State-Space Model Inspired Multiple-Input Multiple-Output Spiking Neurons

Sanja Karilanova, Subhrakanti Dey, Ayça Özçelikkale

sanja.karilanova@angstrom.uu.se Uppsala University, Sweden

- 2. Methods
- 3. Results
- 4. Conclusions

State-Space Models (SSMs)

- long sequence modeling
- parallelization
- general dynamics
- continuous-valued

Spiking Neurons (SNNs)

- sequence modeling
- recurrent non-linearity
- neuro-inspired dynamics
- spike-based

Our work – general linear SSM-based Multi-input Multi-output (MIMO) spiking neurons

Singe-Input Single-Output (SISO) vs Multi-Input Multi-Output (MIMO)

(a) Single-Input Single-Output (SISO) spiking neuron (b) \underline{M} ulti-Input \underline{M} ulti-Output (MIMO) spiking neuron

2. Methods

- 2.1 General spiking neuron model
- 2.2 General Spiking Model vs State Space Model
- 2.3 Proposed Models

3. Results

2. Methods

2.1 General spiking neuron model

- 2.2 General Spiking Model vs State Space Model
- 2.3 Proposed Models

3. Results

Background - LIF model

The discrete-time LIF neuron:

$$u[t+1] = \alpha u[t] - \alpha \theta s_{out}[t] + (1-\alpha)i[t]$$
$$s_{out}[t] = f_{\theta}(u[t]) = \begin{cases} 1 \text{ if } u[t] \ge \theta \\ 0 \text{ otherwise.} \end{cases}$$

LIF model vs General

The discrete-time LIF neuron:

$$u[t+1] = \alpha u[t] - \alpha \theta s_{out}[t] + (1-\alpha)i[t]$$
$$s_{out}[t] = f_{\theta}(u[t]) = \begin{cases} 1 \text{ if } u[t] \ge \theta \\ 0 \text{ otherwise.} \end{cases}$$

A discrete-time general n-dimensional spiking neuron:

$$oldsymbol{v}[t+1] = oldsymbol{A}oldsymbol{v}[t] - oldsymbol{R}s_{out}[t] + oldsymbol{B}i[t]$$

 $s_{out}[t] = f_{\Theta}(oldsymbol{v}[t]) = egin{cases} 1 & ext{if } oldsymbol{v}[t] \in oldsymbol{\Theta}\\ 0 & ext{otherwise} \end{cases}$

Parameter	LIF	General
Farameter	neuron	neuron
State	и	v
State transition	α	A
Reset	$\alpha \theta$	R
Input transition	$(1-\alpha)$	B
Threshold	θ	Θ

Discrete-time adLIF is defined as follows

$$\begin{split} u[t+1] = &\alpha u[t] - \alpha \theta s_{out}[t] + (1-\alpha)i[t] - (1-\alpha)v[t] \\ v[t+1] = &au[t] + \beta v[t] + bs_{out}[t] \\ s_{out}[t] = &f_{\theta}(u[t]) \end{split}$$

Re-written in matrix form:

$$\begin{bmatrix} u[t+1]\\ v[t+1] \end{bmatrix} = \begin{bmatrix} \alpha & -(1-\alpha)\\ a & \beta \end{bmatrix} \begin{bmatrix} u[t]\\ v[t] \end{bmatrix} + \begin{bmatrix} -\alpha\theta\\ b \end{bmatrix} s_{out}[t] + \begin{bmatrix} 1-\alpha\\ 0 \end{bmatrix} i[t]$$

AdLIF model vs General model

The discrete-time adLIF neuron:

$$\begin{bmatrix} u[t+1]\\ v[t+1] \end{bmatrix} = \begin{bmatrix} \alpha & -(1-\alpha)\\ a & \beta \end{bmatrix} \begin{bmatrix} u[t]\\ v[t] \end{bmatrix} \\ + \begin{bmatrix} -\alpha\theta\\ b \end{bmatrix} s_{out}[t] + \begin{bmatrix} 1-\alpha\\ 0 \end{bmatrix} i[t] \\ s_{out}[t] = f_{\theta}(u[t])$$

A discrete-time general n-dim. neuron:

$$\mathbf{v}[t+1] = \mathbf{A}\mathbf{v}[t] - \mathbf{R}s_{out}[t] + \mathbf{B}i[t]$$
$$s_{out}[t] = f_{\Theta}(\mathbf{v}[t]) = \begin{cases} 1 \text{ if } \mathbf{v}[t] \in \Theta\\ 0 \text{ otherwise} \end{cases}$$

