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CRC 1286: Quantitative Synaptology
Speaker: Prof. Rizzoli; Vice-Speaker: Prof. Tetzlaff

Goal: To analyze the synapse in quantitative detail, to enable 

computational models of synaptic function.

Deeper understanding of:

• synapse function

• synaptic disease

• single-synapse computation

• differences between synapses

• link between synapse structure and function → connectomics

Outcome:

Computational model of

synaptic dynamics

www.sfb1286.de

Research Community
Cellular Neurosci., Molecular Neurosci., Computational Neurosci., Systems Neurosci., Neurology, 

Artifical Intelligence, Neuromorphic Computing, …

2017-2029
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General properties:
• No error-signal
• No training/inference phase
• Local variables
• Continuous learning
• Low weight precision
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Maintenance of LTP:Induction of Long-term Potentiation (LTP):
100 Hz for 1 sec or 10 Hz for 10 sec

Bliss and Lomo, 1973
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Early- and Late-Phase Plasticity

The synaptic weight consists of two components
i)  Early-phase weight (e.g. receptor dynamics)
ii) Late-phase weight (e.g. synthesis of new proteins)

Clopath et al., 2008; Barrett et al., 2009; Li, 
Kulvicius, Tetzlaff, 2016; Luboeinski & Tetzlaff, 
2021; 2022;

Luboeinski & Tetzlaff, 2024 
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Luboeinski & Tetzlaff, 2021; 2022

𝜏𝑑𝑒𝑐𝑎𝑦
𝑒𝑎𝑟𝑙𝑦

~ ℎ𝑟𝑠

Synaptic weight ≈ Early-phase weight 

Synaptic weight

Early-phase weight

Late-phase weight

𝜏𝑑𝑒𝑐𝑎𝑦
𝑙𝑎𝑡𝑒 ~ 𝑑𝑎𝑦𝑠

Calcium-based plasticity + Protein-synthesis triggeredOnly calcium-based plasticity
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ii) Late-phase weight (e.g. synthesis of new proteins)

Clopath et al., 2008; Barrett et al., 2009; Li, 
Kulvicius, Tetzlaff, 2016; Luboeinski & Tetzlaff, 
2021; 2022;



Functional Implications

Luboeinksi & Tetzlaff, 2021

Synaptic weight

Early-phase weight

Late-phase weight

✓ Consolidation or stabilization 
of memory representations

Luboeinksi & Tetzlaff, 2021
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✓ Automatic improvement of 
memory representations

RecallLearning

About 20% stronger synaptic
weights several hours after

learning



Functional Implications

Luboeinksi & Tetzlaff, 2022

2k neurons with about 400k synapses resulting to 
more than 1.2m coupled DEQ to be calculated with 
timescales from ms (spikes) to hrs (late-phase) 

Luboeinksi & Tetzlaff, 2021
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✓ Automatic improvement of 
memory representations

✓ Priming of memory representations 
for several hours



Neuromorphic Implementation of Multi-timescale Plasticity

Goal: Utilizing the accelerated calculation of
neuronal dynamics by BrainScaleS-2 to enable

BrainScaleS-2 Implementation

long-term investigations of
memory dynamics, being
relevant for neuroscience
and medicine

In cooperation
with
Schemmel lab 
(A. Atoui, J. 
Kaiser, et al.)

Atoui et al., 2024, arXiv

CMOS-based Implementation

    
     

     
     

  
 

  
 

  
    

 

 

  
   

    
  

 

 
 

calcium block early-phase block

late-phase block

     

   

         

            

          

   

   

      

    

                

   

   

    

   

    
    

   
  

   

   

    

   

         

      

   

         

   

   

           

     

    

   

       

    

           

         

     

   

   

        

     

        

In cooperation
with Covi lab (F. 
Quintana, P. 
Gibertini, et al.)

Goal: Obtain a hardware system that is optimized to
store information on the biological timescales of
several hours
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“Precision” of components

Allen Institute for Brain Science. Synaptic Physiology
Coarse Matrix dataset (2019)

LEGO bricks are accurate to within 2 micrometers

https://www.natgeokids.com/uk/kids-
club/entertainment/general-entertainment/ten-top-lego-facts/

“memory of a neuron”

neuron type

neuron type



Testing Neuronal Heterogeneity in RNNs

Multi-dimensional, partially 
predictable (sensory) input

Multiple tasks or target 
functions

Heterogeneity level

None Low Medium       High very High Same network 
architecture, with
different levels of
heterogeneity
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Testing Neuronal Heterogeneity in RNNs
Heterogeneity level
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One examplary task

By varying the task parameters, we
obtained in total 435 different tasks.

Golmohammadi & Tetzlaff, 2024, arXiv



The Influence of Heterogeneity on Task Performance

one dot is
one task

Golmohammadi & Tetzlaff, 2024, arXiv



The Influence of Heterogeneity on Task Performance

Rate-coded Neurons Spiking Neurons

Golmohammadi & Tetzlaff, 2024, arXiv



Heterogeneity improves Performance across
Hyperparameters

Different Average 
Synaptic Weight

Different Noise 
Levels

Golmohammadi & Tetzlaff, 2024, arXiv



Heterogeneity enriches the information processing
capacity of neural networks

Independent (linear) temporal modes of the network

Golmohammadi & Tetzlaff, 2024, arXiv



The Influence of the
Heterogeneity Distribution

neuron type

Experimental data Computational Model

Lognormal distribution

Golmohammadi & Tetzlaff, 2024, arXiv
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Heterogeneity yield Energy-efficient Networks

Energy = Function(Activity, #Synapses, #Neurons)

Score Score

Howarth et al., 2012



Heterogeneity yield Energy-efficient Networks

Energy = Function(Activity, #Synapses, #Neurons)

Score Score

Howarth et al., 2012

SpiNNaker 2

none low medium high very high

Heterogeneity level

Score per energy



Recurrent Network

The Dynamic, Heterogeneous,  Multi-timescale Brain
Dynamic System

Synaptic weight

Early-phase weight

Late-phase weight

neuron type

“Static” System



Recurrent Network

The Dynamic, Heterogeneous,  Multi-timescale Chip?

Dynamic Chip Dynamic System

Synaptic weight

Early-phase weight

Late-phase weight

neuron type
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