Short-reach Optical Communications

A Real-world Task for Neuromorphic Hardware

Elias Arnold¹, <u>Eike-Manuel Edelmann</u>², Alexander von Bank² Eric Müller¹, Laurent Schmalen², and Johannes Schemmel¹

 $^{^{1}\}mathrm{Kirchhoff}$ Institute for Physics, Heidelberg University, Germany

²Communications Engineering Lab, Karlsruhe Institute of Technology, Germany

Neuromorphic Benchmarks

Neuromorphic Benchmarks

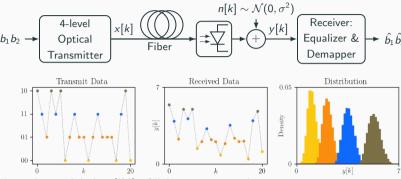
- Development of neuromorphic hardware and algorithms are driven by benchmarks
- Typical benchmarks
 - Lack a real-world application (e.g., Yin-Yang, N-MNIST)
 - Lack intrinsic temporal structure (e.g., CIFAR10-DVS)
 - Require network topologies too big for prototype chips (e.g., DVS128 Gesture)

Image source: Rose, G. (2005). Fiber Optic Illuminated [Photograph]. Wikimedia Commons. Retrieved from https://commons.wikimedia.org/wiki/File:Fiber_optic_illuminated.jpg.

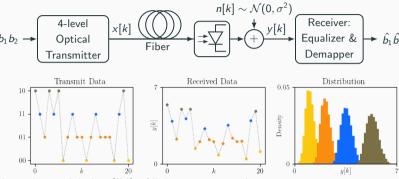
Neuromorphic Benchmarks

Neuromorphic Benchmarks

- Development of neuromorphic hardware and algorithms are driven by benchmarks
- Typical benchmarks
 - Lack a real-world application (e.g., Yin-Yang, N-MNIST)
 - Lack intrinsic temporal structure (e.g., CIFAR10-DVS)
 - Require network topologies too big for prototype chips (e.g., DVS128 Gesture)


Our contribution

- Optical data transmission task for small-scale SNNs
 - real-world temporal unlimited data
 - predefined communication system requirements
- Interesting for
 - evaluation of resource efficiency of model / hardware
 - Prototyping algorithms utilizing temporal structure
 - Developing hardware with an actual application in mind


Image source: Rose, G. (2005). Fiber Optic Illuminated [Photograph]. Wikimedia Commons. Retrieved from https://commons.wikimedia.org/wiki/File:Fiber_optic_illuminated.jpg.

Short-reach optical communications: The IM/DD link

- 4-level intensity modulation (IM) of light source, e.g., laser
- Direct detection (DD) using photo diode

Short-reach optical communications: The IM/DD link

- 4-level intensity modulation (IM) of light source, e.g., laser
- Direct detection (DD) using photo diode
- Link impairments due to:
 - Chromatic dispersion (CD) in fiber
 - Non-linear detection of photo diode
 - ullet Additive white Gaussian noise with power σ^2
- Receiver: Eliminates impairments (equalization) and estimates transmit bits (demapping)

IM/DD task

• Link model $f(\cdot)$:

$$y[k] = f\left(x\left[k - \left\lfloor\frac{n_{\text{taps}}}{2}\right\rfloor\right], \dots, x[k], \dots, x\left[k + \left\lfloor\frac{n_{\text{taps}}}{2}\right\rfloor\right]\right) + n[k]$$

- CD: overlap of n_{taps} consecutive symbols
- $f(\cdot)$: linear combination and non-linear distortion

^aL. Schmalen, *et al.*, "Recent advances on machine learning-aided DSP for short-reach and long-haul optical communications," Proc. Opt. Fiber Commun. Conf. (OFC), San Francisco, CA, USA, Mar. 2025.

IM/DD task

• Link model $f(\cdot)$:

$$y[k] = f\left(x\left[k - \left\lfloor\frac{n_{\text{taps}}}{2}\right\rfloor\right], \dots, x[k], \dots, x\left[k + \left\lfloor\frac{n_{\text{taps}}}{2}\right\rfloor\right]\right) + n[k]$$

- CD: overlap of n_{taps} consecutive symbols
- $f(\cdot)$: linear combination and non-linear distortion
- Receiver $g(\cdot)$:

$$\hat{b}[k] = g\left(y\left[k - \left\lfloor\frac{n_{\mathrm{taps}}}{2}\right\rfloor\right], \dots, y[k], \dots, y\left[k + \left\lfloor\frac{n_{\mathrm{taps}}}{2}\right\rfloor\right]\right)$$

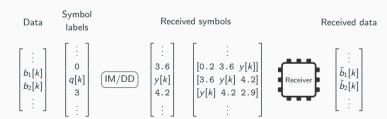
^aL. Schmalen, *et al.*, "Recent advances on machine learning-aided DSP for short-reach and long-haul optical communications," Proc. Opt. Fiber Commun. Conf. (OFC), San Francisco, CA, USA, Mar. 2025.