Parameter	LIF neuron	General neuron
State	$[u[t], v[t]]^T$	V
State transition	$egin{bmatrix} lpha & -(1-lpha)\ a & eta \end{bmatrix}$	А
Reset	$\mathbf{R} = \begin{bmatrix} -lpha heta \\ b \end{bmatrix}$	R
Input transition	$\begin{bmatrix} 1-lpha\\ 0 \end{bmatrix}$	В
Threshold	θ	Θ

$2. \ \mathsf{Methods}$

2.1 General spiking neuron model

2.2 General Spiking Model vs State Space Model

2.3 Proposed Models

3. Results

A discrete-time general n-dim. neuron:

1

$$oldsymbol{v}[t+1] = oldsymbol{A}oldsymbol{v}[t] - oldsymbol{R}oldsymbol{s}_{out}[t] + oldsymbol{B}i[t]$$
 $s_{out}[t] = f_{\Theta}(oldsymbol{v}[t]) = egin{cases} 1 & ext{if } oldsymbol{v}[t] \in oldsymbol{\Theta} \\ 0 & ext{otherwise} \end{cases}$

Parameter	Dimension	
A	$n \times n$	
B	n imes 1	
$s_{out}[t]$	1 imes 1	

A discrete-time general n-dim. neuron:

1

$$oldsymbol{
u}[t+1] = oldsymbol{A}oldsymbol{
u}[t] - oldsymbol{R}s_{out}[t] + oldsymbol{B}i[t]$$
 $s_{out}[t] = f_{\Theta}(oldsymbol{
u}[t]) = egin{cases} 1 & ext{if } oldsymbol{
u}[t] \in oldsymbol{\Theta} \\ 0 & ext{otherwise} \end{cases}$

Parameter	Dimension	
A	$n \times n$	
B	n imes 1	
$s_{out}[t]$	1 imes 1	

A discrete-time linear SSM can be written as

$$\mathbf{v}[t+1] = \mathbf{A}\mathbf{v}[t] + \mathbf{B}\mathbf{i}[t]$$
$$\mathbf{y}[t] = \mathbf{C}\mathbf{v}[t] + \mathbf{D}\mathbf{i}[t],$$

Parameter	Dimension
A	$n \times n$
B	$n imes n_{in}$
С	$n_{out} imes n$
D	$n_{out} imes n_{in}$
y [t]	$n_{out} imes 1$

2. Methods

- 2.1 General spiking neuron model
- 2.2 General Spiking Model vs State Space Model
- 2.3 Proposed Models

3. Results

Proposed Model

Our Multi-input Multi-output (MIMO) spiking neuron is given by

$$egin{aligned} oldsymbol{v}[t+1] &= oldsymbol{A}oldsymbol{v}[t] + oldsymbol{B}oldsymbol{i}[t] \ oldsymbol{y}[t] &= oldsymbol{C}oldsymbol{v}[t] + oldsymbol{c}_{bias} \ oldsymbol{s}_{out}[t] &= f_{ heta}(oldsymbol{y}[t]) \end{aligned}$$

Parameter	Dimension
A	$n \times n$
B	$n imes n_{in}$
С	$n_{out} imes n$
c _{bias}	$n_{out} imes 1$
i [t]	$n_{in} imes 1$
$s_{out}[t]$	$n_{out} imes 1$

Our Multi-input Multi-output (MIMO) neuron with n_{in} inputs and n_{out} outputs is given by

 $\begin{aligned} \boldsymbol{v}[t+1] &= \boldsymbol{A}\boldsymbol{v}[t] + \boldsymbol{B}\boldsymbol{i}[t] \\ \boldsymbol{y}[t] &= \boldsymbol{C}\boldsymbol{v}[t] + \boldsymbol{c}_{bias} \\ \boldsymbol{s}_{out}[t] &= f_{\theta}(\boldsymbol{y}[t]) \end{aligned}$

Parameter	Dimension
B	$n \times n_{in}$
С	$n_{out} imes n$
c _{bias}	$n_{out} imes 1$
i [t]	$n_{in} imes 1$
$s_{out}[t]$	$n_{out} imes 1$

