

A new direction for continual learning: ask not only *where* to go, also *how* to get there

Gido van de Ven

E-mail: gido.vandeven@kuleuven.be

Website: https://gmvandeven.github.io

26 March 2025

Overview

Introduction

- \rightarrow What is continual learning?
- → Why is continual learning important?
- → Why is continual learning difficult?

Main part

- → Current approach to continual learning
- → Problem with current approach: the stability gap
- → The road forward: a new direction for continual learning

Overview

Introduction

→ What is continual learning?

→ Why is continual learning important?

→ Why is continual learning difficult?

Main part

- → Current approach to continual learning
- → Problem with current approach: the stability gap
- → The road forward: a new direction for continual learning

What is continual learning?

- In *standard machine learning*, a learning algorithm has access to all training data at the same time
- In *continual learning*, two key differences are:
 - the training data arrive incrementally
 - the distribution from which the training data are sampled changes over time

Figure source: Kudithipudi et al. (2022, Nature Machine Intelligence)

What is continual learning?

- In *standard machine learning*, a learning algorithm has access to all training data at the same time
- In *continual learning*, two key differences are:
 - the training data arrive incrementally
 - the distribution from which the training data are sampled changes over time

Continual learning is a **key aspect of intelligence**, but **very challenging** for current AI algorithms

Overview

Introduction

→ What is continual learning?

→ Why is continual learning important?

→ Why is continual learning difficult?

Main part

- → Current approach to continual learning
- → Problem with current approach: the stability gap
- → The road forward: a new direction for continual learning

A LOT of training data	

A LOT of training data

→ Inefficient!

Promising solution: continual learning

- Add capabilities to existing models in much more efficient manners
- Hot topic in deep learning

4/21

Figure source: Mundt et al. (2022, ICLR)

Overview

Introduction

→ What is continual learning?

→ Why is continual learning important?

→ Why is continual learning difficult?

Main part

- → Current approach to continual learning
- → Problem with current approach: the stability gap
- → The road forward: a new direction for continual learning

Catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990)

Catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990)

Catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990)

Other features important for continual learning

Three types of incremental learning

• Task-incremental learning (Task-IL)

"Incrementally learn a set of clearly distinguishable tasks"

Important challenge: achieve positive transfer between tasks

• Domain-incremental learning (Domain-IL) "Learn the same type of problem in different contexts"

Important challenge: alleviate catastrophic forgetting / identify the domain

• Class-incremental learning (Class-IL)

"Incrementally learn a growing number of classes"

Important challenge: learn to discriminate between objects not observed together

Images designed by Freep

Summary of the introduction

- → Continual learning is the problem of incrementally learning from a nonstationary stream of data
- → Successful continual learning can enable updating trained models in a much more efficient manner
- → Catastrophic forgetting is an important challenge, but not the only one

Next: how to address the continual learning problem

Overview

Introduction

- → What is continual learning?
- → Why is continual learning important?
- → Why is continual learning difficult?

Main part

→ Current approach to continual learning

- → Problem with current approach: the stability gap
- → The road forward: a new direction for continual learning

Other approaches to continual learning

Context-specific components

Template-based classification

These specialized approaches do not address the "core continual learning problem" (i.e., optimizing a shared set of parameters in a continual manner)

These approaches are useful and important, but not what I mean here

Overview

Introduction

- → What is continual learning?
- → Why is continual learning important?
- → Why is continual learning difficult?

Main part

→ Current approach to continual learning

→ Problem with current approach: the stability gap

→ The road forward: a new direction for continual learning

Does replay prevent forgetting?

De Lange et al. (2023) "Continual evaluation for lifelong learning: Identifying the stability gap" ICLR, spotlight

Does replay prevent forgetting?

Does replay prevent forgetting?

The stability gap is consistently observed

De Lange et al. (2023) "Continual evaluation for lifelong learning: Identifying the stability gap" ICLR, spotlight

... also in other settings or with other methods

Replay, Domain-incremental Rotated MNIST

Regularization, Task-incremental Split MNIST

De Lange et al. (2023) "Continual evaluation for lifelong learning: Identifying the stability gap" ICLR, spotlight

Why should we care?

- Problematic for safety-critical applications
 - Worst-case performance might be important
 - Could be exploited by adversarial agent with control over training stream
- Seems highly inefficient
 - Preventing forgetting seems more efficient than having to re-learn
- Scientifically interesting
 - Do humans suffer from transient forgetting upon learning something new?

Can the "current approach to continual learning" avoid the stability gap?

Can the "current approach to continual learning" avoid the stability gap?

Can the "current approach to continual learning" avoid the stability gap? \rightarrow No!

17/21

Can the stability gap be avoided at all?

Can the stability gap be avoided at all? \rightarrow Yes!

Overview

Introduction

- → What is continual learning?
- → Why is continual learning important?
- → Why is continual learning difficult?

Main part

- → Current approach to continual learning
- → Problem with current approach: the stability gap

→ The road forward: a new direction for continual learning

Continual learning needs a new direction

- To overcome the stability gap, changes must be made to *how* the loss is optimized
- Standard optimization routines for deep learning have been developed for the stationary setting
- No guarantees in continual setting, yet widely used

- Stationary \rightarrow start from random initialization
- Continual \rightarrow start from partial solution

Parameter 1

How to improve optimization for continual learning?

 \rightarrow An exciting open question!

Techniques from neuromorphic computing? Any ideas??

Funding acknowledgements

The work and research towards preparing this presentation has been supported by an IBRO-ISN Research Fellowship, by the *Lifelong Learning Machines* (L2M) program of the Defense Advanced Research Projects Agency (DARPA) via contract HR0011-18-2-0025, by funding from the European Union under Horizon 2020 (ERC project *KeepOnLearning*, grant 101021347) and Horizon Europe (Marie Skłodowska-Curie fellowship, grant 101067759), and by a senior postdoctoral fellowship from the Research Foundation – Flanders (FWO, grant 1266823N).

