...,

Neuron(plasticity rule=my plasticity))

proj = pynn.Projection(

...,

Synapse(plasticity rule=my plasticity))

... experiment protocol

proj.get data("my syn obsv")

pop.get data("my nrn obsv")

• plasticity rule

• timing

• recording

• code for the embedded processor

• acting on network elements

• post-execution access to recorded data

Programmable plasticity for analog neuromorphic hardware 8

Plasticity abstraction: kernel code & data flow

void PLASTICITY RULE KERNEL(

array<SynapseArrayViewHandle, N> const& synapses,

array<NeuronViewHandle, M> const& neurons)

{ ... }

• embedded processor code

• functional interface

• access to network entities

• access to recording

• customizable observable specification

• code generation for

• rule scheduling

• network entity handles

• recording structure

Programmable plasticity for analog neuromorphic hardware 9

Plasticity abstraction: kernel code & data flow

void PLASTICITY RULE KERNEL(

array<SynapseArrayViewHandle, N> const& synapses,

array<NeuronViewHandle, M> const& neurons,

Recording& recording)

{ ... }

observables = {

"my obsv": PlasticityRule.ObservablePerSynapse(

uint8, LayoutPerRow.packed),

...

}

struct Recording

{

ObsvPerSynPacked<uint8_t> my obsv;

...

};

• embedded processor code

• functional interface

• access to network entities

• access to recording

• customizable observable specification

• code generation for

• rule scheduling

• network entity handles

• recording structure

Programmable plasticity for analog neuromorphic hardware 9

Evaluation via simple homeostatic rule

Poisson

source

..
.

target

neurons

plastic

synapses

Δw = sign
(
𝜈target − 𝜈

)

0 200 400 600 800

t [ms]

0

2

4

6

8

𝜈
[k
H
z
]

𝜈target

0 200 400 600 800 1000

t [ms]

0

10

20

30

40

sy
n
a
p
ti
c
w
e
ig
h
t
[a
.u
.]

100 101 102

target neurons

101

102

d
u
ra

ti
o
n

p
e
r
sy

n
a
p
se

[u
s]

0 10 20 30 40

rule execution latency [us]

10−2

10−1

o
c
c
u
rr
e
n
c
e

Application Dietrich et al. Sequence Learning with Analog Neuromorphic Multi-Compartment Neurons and On-Chip Structural STDP, ACAIN 2024.

Application Atoui et al. Multi-timescale synaptic plasticity on analog neuromorphic hardware, NICE 2025.

Programmable plasticity for analog neuromorphic hardware 10

Poster: Atoui et al. Multi-timescale synaptic plasticity on analog NMHW

Plasticity in biology

dh(t)
dt

= 𝛼

(
h(t) , c (t)

)
dp (t)
dt

= 𝛽

(
p (t) , h (t)

)
dz (t)
dt

= 𝛾

(
z (t) , h (t) , p (t)

)

Plasticity on BrainScaleS-2

Spike Source

Bypass
projection

Presynaptic spikes

Projection Postsynaptic
Neuron

Postsynaptic spikes

Hardware
weight

Synaptic
weight

Parrot
Neuron

Bypass spikes

Presynaptic calcium trace

Postsynaptic calcium trace

Calcium
samples

STC
variables

• Adaptation traces for

emulating calcium

• Reduced precision (integer

arithmetics)

Results

0

50

100

150

200

Sy
na

pt
ic

we
ig

ht
 (%

)

STET WTET
Simulation
Emulation-h
Emulation-z

0 10 20 30
Time (s)

0

50

100

150

200

Sy
na

pt
ic

we
ig

ht
 (%

)

SLFS

0 10 20 30
Time (s)

WLFS

• Accurate emulation of the

plasticity rule

Programmable plasticity for analog neuromorphic hardware 11

Summary

A

B

AB

class MyRule(pynn.PlasticityRule):
 ...

pop = pynn.Population(...(my_rule))

pop.get_data("my_obsv")

Programmable plasticity for analog neuromorphic hardware 12

Summary

A

B

AB

class MyRule(pynn.PlasticityRule):
 ...

pop = pynn.Population(...(my_rule))

pop.get_data("my_obsv")

t

execution

scheduled
events

new events? tearliest event > t?

...

host computer BrainScaleS-2

FPGA
neural

network
core

embedded
processor

static config

time evolution

execution

delayed
post-execution

computation

playback
program

responses

program

recorded
observable

readout

network
time evolution

scheduled
plasticity rule
executions

synchronize start time

update parameter

store recorded

observables

get observables

t

synchronized
execution

of
realtime
section

Programmable plasticity for analog neuromorphic hardware 12

Summary

A

B

AB

class MyRule(pynn.PlasticityRule):
 ...

pop = pynn.Population(...(my_rule))

pop.get_data("my_obsv")

t

execution

scheduled
events

new events? tearliest event > t?

...

host computer BrainScaleS-2

FPGA
neural

network
core

embedded
processor

static config

time evolution

execution

delayed
post-execution

computation

playback
program

responses

program

recorded
observable

readout

network
time evolution

scheduled
plasticity rule
executions

synchronize start time

update parameter

store recorded

observables

get observables

t

synchronized
execution

of
realtime
section

0 200 400 600 800

t [ms]

0

2

4

6

8

𝜈
[k
H
z
]

𝜈target

Δw = sign
(
𝜈target − 𝜈

)
Poster Multi-timescale synaptic plasticity

0

50

100

150

200

Sy
na

pt
ic

we
ig

ht
 (%

)

STET WTET
Simulation
Emulation-h
Emulation-z

0 10 20 30
Time (s)

0

50

100

150

200

Sy
na

pt
ic

we
ig

ht
 (%

)

SLFS

0 10 20 30
Time (s)

WLFS

Programmable plasticity for analog neuromorphic hardware 12

Outlook

• embedded processor hardware optimizations

• SIMD unit instruction set enhancements (floats?)

• domain-specific language for plasticity rule code

• removes need for low-level knowledge about the embedded processors

• combining online plasticity and gradient-based learning

• meta-learning on plasticity rule hyperparameters, local regularization

Programmable plasticity for analog neuromorphic hardware 13

Outlook

• embedded processor hardware optimizations

• SIMD unit instruction set enhancements (floats?)

• domain-specific language for plasticity rule code

• removes need for low-level knowledge about the embedded processors

• combining online plasticity and gradient-based learning

• meta-learning on plasticity rule hyperparameters, local regularization

application of homeostatic rule:

interactive notebook EBRAINS access

Programmable plasticity for analog neuromorphic hardware 13