A discrete-time general n-dim. neuron:

$$oldsymbol{
u}[t+1] = oldsymbol{A}oldsymbol{
u}[t] - oldsymbol{R}s_{out}[t] + oldsymbol{B}i[t]$$
 $s_{out}[t] = f_{\Theta}(oldsymbol{
u}[t]) = egin{cases} 1 & ext{if } oldsymbol{
u}[t] \in oldsymbol{\Theta} \\ 0 & ext{otherwise} \end{cases}$

Parameter	Dimension
B	n imes 1
<i>i</i> [t]	1 imes 1
$s_{out}[t]$	1 imes 1

Illustration

- Neuron state dimension vs number of neurons trade-offs?
- What structures of the state-transition matrices should be preferred?
- What should be the number of input and output channels?
- Performance lost in spiking-based neuron vs continuous-valued neuron?
- Can multi-output compensate for the information loss in spiking-based neuron?

2. Methods

3. Results

- 3.1 Number of Neurons vs Dimension of Neuron's State
- 3.2 Effect of Increasing Input and/or Output Dimension
- 3.3 Combined effect of Input/Output Dimensions, Activation Function, and State transition structure

Activation Function

What activation functions are used in our work?

• SSM-Neuron Parametrization - Diagonal $\boldsymbol{A} = \boldsymbol{\Lambda}$ and Non-Diagonal $\boldsymbol{A} = \boldsymbol{Q}^{H} \boldsymbol{\Lambda} \boldsymbol{Q}$ where \boldsymbol{Q} is the DFT matrix. In both $|\lambda_{i}| < 1$ for stability.

• SSM-Neuron Parametrization - Diagonal $\boldsymbol{A} = \boldsymbol{\Lambda}$ and Non-Diagonal $\boldsymbol{A} = \boldsymbol{Q}^{H} \boldsymbol{\Lambda} \boldsymbol{Q}$ where \boldsymbol{Q} is the DFT matrix. In both $|\lambda_{i}| < 1$ for stability.

- SSM-Neuron Parametrization Diagonal $\boldsymbol{A} = \boldsymbol{\Lambda}$ and Non-Diagonal $\boldsymbol{A} = \boldsymbol{Q}^{H} \boldsymbol{\Lambda} \boldsymbol{Q}$ where \boldsymbol{Q} is the DFT matrix. In both $|\lambda_{i}| < 1$ for stability.
- Types of models based on input/output dimensions

- SSM-Neuron Parametrization Diagonal $A = \Lambda$ and Non-Diagonal $A = Q^H \Lambda Q$ where Q is the DFT matrix. In both $|\lambda_i| < 1$ for stability.
- Types of models based on input/output dimensions

Parameter	Dimension
<u>S</u> ingle- <u>I</u> nput <u>S</u> ingle- <u>O</u> utput (<u>SISO</u>)	$n_{in} = 1, n_{out} = 1$
<u>M</u> ulti- <u>I</u> nput <u>M</u> ulti- <u>O</u> utput (<u>MIMO</u>)	$n_{in} > 1, n_{out} > 1$
<u>S</u> ingle- <u>I</u> nput <u>M</u> ulti- <u>O</u> utput (<u>SIMO</u>)	$n_{in}=1, n_{out}>1$
<u>M</u> ulti- <u>I</u> nput <u>S</u> ingle- <u>O</u> utput (<u>MISO</u>)	$n_{in} > 1, n_{out} = 1$

- SSM-Neuron Parametrization Diagonal $\boldsymbol{A} = \boldsymbol{\Lambda}$ and Non-Diagonal $\boldsymbol{A} = \boldsymbol{Q}^{H} \boldsymbol{\Lambda} \boldsymbol{Q}$ where \boldsymbol{Q} is the DFT matrix. In both $|\lambda_{i}| < 1$ for stability.
- Types of models based on input/output dimensions
- 2 hidden layer network trained using BPTT with surrogate gradient 30 epochs.

- SSM-Neuron Parametrization Diagonal $\boldsymbol{A} = \boldsymbol{\Lambda}$ and Non-Diagonal $\boldsymbol{A} = \boldsymbol{Q}^{H} \boldsymbol{\Lambda} \boldsymbol{Q}$ where \boldsymbol{Q} is the DFT matrix. In both $|\lambda_{i}| < 1$ for stability.
- Types of models based on input/output dimensions
- 2 hidden layer network trained using BPTT with surrogate gradient 30 epochs.
- Dataset Spiking Heidelberg Digits (SHD)