IM/DD task

• Link model $f(\cdot)$:

$$y[k] = f\left(x\left[k - \left\lfloor\frac{n_{\text{taps}}}{2}\right\rfloor\right], \dots, x[k], \dots, x\left[k + \left\lfloor\frac{n_{\text{taps}}}{2}\right\rfloor\right]\right) + n[k]$$

- CD: overlap of n_{taps} consecutive symbols
- $f(\cdot)$: linear combination and non-linear distortion
- Receiver $g(\cdot)$:


$$\hat{b}[k] = g\left(y\left[k - \left\lfloor\frac{n_{\text{taps}}}{2}\right\rfloor\right], \dots, y[k], \dots, y\left[k + \left\lfloor\frac{n_{\text{taps}}}{2}\right\rfloor\right]\right)$$

- **Objective 1:** Find $g(\cdot)$ to minimize bit error rate (BER) \Rightarrow Machine learning^a
- **Objective 2:** Implement energy-efficient receiver ⇒ Neuromorphic hardware

^aL. Schmalen, *et al.*, "Recent advances on machine learning-aided DSP for short-reach and long-haul optical communications," Proc. Opt. Fiber Commun. Conf. (OFC), San Francisco, CA, USA, Mar. 2025.

Dataset

4

Parameter Sets

Task I: Low chromatic dispersion (LCD)^b

Parameter	Value
wavelength	1270 nm
${\tt dispersion_parameter}$	$-5\mathrm{ps}\mathrm{nm}^{-1}\mathrm{km}^{-1}$
n_taps	7
N	10 000
alphabet	[-3, -1, 1, 3]
$oversampling_factor$	3
baudrate	$112\mathrm{GBd}$
fiber_length	4 km
noise_power_db	$-20\mathrm{dB}$
roll_off	0.2
bias	2.25

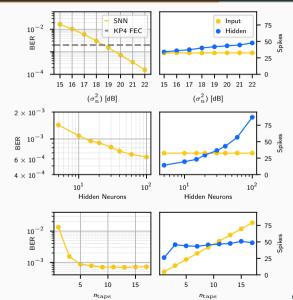
Task II: Standard single mode fiber (SSMF)^c

Task in Standard Single mode liber (Colin)	
Parameter	Value
wavelength	1550 nm
dispersion_parameter	$-17{\rm ps}{\rm nm}^{-1}{\rm km}^{-1}$
n_{-} taps	21
N	10 000
alphabet	$\left[0,1,\sqrt{2},\sqrt{3}\right]$
$oversampling_factor$	3
baudrate	$50\mathrm{GBd}$
fiber_length	5 km
noise_power_db	$-20\mathrm{dB}$
roll_off	0.2
bias	0.25

^bE. Arnold, *et al.*, "Spiking neural network nonlinear demapping on neuromorphic hardware for IM/DD optical communication," J. Light. Technol., vol. 41, no. 11, 2023. DOI: 10.1109/JLT.2023. 3252819.

^cA. von Bank, *et al.*, "Spiking neural network decision feedback equalization for IM/DD systems," in Proc. SPPCom, Busan, South Korea, Jul. 2023.

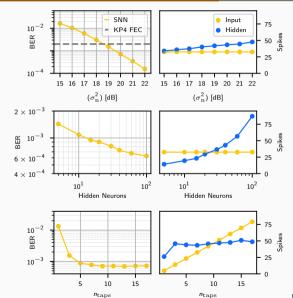
Benchmark: LCD task


- Objective 1: Minimize BER
- Objective 2: Minimize spike rate
- SNN-based receiver^b implemented using norse^d

^dC. Pehle and J. E. Pedersen, *Norse - A deep learning library for spiking neural networks*, Version 0.0.7, Documentation: https://norse.ai/docs/, Jan. 2021. DOI: https://doi.org/10.5281/zenodo.4422025.

Benchmark: LCD task

- Objective 1: Minimize BER
- Objective 2: Minimize spike rate
- SNN-based receiver^b implemented using norse^d


^dC. Pehle and J. E. Pedersen, *Norse - A deep learning library* for spiking neural networks, Version 0.0.7, Documentation: https://norse.ai/docs/, Jan. 2021. DOI: https://doi.org/10.5281/zenodo.4422025.

Benchmark: LCD task

- Objective 1: Minimize BER
- Objective 2: Minimize spike rate
- SNN-based receiver^b implemented using norse^d
- SSMF-task: SNN-based receiver^c implemented using norse^d

^dC. Pehle and J. E. Pedersen, *Norse - A deep learning library for spiking neural networks*, Version 0.0.7, Documentation: https://norse.ai/docs/, Jan. 2021. DOI: https://doi.org/10.5281/zenodo.4422025.

Contribution

Our contribution:

- Provide IM/DD dataset as real-world task with inherent time dimension
- Provide code for SNN-based receivers as benchmarks

Contribution

Our contribution:

- Provide IM/DD dataset as real-world task with inherent time dimension
- Provide code for SNN-based receivers as benchmarks

Your (future) contribution:

- Novel SNN-based receivers improving optical communications
- Neuromorphic receiver for energy-efficient communication

Contribution

Our contribution:

- Provide IM/DD dataset as real-world task with inherent time dimension
- Provide code for SNN-based receivers as benchmarks

Your (future) contribution:

- Novel SNN-based receivers improving optical communications
- Neuromorphic receiver for energy-efficient communication

Questions?

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 101001899).