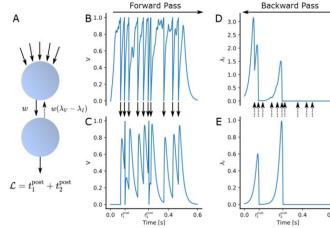
SpiNNcloud

Event-based Backpropagation on SpiNNaker2: On-chip and hybrid training using EventProp algorithm


Gabriel Béna

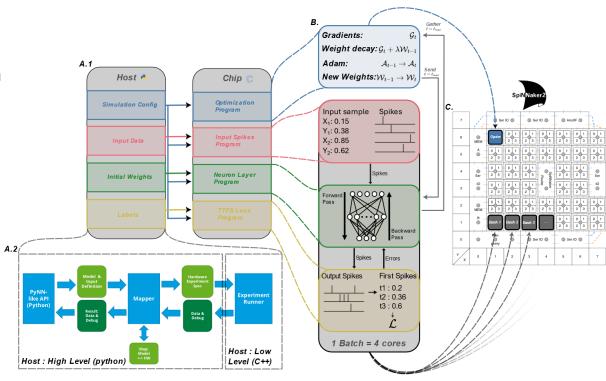
Introduction and Context

- We want to train networks on-chip.
 - Reduce energy footprint of training.
 - Key for unlocking true potential of embedded intelligent agents?
 - Requires retaining sparsity of event-based communications during training
- We also might want to use exact gradients. Usually we use surrogates, but what is the impact of this?
 - It has been suggested that surrogate are robust.
 - Impact of surrogate vs exact still not fully understood.
- But : on-chip learning is hard !

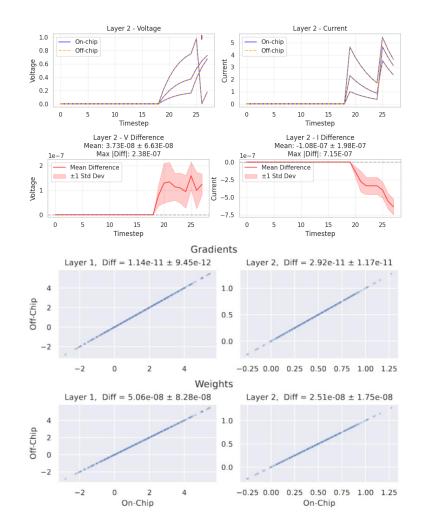
The EventProp Algorithm

- Exact gradient computation that is purely event-based (sparse vs dense sampling for surrogate), which is good for hardware.
- The idea is that we can get gradients by computing the adjoint system of an SNN:
 - Basically, after the simulation has run in forward time, we run it again in reverse-time according to a new set of dynamics.
 - This is not more expensive than forward pass.
 - Using activity of reverse-time mode, we recover exact gradients!

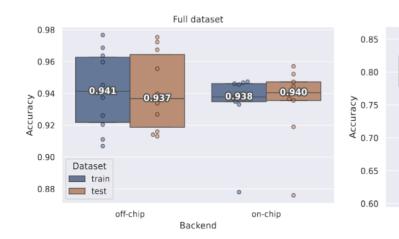
Yin-Yang Dataset


- Small scale: easy to fit on-chip.
- Not linearly separable.
- Challenging for shallow network to learn
 - This in turns help us validate gradient propagation in multi-layer network.

On-Chip Implementation


- One PE per dedicated population of neurons:
 - Input Spikes
 - Neuron layer 1
 - Neuron layer 2
 - Loss Computation
- 1 Quad-PE
- 1 Batch

- 1 global optimizer (Adam) PE.
 - Synchronize sample processing.
 - Gather gradients across batches.
 - Compute new weights.
 - Dispatch new weights before starting new sample processing.


Off- Chip Simulator

- Fully identical simulator.
- Purpose:
 - Efficient prototyping
 - Convenient debugging
 - Parameter search and optimization
- Implementation details:
 - Custom PyTorch package
 - Matches on-chip simulation behaviour
 - Available at pytorch-eventprop (open-source)
- Bayesian hyperparameter optimization:
 - "Weights and Biases" software package
 - Optimized parameters were then used for on-chip implementation
- Hybrid training (more later).

Training Results

- Full Dataset
 - 5000 training samples
 - Batch Processing
 - o 20 epochs
- "Online" Dataset
 - o 300 samples
 - o Batch 1
 - Single pass trough the data
- Close match with off-chip
- Demonstrate the viability of training onchip

On-chip Time	Power	Energy (p. inference)
61 ms (30 + 30 + 1)	0.45 W	~27 mJ (1.22)

off-chip

0.795

Small dataset

Dataset

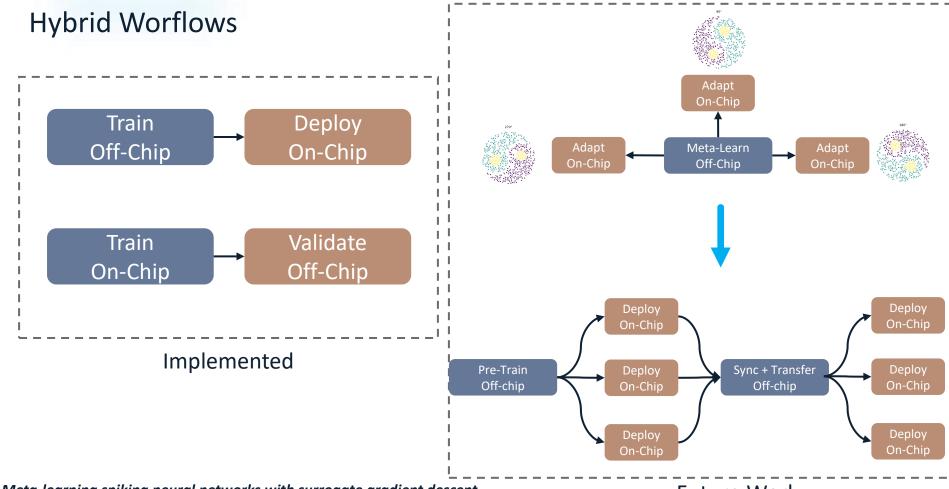
train

Backend

test

0.769

0.782


on-chip

0.778

Energy Profiling Results

Forwards + Backward + Update

Batch Size 22

Meta-learning spiking neural networks with surrogate gradient descent

Future Work

Conclusions, Future Work

- Training in-chip is possible...
- ...But scaling EventProp might be hard.
 - DRAM now available
 - Bigger networks and datasets
- We can utilize NIR for better On-chip <-> Off-chip.
- Super excited about Jaxsnn!
 - JAX + NIR + MAML should be a match for effective metalearning + adaptation ?
- →Let's get "best of both world" via hybrid learning approaches!

Come to SpiNNaker2 Tutorial!!

SpiNNcloud

Thank you for your attention