2. Methods

3. Results

3.1 Number of Neurons vs Dimension of Neuron's State

3.2 Effect of Increasing Input and/or Output Dimension

3.3 Combined effect of Input/Output Dimensions, Activation Function, and State transition structure

Table: Number of hidden neurons h and state dimension of neurons n for $h \times n = 2048$, where 2 hidden layered model is used with SISO *signed*-spiking neurons and diagonal state transition matrix.

h	п	Accuracy
1024	2	$88.1\pm0.8~\%$
128	16	88.3 \pm 1.3 %
64	32	87.4 \pm 1.0 %
32	64	84.1 \pm 1.6 %
16	128	74.1 \pm 2.3 %
2	1024	12.0 \pm 5.6 %

2. Methods

3. Results

- 3.1 Number of Neurons vs Dimension of Neuron's State
- 3.2 Effect of Increasing Input and/or Output Dimension
- 3.3 Combined effect of Input/Output Dimensions, Activation Function, and State transition structure

Table: Neurons with diagonal transition matrix and *signed*-spiking activation function used. Architecture used h = 32, n = 64.

Туре	Input	Output	Accuracy
	Dim	Dim	
SISO	1	1	$83.4\pm1.2~\%$
	1	8	$80.0\pm0.8~\%$
SIMO	1	64	$88.5\pm1.6~\%$
	1	128	$89.2\pm1.4\%$
	8	1	$38.3\pm4.6~\%$
MISO	64	1	34.3 \pm 4.2 %
	128	1	$36.8\pm3.7\%$
	8	8	$62.3\pm3.9~\%$
MIMO	64	64	72.9 \pm 4.4 %
	128	128	75.6 \pm 2.8 %

Table: Neurons with diagonal transition matrix and *signed*-spiking activation function used. Architecture used h = 32, n = 64.

Туре	Input	Output	Accuracy
	Dim	Dim	
SISO	1	1	$83.4\pm1.2~\%$
	1	8	$80.0\pm0.8~\%$
SIMO	1	64	$88.5\pm1.6~\%$
	1	128	$89.2\pm1.4\%$
	8	1	$38.3\pm4.6~\%$
MISO	64	1	34.3 \pm 4.2 %
	128	1	$36.8\pm3.7~\%$
	8	8	$62.3\pm3.9~\%$
MIMO	64	64	72.9 \pm 4.4 %
	128	128	75.6 \pm 2.8 %

Table: Neurons with diagonal transition matrix and *signed*-spiking activation function used. Architecture used h = 32, n = 64.

Туре	Input	Output	Accuracy
	Dim	Dim	
SISO	1	1	$83.4\pm1.2~\%$
	1	8	$80.0\pm0.8~\%$
SIMO	1	64	$88.5\pm1.6~\%$
	1	128	$89.2\pm1.4\%$
	8	1	$38.3\pm4.6~\%$
MISO	64	1	34.3 \pm 4.2 %
	128	1	$36.8\pm3.7\%$
	8	8	$62.3\pm3.9~\%$
MIMO	64	64	72.9 \pm 4.4 %
	128	128	75.6 \pm 2.8 %

2. Methods

3. Results

- 3.1 Number of Neurons vs Dimension of Neuron's State
- 3.2 Effect of Increasing Input and/or Output Dimension
- 3.3 Combined effect of Input/Output Dimensions, Activation Function, and State transition structure

State Transition Matrix	Single/Multi-	Activation Function	Accuracy
	Input/Output		
		Non-Sgn Spikes	79.9 \pm 2.2 %
Diagonal	SISO	Sgn Spikes	83.9 \pm 0.9 %
		GELU	87.4 \pm 1.1 %
		Non-Sgn Spikes	86.6 \pm 1.2 %
Diagonal	SIMO	Sgn Spikes	89.5 \pm 1.3 %
		GELU	90.4 \pm 1.2 %
		Non-Sgn Spikes	79.9 \pm 3.1 %
Non-Diagonal	SISO	Sgn Spikes	83.4 \pm 1.6 %
		GELU	84.1 \pm 1.9 %
		Non-Sgn Spikes	83.6 \pm 2.5 %
Non-Diagonal	SIMO	Sgn Spikes	84.6 \pm 1.3 %
		GELU	$87.9\pm1.3~\%$

