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Introduction and Motivation

▪ Adaptive control

▪ Control system must adapt online

▪ Application of system identification

▪ Defined as a continuous learning problem

▪ Learn weights over a set of basis functions

▪ Adaptive control + PD control (Slotine & Li, 1987)

▪ Continuous learning

▪ Prone to catastrophic forgetting

▪ Need to generalize over input space

▪ Requires sparsity
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Background
▪ Spiking neural adaptive control (DeWolf et 

al., 2016) 

▪ Adapts to unknown dynamics

▪ Uses spiking neurons as basis functions

▪ Improved (DeWolf et al., 2020) 

▪ Approach the problem of basis function selection

▪ Project input to D+1 dimensional hypersphere
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Figure 1: An overview of the REACH 

model (DeWolf et al., 2016 ) 

Figure 2: An example of how increasing encoder dimensionality can 

create neurons that are more selectively responsive (DeWolf et al., 

2020)



Background – Cont.

▪ Spatial semantic pointer (SSP) 
architecture 

▪ High-dimensional vector 
representation of lower-dimensional 
continuous spaces (Komer et al., 2019)

▪ Developed within Semantic Pointer 
Architecture framework (Eliasmith, 
2013)
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Figure 4: As dimensionality of the representation increases, the inner product 

between SSPs better approximates a sinc kernel, enabling a highly-localized 

basis

𝜙𝑋 𝜆−1𝑋 = ℱ−1 𝑒𝑖𝜃𝜆
−1𝑋

Figure 3: The Spatial Semantic Pointer (SSP) projection from a low dimensional 

space (𝑥 ∈ ℝ2) to higher dimensional space (Dumont, 2025)



Problem Statement and Contribution

▪ Using spiking neural population in continuous learning control

▪ Selection of basis functions using SSP representation

▪ Sparsity and catastrophic forgetting

▪ Contributions

▪ Propose use of SSP representation as basis functions 

▪ Generate basis representations on spiking neurons using the Neural Engineering Framework 
(NEF) (Eliasmith & Anderson, 2003)

▪ Provide stability guarantees with sliding mode control

▪ Show 1.23 − 1.25x performance improvement on a simulated 3-link arm over past baselines
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Methodology

▪ Sliding mode control is applied in parallel with adaptive control

▪ Closed loop control algorithm

▪ Constrains states to sliding manifold leading to convergence
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Figure 6: 2-D 3-link arm kinematics (Juecoree, 2021) Figure 5: Sliding manifold in state space (Wani et al., 2022) 



Methodology - Cont.

▪ Adaptive control

▪ Define dynamics as linear combination of basis functions 
(𝜙) and weights (𝜔)

▪ By Lyapunov stability, gradient descent on the weights 
guarantees convergence of approximation

▪ : learning rate

▪ : error signal

▪ Neuromorphic structure

▪ Learn decoders over a set of neurons
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መ𝑓 𝑥, ሶ𝑥 = 𝜔𝑇𝜙(𝑥, ሶ𝑥)

ሶ𝜔 = −𝛾𝑠𝜙(𝑥, ሶ𝑥)

Figure 7: Control architecture block diagram with sliding mode control in parallel 

with the adaptive control network



Methodology - Cont.
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▪ 5 different representations of state 
space

▪ Previous baselines

▪ Random

▪ Selected

▪ Our proposed representations

▪ Kenyon

▪ Place

▪ Grid

Figure 8: Examples of receptive fields of neurons in the hidden 

layer serving as the basis functions for the adaptive component

Figure 9: Architecture of the neural network providing the adaptive 

component of the controller, depicting the input x, SSP projection 

ϕ(x/λ), encoders e and weights 𝜔



Results and Discussion

▪ After hyperparameter tuning

▪ 2 tasks

▪ Place Cells had best performance in RMSE
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RMSE

Additional Mass Forcing Cosine Forcing Function

Non-Adaptive 2.568 ∗ 10−2 ± 0 5.679 ∗ 10−2 ± 0

Random 2.084 ∗ 10−2 ± 4.09 ∗ 10−4 4.290 ∗ 10−2 ± 1.28 ∗ 10−3

Selected 1.896 ∗ 10−2 ± 1.92 ∗ 10−4 3.684 ∗ 10−2 ± 0.26 ∗ 10−3

Place 𝟏. 𝟓𝟑𝟗 ∗ 𝟏𝟎−𝟐 ± 𝟕. 𝟐𝟔 ∗ 𝟏𝟎−𝟒 𝟐. 𝟗𝟑𝟗 ∗ 𝟏𝟎−𝟐 ± 𝟎. 𝟖𝟕 ∗ 𝟏𝟎−𝟑

Grid 1.932 ∗ 10−2 ± 1.02 ∗ 10−4 3.745 ∗ 10−2 ± 0.36 ∗ 10−3

Kenyon 2.358 ∗ 10−2 ± 2.24 ∗ 10−4 4.818 ∗ 10−2 ± 0.85 ∗ 10−3

Table 1: Simulation results of different basis representations over two state-based disturbance tracking 

tasks



Results and Discussion – Cont.

▪ Circle reference

▪ Additional mass 
forcing

▪ Turned on at 5s
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Figure 10: Sample trials of random and SSP place cell encoding of state space for circular tracking problem including mass 

disturbance. Both state values (Top) and neuron firing patterns (Bottom) are shown over time.



Conclusions

▪ Performance improvements

▪ 1.23 − 1.25x over previous baseline

▪ 1.67 − 1.93x over the non-adaptive

▪ Stability guarantees with given architecture

▪ In parallel to sliding mode controller

▪ Developed using spiking neurons with the NEF

▪ Place cell achieved highest performance

▪ Through systematic comparison of biologically inspired basis functions
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