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Introduction and Context

e We want to train networks on-chip.
o Reduce energy footprint of training.
o  Key for unlocking true potential of embedded intelligent agents ?
o  Requires retaining sparsity of event-based communications during training

e We also might want to use exact gradients. Usually we use surrogates, but what is

the impact of this ?
o It has been suggested that surrogate are robust.
o Impact of surrogate vs exact still not fully understood.

e But: on-chip learning is hard !

The Remarkable Robustness of Surrogate Gradient Learning
Zenke, Vogels, 2020 SpiNNcloud



The EventProp Algorithm

. . . Forward Pass Backward Pass
e Exact gradient computation that is purely event-based A Biof Tnom il Dl T

(sparse vs dense sampling for surrogate), which is good for W m] jj
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o Theidea is that we can get gradients by computing the w |4 o ~>C°‘° W LW i MM
adjoint system of an SNN:
o  Basically, after the simulation has run in forward time, we run it . [l . | E
again in reverse-time according to a new set of dynamics. S :: § ::
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o This is not more expensive than forward pass.

o Using activity of reverse-time mode, we recover exact
gradients!

Event-Based Backpropagation can compute Exact Gradients for Spiking Neural Networks

Wunderlich, Pelhe 2022 SpiNNcloud



Yin-Yang Dataset

Encoded coordinates

True coordinates

Small scale: easy to fit on-chip.
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Not linearly separable.
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This in turns help us validate gradient
propagation in multi-layer network.
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The Yin-Yang dataset
Kriener et al, 2021
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On-Chip Implementation

e One PE per dedicated population
of neurons:

O O O O

Input Spikes
Neuron layer 1 1 Quad-PE
Neuron layer 2 1 Batch

Loss Computation

e 1 global optimizer (Adam) PE.

O O O O

Synchronize sample processing.
Gather gradients across batches.
Compute new weights.

Dispatch new weights before
starting new sample processing.
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Off- Chip Simulator

Fully identical simulator.

Purpose:

o Efficient prototyping
o  Convenient debugging
o  Parameter search and optimization

Implementation details:

o Custom PyTorch package
o Matches on-chip simulation behaviour
o  Available at pytorch-eventprop (open-source)

Bayesian hyperparameter optimization:
o  "Weights and Biases" software package
o  Optimized parameters were then used for on-chip
implementation

Hybrid training (more later).
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Full dataset Small dataset

Training Results
0.96
° 0.80
® 8075
e Full Dataset 2 002 . 3
< o o3 50.70 .
o 5000 training samples 0.90 .
o Batch Processing Eta::itn 0.65 °  Dataset
o 20 epochs 088 N test ° ° = t::asltn °
0.60 _
“ ) off-chip on-chip off-chip on-chip
e “Online” Dataset Backend Backend

o 300 samples

° Batehl On-chip Time Ener inference
o  Single pass trough the data gy (p. )

61 ms 0.45 W ~27 mJ (1.22)

o Close match with off-chip (30+30+1)

Energy Profiling Results
e Demonstrate the viability of training on- &Y &

chip Forwards + Backward + Update

Batch Size 22



Hybrid Worflows

Meta-Learn
Off-Chip

Validate
Off-Chip

Implemented

Pre-Train Sync + Transfer
Off-chip Off-chip

Meta-learning spiking neural networks with surrogate gradient descent Future Work
Stewart, Neftci 2022



Conclusions, Future Work

Training in-chip is possible...

...But scaling EventProp might be hard.
o DRAM now available
o  Bigger networks and datasets

We can utilize NIR for better On-chip <-> Off-chip.

Super excited about Jaxsnn !

o JAX + NIR + MAML should be a match for effective meta-
learning + adaptation ?

—Let’s get “best of both world” via hybrid learning
approaches !

Come to SpiNNaker2 Tutorial !!
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Thank you
for your attention

Thanks to Timo Wunderlich, Bernhard Vogginger and SpiNNcloud Colleagues !
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