SpiNNcloud

Event-based Backpropagation on SpiNNaker2:
On-chip and hybrid training using EventProp algorithm

o Gabriel Béna
“é} Imperial College London & SpiNNcloud Systems

Introduction and Context

e We want to train networks on-chip.
o Reduce energy footprint of training.
o Key for unlocking true potential of embedded intelligent agents ?
o Requires retaining sparsity of event-based communications during training

e We also might want to use exact gradients. Usually we use surrogates, but what is

the impact of this ?
o It has been suggested that surrogate are robust.
o Impact of surrogate vs exact still not fully understood.

e But: on-chip learning is hard !

The Remarkable Robustness of Surrogate Gradient Learning
Zenke, Vogels, 2020 SpiNNcloud

The EventProp Algorithm

. . . Forward Pass Backward Pass
e Exact gradient computation that is purely event-based A Biof Tnom il Dl T

(sparse vs dense sampling for surrogate), which is good for W m] jj
hardware. W/ *u

o Theidea is that we can get gradients by computing the w |4 o ~>C°‘° W LW i MM
adjoint system of an SNN:
o Basically, after the simulation has run in forward time, we run it . [l . | E
again in reverse-time according to a new set of dynamics. S :: § ::

&£ 04 0.6
Time [s]

o This is not more expensive than forward pass.

o Using activity of reverse-time mode, we recover exact
gradients!

Event-Based Backpropagation can compute Exact Gradients for Spiking Neural Networks

Wunderlich, Pelhe 2022 SpiNNcloud

Yin-Yang Dataset

Encoded coordinates

True coordinates

Small scale: easy to fit on-chip.

2000 S SO0 OSS o0
o9 S0 o8 SSGSeRESS

Not linearly separable.

[
S
©
2
o
)
v
S
o
S
-
()
(e
3
i)
“©
<
(%]
| .
O
[
Qo
=
(eT0]
c
Q
“©
<
@)

This in turns help us validate gradient
propagation in multi-layer network.

O

15 20 25

10

1.0

0.8

0.6

0.4

0.2

0.0

Time to first spike

The Yin-Yang dataset
Kriener et al, 2021

SpiNNcloud

On-Chip Implementation

e One PE per dedicated population
of neurons:

O O O O

Input Spikes
Neuron layer 1 1 Quad-PE
Neuron layer 2 1 Batch

Loss Computation

e 1 global optimizer (Adam) PE.

O O O O

Synchronize sample processing.
Gather gradients across batches.
Compute new weights.

Dispatch new weights before
starting new sample processing.

A.2

A1 //
" heste) empr)
ion Config » Optimi
Program /
.
Input Data » Input Spikes

Initial Weights

Yy

Neuron Layer

(Python)

Experiment
Runner

Gradients: G
Weight decay: G, + A\W,_,
Adam: A — A

=

“TInput sample Spikes

X;:0.15
Y,:0.38

Output Spikes First Spikes
t1:0.2
T :036
t3:0.6
+

New Weights:W,_, — W, |-
N

Z
h _A’é/
\Qu- -

~,
N\
\

\

\

A\

\

(-

SpiN|
c. \l ’

‘b sssss o | ewoe | oo ‘.‘\
- WEEEREE
SRR 5 B R5IRS RS RS 185
e

73 F2 RIRRT I

g B
e E F Pavoo | osne |

T f

pA L

/

/ // /

I/

YAy
A,
/S
/////
Yo

SpiNNcloud

Off- Chip Simulator

Fully identical simulator.

Purpose:

o Efficient prototyping
o Convenient debugging
o Parameter search and optimization

Implementation details:

o Custom PyTorch package
o Matches on-chip simulation behaviour
o Available at pytorch-eventprop (open-source)

Bayesian hyperparameter optimization:
o "Weights and Biases" software package
o Optimized parameters were then used for on-chip
implementation

Hybrid training (more later).

10— On-chip 5
0.8 Off-chip 4
o =
2 0.6 3
S 04 32
0.2 1
0.0 0
0 5 10
Tlmestep
Layer 2 - V Difference
Mean: 3.73E-08 + 6.63E-08
le—7 Max | Diff|: 2.38E-07
2 —— Mean Difference
g +1 Std Dev = 25
£1 e
S 3 -5.0
0 -75
0 5 10 20 25
Timestep
Gradients
Layer 1, Diff = 1.14e-11 + 9.45e-12
4 - 1.0
(= -~
£ 2 //
9 / 0.5
3
o 0 >
i 0.0
) .
-2 0 2 4
Weights
Layer 1, Diff = 5.06e-08 + 8.28e-08
4 = 1.0
[=% -~
£ 2 ,./
& / 0.5
G 0 =
-2 1 0.0
-2 0 2 4

Layer 2 - Voltage

Layer 2 - Current

—— On-chip
Off-chip
20 25
Timestep
Layer 2 - | Difference
Mean: -1.08E-07 + 1.98E-07
le—7 Max |Diff|: 7.15E-07

—— Mean Difference
+1 Std Dev

0 5 10
Tlmestep

Layer 2, Diff = 2.92e-11 * 1.17e-11

e

~

-0.25 0.00 0.25 0.50 0.75 1.00 1.25

Layer 2, Diff = 2.51e-08 + 1.75e-08

~

-0.25 0.00 0.25 0.50 0.75 1.00 1.25

On-Chip

Full dataset Small dataset

Training Results
0.96
° 0.80
® 8075
e Full Dataset 2 002 . 3
< o o3 50.70 .
o 5000 training samples 0.90 .
o Batch Processing Eta::itn 0.65 ° Dataset
o 20 epochs 088 N test ° ° = t::asltn °
0.60 _
“) off-chip on-chip off-chip on-chip
e “Online” Dataset Backend Backend

o 300 samples

° Batehl On-chip Time Ener inference
o Single pass trough the data gy (p.)

61 ms 0.45 W ~27 mJ (1.22)

o Close match with off-chip (30+30+1)

Energy Profiling Results
e Demonstrate the viability of training on- &Y &

chip Forwards + Backward + Update

Batch Size 22

Hybrid Worflows

Meta-Learn
Off-Chip

Validate
Off-Chip

Implemented

Pre-Train Sync + Transfer
Off-chip Off-chip

Meta-learning spiking neural networks with surrogate gradient descent Future Work
Stewart, Neftci 2022

Conclusions, Future Work

Training in-chip is possible...

...But scaling EventProp might be hard.
o DRAM now available
o Bigger networks and datasets

We can utilize NIR for better On-chip <-> Off-chip.

Super excited about Jaxsnn !

o JAX + NIR + MAML should be a match for effective meta-
learning + adaptation ?

—Let’s get “best of both world” via hybrid learning
approaches !

Come to SpiNNaker2 Tutorial !!

)\

i
i

i
!I
-
L

SpiNNcloud

SpiNNcloud

Thank you
for your attention

Thanks to Timo Wunderlich, Bernhard Vogginger and SpiNNcloud Colleagues !

	Slide 1: Event-based Backpropagation on SpiNNaker2: On-chip and hybrid training using EventProp algorithm
	Slide 2: Introduction and Context
	Slide 3: The EventProp Algorithm
	Slide 4: Yin-Yang Dataset
	Slide 5: On-Chip Implementation
	Slide 6: Off- Chip Simulator
	Slide 7: Training Results
	Slide 8: Hybrid Worflows
	Slide 9: Conclusions, Future Work
	Slide 10

