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Introduction – Intra-Cortical Brain Machine Interfaces (iBMI)

Paralysis affects millions of patiens worldwide

Patient X

iBMIs can translate cortical activity

and control prostheses

the inability to move some or all of your body
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Introduction – The Problems with Current iBMIs

Patient X‘s Head
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Problem 2: Bulky Wiring

Impairs head movement
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Introduction – The Problems with Wireless iBMIs

Possible Solution:

Wireless iBMIs

Demand minimal 

heat dissipation

Have restricted

battery lifetime

Limited bandwidth

Requires high-quality compression & high energy efficiency
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Introduction – The Problems with Wireless iBMIs

Possible Solution:

Wireless iBMIs

Requires high-quality compression & high energy efficiency

Promising candidate for such neural decoders?

SNNs

!
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Introduction – The Problems with Wireless iBMIs

Possible Solution:

Wireless iBMIs

Promising candidate for such neural decoders?

!

Neuromorphic

Technologies

Requires high-quality compression & high energy efficiency
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Decoder

The Primate Reaching Dataset

Arm Movement

The challenge specified

6 recordings for testing, 3 

for each of the 2 monkeys

O’Doherty, Joseph E., et al. "Nonhuman primate reaching with multichannel sensorimotor

cortex electrophysiology." Zenodo http://doi. org/10.5281/zenodo 583331 (2017).

18
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The Neurobench Framework

Yik, Jason, et al. "The neurobench framework for benchmarking neuromorphic

computing algorithms and systems." Nature Communications 16.1 (2025): 1545.

Tutorial here @ 

NICE!
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2 Tracks

R² Score

Optimization

Co-optimization of R², 

memory, and operations

1

2

Both ANNs and SNNs were

welcomed to compete!

Zhou, Biyan, et al. "Grand Challenge on Neural Decoding for

Motor Control of non-Human Primates." 2024 IEEE Biomedical 

Circuits and Systems Conference (BioCAS). IEEE, 2024.
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Methods – Neural Decoding Challenge – Other Approaches

Wang et al., AEGRU [2]

Architecture: encoder – GRUs – decoder

During training: additional firing rate 

reconstruction by auxiliary branch

Complex during training, 

simple during inference

Liu et al., RSNN [3]

Architecture: LIF-based SNNs with explicit recurrency

Pretraining on all recordings

Iterative pruning and activity regularization

Yik et al., Neurobench Baseline [1]

Architecture: Feed-forward ReLU-

and LIF-based networks

Demonstration of possible solution

Track 

1

Track 

2[1] https://github.com/NeuroBench/neurobench/blob/main/examples/primate_reaching/ANN.py

[2] Liu, Tengjun, et al. "Decoding finger velocity from cortical spike trains with recurrent spiking

neural networks." 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2024.

[3] Wang, Yuanxi, Zuowen Wang, and Shih-Chii Liu. "Leveraging recurrent neural networks for predicting motor movements

from primate motor cortex neural recordings." 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2024.
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Methods – Neural Decoding Challenge – Our Approach

Interpolation

Recurrent

Processing

Temporal 

Convolution

time

…

…

Output

Keypoints

3rd Place in 

both Tracks!
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Methods – Realtime-Capability – Buffering

Input data buffering increases latency (and memory)

Buffer size per keypoint
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Methods – Realtime-Capability – Buffering

Input data buffering increases latency (and memory)

New input data buffer
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Methods – Realtime-Capability – Buffering

Input data buffering increases latency (and memory)

Required buffer size per update

All models are tested

using this buffer

architecture



27Jann Krausse, NICE 2025, Heidelbergrestricted2025-03-27

Methods – Realtime-Capability – Architecture 

2 Models:

BMnet for max. R²

RTnet for realtime-

capability

L
a

te
n

c
y
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Methods – Compression Techniques

1. Spike Regularization

ℒ S = λS * Spikes

2. Weight Regularization

ℒW = λW * ||w||2
2

3. Fixed Point Quantization

Weights: 1i-7f

Buffers: 1i-4f

4. Pruning4. Pruning

3rd Model:

sRTnet (compressed

RTnet)
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Results & Discussion – Hyperparameter Optimization

k..kernel size of temporal convolutions

Lseq..length of training data sequences

Kernel size is limited due to memory and computational load

Sequence length is limited due to training time
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Results & Discussion – Models Targeting R² Optimization

1) Improving our previous results by 7% in R²

2) Improving the SotA by 1% in R²

Decreased kernel size of RTnet decreases accuracy
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Results & Discussion – Models Targeting Co-Optimization

1) Improve SotA accuracy of co-optimization models by 1.5% R²

2) Increased memory compared to SotA by factor of 4

Compression techniques improve footprint compared

to baseline despite increased kernel size

3) Our hybrid networks are now realtime-capable!
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Results & Discussion – Compression – ACs and MACs

Relative cost of MAC to AC (45nm CMOS) is ~10 [1]

[1] Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in neural information processing systems 28 (2015).

Large kernel size makes sRTnet highly inefficient

compared to, e.g., tinyRSNN

Separable convolutional and spiking subnets can be deployed on hybrid 

platform of specialized CNN and neuromorphic accelerators

This enables truly fair comparison at runtime
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Results & Discussion – Heterogeneous Cortex Data (M1 & S1)

Primary Motor Cortex (M1)
Primary Somatosensory Cortex (S1)

processing tactile sensory

information

Planning, controlling, execution

of muscle movements
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Results & Discussion – Heterogeneous Cortex Data (M1 & S1)

‒ pre-LIF..separate

conv. blocks for M1 

and S1 data

‒ post-LIF..separate

conv. blocks and LIF 

nets for M1 and S1 

data

1) M1 data massively improves the decoding accuracy

2) S1 data complements M1 data to improve decoding accuracy

3) Separate conv. blocks or conv. blocks and LIF nets do not improve

decoding… What better methods are there to aid M1 decoding with

S1 data?

M1 S1
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Summary

neuromorphic computing

very promising as a solution

to the constraints of

wireless iBMIs
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Summary

Primate Reaching as new

sequence-to-sequence

benchmark for efficient AI
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Summary

Our approach improves the

SotA accuracy by scaling up

the context window and 

training sequence length, 
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Summary

Our approach improves the

SotA accuracy by scaling up

the context window and 

training sequence length, 

and now is realtime-capable!

However, the large 

temporal kernel size makes

it hard to be compressed to

very small sizes

Final step: deployment on

hybrid HW platforms for

evaluation at runtime
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Thank you! ☺
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