State Transition Matrix	Single/Multi- Input/Output	Activation Function	Accuracy
Diagonal	SISO	Non-Sgn Spikes Sgn Spikes	$79.9 \pm 2.2 \% \\ 83.9 \pm 0.9 \% \\ 87.4 \pm 1.1 \%$
Diagonal	SIMO	Non-Sgn Spikes Sgn Spikes GELU	
Non-Diagonal	SISO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 79.9 \pm 3.1 \ \% \\ 83.4 \pm 1.6 \ \% \\ 84.1 \pm 1.9 \ \% \end{array}$
Non-Diagonal	SIMO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 83.6 \pm 2.5 \ \% \\ 84.6 \pm 1.3 \ \% \\ 87.9 \pm 1.3 \ \% \end{array}$

State Transition Matrix	Single/Multi- Input/Output	Activation Function	Accuracy
Diagonal	SISO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 79.9 \pm 2.2 \ \% \\ 83.9 \pm 0.9 \ \% \\ 87.4 \pm 1.1 \ \% \end{array}$
Diagonal	SIMO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 86.6 \pm 1.2 \ \% \\ 89.5 \pm 1.3 \ \% \\ 90.4 \pm 1.2 \ \% \end{array}$
Non-Diagonal	SISO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 79.9 \pm 3.1 \ \% \\ 83.4 \pm 1.6 \ \% \\ 84.1 \pm 1.9 \ \% \end{array}$
Non-Diagonal	SIMO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 83.6 \pm 2.5 \ \% \\ 84.6 \pm 1.3 \ \% \\ 87.9 \pm 1.3 \ \% \end{array}$

State Transition Matrix	Single/Multi- Input/Output	Activation Function	Accuracy
Diagonal	SISO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 79.9 \pm 2.2 \ \% \\ 83.9 \pm 0.9 \ \% \\ 87.4 \pm 1.1 \ \% \end{array}$
Diagonal	SIMO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 86.6 \pm 1.2 \ \% \\ 89.5 \pm 1.3 \ \% \\ 90.4 \pm 1.2 \ \% \end{array}$
Non-Diagonal	SISO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 79.9 \pm 3.1 \ \% \\ 83.4 \pm 1.6 \ \% \\ 84.1 \pm 1.9 \ \% \end{array}$
Non-Diagonal	SIMO	Non-Sgn Spikes Sgn Spikes GELU	$\begin{array}{c} 83.6 \pm 2.5 \ \% \\ 84.6 \pm 1.3 \ \% \\ 87.9 \pm 1.3 \ \% \end{array}$

- 2. Methods
- 3. Results

- Promising results can be achieved using our proposed general SSM-based MIMO neuron compared other neuro-inspired SNN results such as LIF and adLIF.
- Trade-offs among various parameters:
 - neuron state size vs number of neurons
 - number of input/output channels
 - activation functions
- In networks with low number of neurons with large internal states, using multiple-output channels may improve the performance significantly

Thank you!

Other tables

Table: Input-Output dimension comparison and trade-off. Neurons with diagonal transition matrix and *signed*-spiking activation function used. Architecture used h = 128, n = 16.

Туре	Input	Output	Accuracy
	Dim	Dim	
SISO	1	1	$88.8\pm1.0~\%$
	1	8	$87.7\pm1.0\%$
SIMO	1	64	$90.0\pm0.7~\%$
	1	128	$89.9\pm0.8~\%$
	8	1	$59.8\pm2.0~\%$
MISO	64	1	52.3 \pm 2.4 %
	128	1	54.2 \pm 3.3 %
	8	8	75.5 \pm 2.0 %
MIMO	64	64	76.5 \pm 2.2 %
	128	128	78.0 \pm 1.9 %

State S Transition I	Single/Mul nput/Outp	ti- Activation out Function	Accuracy
IVIATIIX		Non Can Cailean	97.4 + 1.0.9/
		Non-Sgn Spikes	$87.4 \pm 1.2\%$
Diagonal	SISO	Sgn Spikes	88.3 \pm 0.7 %
		GELU	$88.8\pm0.7~\%$
		Non-Sgn Spikes	$89.2\pm1.0~\%$
Diagonal	SIMO	Sgn Spikes	$90.2\pm0.9~\%$
0		ĞELÜ	$89.5\pm1.1~\%$
		Non-Sgn Spikes	$86.1\pm1.5~\%$
Non-Diagonal	SISO	Sgn Spikes	86.5 \pm 1.0 %
		GELU	$86.7\pm1.5~\%$
		Non-Sgn Spikes	86.1 \pm 1.2 %
Non-Diagonal	SIMO	Sgn Spikes	$87.5\pm1.8~\%$
		GELU	$88.2\pm0.7~\%$