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What is the goal?

• Design software framework for network 
training

• Design application specific simulator

• Design hardware system to process 
networks and interact with target application

Design a system to perform real-time evolution of SNNs 

at the edge and apply it to a real application
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Neuromorphic Optimization using Dynamic Evolutionary Systems
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Neuromorphic Optimization using Dynamic Evolutionary Systems
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NODES: Coordinator

• Communicates between the various 
processes

• Coordinates data between processes

• Maintains the Leaderboard
— Stores top-performing SNNs based on app-

specific hyperparameters (sim-knobs)

— Retrieves appropriate network based on the 
sim-knobs
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NODES: Evolutionary Optimization for Neuromorphic Systems
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NODES: Simulation Scheduler

• Evaluate networks on various threads:
1. Queues up networks to be evaluated (sent from EONS or 

Sim Modifier)

2. Load networks onto simulated/hardware neuro-
processor

3. Encode input from application simulator into spikes

4. Process spikes throughout network

5. Decode output spikes into application actions

6. Apply action and step application simulation

7. Simulation produces new input observations and 
calculates reward using fitness function

8. Repeat for n timesteps and return network and average 
reward to the Coordinator’s Leaderboard
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NODES: Real-World Interface

• Interfaces with the target application on the 
specified deployment environment

— Requests network from Coordinator when the 
current network performs poorly

— Loads Coordinator network onto hardware 
system

— Communicates data from real-world environment 
to Sim Modifier
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NODES: Simulation Modifier

• Takes real-world data to tune sim-knobs to modify 
training simulator to better align with deployment 
environment.

• Optimization process:

1. Gathers small subset of observations from the real-world 
data to act as target observations

2. Run a series of app simulations using the active SNN 
running on the hardware

3. Compare the simulated observations to the target 
observations using MSE

4. Apply Bayesian optimization to converge to sim-knobs that 
minimize loss

• Finds parameters that approximate conditions that generate 
target observations

5. Update EONS training simulator with new sim-knobs
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Hardware Setup: Overview

• Firebox hosts and interfaces between NODES, neuro-
processors, and ECU (for diesel engine application)

• Raspberry Pi 5
— NODES Framework

— Application Simulation

• Beagle V-Fire
— RISC-V processor used for real-time control and 

communication

— FPGA fabric supports multiple μCaspian neuromorphic 
processors

— CAN controller allows network outputs to control ECU RPi 5

Beagle V-Fire

CAN
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Hardware Setup: Network Swapping

• Controller
— Performs spike encoding and decoding

— Engine actions communicated to ECU 
via CAN

• Dispatcher
— Loads networks onto inactive 

coprocessors

— Swaps active coprocessors, effectively 
swapping networks that control the 
engine
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Engine Control Application

• Use neuromorphic controller to achieve stable, 
clean combustion in a dual-fuel (diesel and 
ammonia) engine
— Ammonia-based fuel is promising in reducing carbon 

emissions

— Substantially different combustion properties than 
traditional fuels

— Requires adjustments of control parameters (fuel 
quantity, injection timing, etc.)

Cummins ISB 6.7L Engine
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Engine Data and Simulation

• Data collected from a Cummins ISB single-cylinder engine (1200 RPM)

• 42 operating conditions were recorded to build robust combustion model
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Fitness Function (Minimization)

𝑐𝑜𝑠𝑡 =  𝛼(𝐶𝐴50 − 7.5)2 + (𝜂𝑐 − 1)2

• 𝐶𝐴50 : Crank angle where 50% of fuel is burned

• 𝜂𝑐 : Combustion efficiency

• 𝛼 : Hyperparameter weight

Optimize Combustion 

Timing

Optimize Combustion 

Efficiency

• Network Inputs
— 𝑀𝑓𝑢𝑒𝑙 : Total Fuel Mass

— 𝑀𝑎𝑖𝑟 : Air Mass

— 𝜂𝑐 : Combustion Efficiency

• Network Outputs
— 𝑆𝑂𝐼𝑑𝑠𝑙 : Diesel Start of Injection

— 𝑚𝑖𝑛
𝑑𝑠𝑙 : Controlled Diesel Fuel Mass

• Sim-Knobs
— Total Fuel Mass Multiplier (0.9 – 1.1)

— Air Mass multiplier (0.9 – 1.1)
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SNN trained on engine simulator with α = 0.02

1

2

5

6 7

8

3

4

9

10

1213

14

0 Input Neurons

Hidden Neurons

Output Neurons

Excitatory Synapse

Inhibitory Synapse



R
e

s
u

lt
s

: 

H
y

p
e

rp
a

ra
m

e
te

r 
T
u

n
in

g

18

Input encoding hyperparameter tuning
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Average network loading and inference times for various networks

Deadline for real-time engine control
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Conclusion & Future Works

• Key Takeaways:
— Developed hardware and software 

infrastructure for online 
neuromorphic hardware system

— Framework can be applied to 
various control applications

— Successfully demonstrated the 
system on cycle-to-cycle dual-fuel 
engine control

• We intend to explore:
— Further research cost function

— Explore additional learning 
algorithms

— Apply to different applications

— Iterate on NODES
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Questions?

Karan P. Patel: kpatel68@vols.utk.edu

mailto:kpatel68@vols.utk.edu


µCaspian

• Variable network cycle 
frequency based on activity 
in the network.

• Features:
— IF-Neurons.

— All-to-all connection support 
with 256 neurons and 4096 
synapses.

— Reconfigurable networks.
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