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Synaptic Plasticity



Gradient-based Synaptic Plasticity
Long-term potentiation (LTP) is regulated by coincidence of 
action potentials (AP) and postsynaptic potentials (EPSP)

Three Factor Rules modulates learning with higher 
level information (reward, error, etc.)

Synaptic plasticity rules can be made compatible with a local approximation of gradient descent



Gradient-based Synaptic Plasticity
Synaptic plasticity rules can be made compatible with a local approximation of gradient descent
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Recurrence Relation!

E-prop is capable of online learning and 
could efficiently implemented, but in practice:

• Use BPTT + stop-gradient                             
—> not online, memory-intensive 

• Hand-implement eligibility traces               
—> does not scale well (in manpower etc.)

We have the best of both worlds…



What is Automatic Differentiation?
• How to compute derivatives algorithmically up to 

machine precision? 

• Applications in ML, Robotics, Computational Fluid 
Dynamics, Finance, … 

• AutoDiff != gradient backpropagation  

• Uses chain rule              just multiplication of Jacobians

 

• Elemental derivatives are hard-coded



Graph View on Automatic Differentiation

• Systematic construction of AutoDiff algorithms 

• Algorithms tailored to functions                 minimize computational resources



Constructing the computational graph
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Adding the Elemental Derivatives
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Constructing the AutoDiff Algorithm
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Eliminating the 2ndVertex
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Lohoff & Neftci. Optimizing Automatic Differentiation with Deep 
Reinforcement Learning. 38th Conference on Advances in Neural Information 
Processing (NeurIPS) 2024. Spotlight Paper.

How to find good elimination orders?



And does it actually work?



Tensorized Vertex Elimination - Sparse AutoDif

Simple LIF Layer:

ut+1 = αut + W ⋅ zt

zt+1 = Θ(ut − ϑ)



Temporal Credit Assignment
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Recurrent Neural Network: 
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More Temporal Credit Assignment

xt

ht−1 ht ht+1 ht+2

xt+1 xt+2θ

L

∂ht+2

∂θ

∂ht+1

∂ht

∂ht+1

∂θ
∂ht

∂θ

dL
dθ

= ∑
t

∂L
∂ht

dht

dθ
Gradient: 

dht+2

dθ
=

∂ht+2

∂θ
∂ht+1

∂θ
+

∂ht+2

∂ht+1

∂ht+1

∂ht

∂ht

∂θ
+

dht+2

dθ
=

∂ht+2

∂ht+1
( ∂ht+1

∂ht

∂ht

∂θ
+

∂ht+1

∂θ ) +
∂ht+2

∂θ

RTRL: Gt = HtGt−1 + Ft

Compute Scaling: 

Memory Scaling: 

𝒪(n4T )

𝒪(n3)

∂ht+2

∂ht+1

∂ht+2

∂ht+1

Gt+2 = Ht+2(Ht+1Gt) + Ft+1) + Ft+2

∂ht+2

∂ht+1

∂ht+1

∂θ
∂ht+2

∂θ
∂ht+1

∂ht

∂ht

∂θ

∂ht+2

∂ht+1



Gradient-based Synaptic Plasticity (again)

Zenke and Neftci. Brain-inspired learning on neuromorphic substrates.  
Proceedings of the IEEE 109, Issue 5. 2021. 

Bellec et al. A solution to the learning dilemma for recurrent networks 
of spiking neurons. Nature Communications 11. 2020. 

James M Murray Local online learning in recurrent networks with 
random feedback. eLife 8:e43299. 2019.

Gt = HtGt−1 + FtRTRL Recurrence Relation: Scaling Laws: 
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Neglect Explicit Recurrence! 

becomes diagonal, so       stays diagonal: Ht Gt

New Memory Scaling: 
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Our Method in Action:



Outlook into the Future

• Generalize to multiple layers to enable large-scale training & meaningful applications 

•  Application to Dendritic Neural Networks to make them scalable (with Yiota Poirazis Group) 

• Test more intricate neuron types, train SNNs on very long time-horizons 

• Use Vertex Elimination formalism to find novel approximation methods (e.g. with RL) 

• Include HW constraints in the search for good gradient-based Synaptic Plasticity

Kaiser et al. Synaptic Plasticity Dynamics for Deep Continuous Local 
Learning (DECOLLE). Frontiers of Neuroscience 14. 2020. 

Bohnstingl et al. Online spatiotemporal learning in deep neural networks. 
IEEE TNNLS 34, Issue 11. 2023.

+ = Really Fast and Memory-
efficient SNN Training

+

Chavlis & Poirazi. Dendrites endow artificial neural networks with accurate, 
robust and parameter-efficient learning. Arxiv:2404.03708. 2024.
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