
Jamie Lohof1,2, Anil Kaya1,2, Florian Assmuth1,2, and Emre Neftci1,2

1 Jülich Research Center, Peter-Grünberg-Institute 15, 52428 Jülich, Germany

2 RWTH Aachen, Department of Electrical Engineering, 52062 Aachen, Germany

A Truly Sparse and General
Implementation of Gradient-based
Synaptic Plasticity

Gradient-based Synaptic Plasticity
Long-term potentiation (LTP) is regulated by coincidence of
action potentials (AP) and postsynaptic potentials (EPSP)

Three Factor Rules modulates learning with higher
level information (reward, error, etc.)

Synaptic plasticity rules can be made compatible with a local approximation of gradient descent

Gradient-based Synaptic Plasticity
Synaptic plasticity rules can be made compatible with a local approximation of gradient descent

E-prop Eligibility Traces: ϵt
ji =

∂ht
j

∂ht−1
j

⋅ ϵt−1
ji +

∂ht
j

∂Wji
et

ji =
∂zt

j

∂ht
j

⋅ ϵt
ji,

Recurrence Relation!

E-prop is capable of online learning and
could efficiently implemented, but in practice:

• Use BPTT + stop-gradient
—> not online, memory-intensive

• Hand-implement eligibility traces
—> does not scale well (in manpower etc.)

We have the best of both worlds…

What is Automatic Differentiation?
• How to compute derivatives algorithmically up to

machine precision?

• Applications in ML, Robotics, Computational Fluid
Dynamics, Finance, …

• AutoDiff != gradient backpropagation

• Uses chain rule just multiplication of Jacobians

• Elemental derivatives are hard-coded

Graph View on Automatic Differentiation

• Systematic construction of AutoDiff algorithms

• Algorithms tailored to functions minimize computational resources

Constructing the computational graph

v0 = x2

v1 = v−1v0

v3 = log v2

v2 = sin v1

v−1 = x1

v4 = v1 + v2

Tape

v−1

v0

v1 v2

v3

v4

v0 = x2

v1 = v−1v0

v3 = log v2

v2 = sin v1

v−1 = x1

v4 = v1 + v2

Adding the Elemental Derivatives

v−1

v0

v2

v3

v4

v0 = x2

v1 = v−1v0

v3 = log v2

v2 = sin v1

v−1 = x1

v4 = v1 + v2

Tape

v1

=
∂v1

∂v−1

c10 = v−1

c32 = 1/v2
c41, c4,2 = 1

c21 = cos v1

c1−1 =
∂

∂v−1
(v−1v0)= v0c1−1 = v0

c10

c21

c41
c42

c32

Constructing the AutoDiff Algorithm

v−1

v0

v2

v3

v4

v1

c1−1

c10

c21

c41
c42

c32c31
=

c31
= c32c21

c21

c41 = c41 + c42 c21

= c41 +

v0 = x2

v1 = v−1v0

v3 = log v2

v2 = sin v1

v−1 = x1

v4 = v1 + v2

Tape

c10 = v−1

c32 = 1/v2
c41, c4,2 = 1

c21 = cos v1

c1−1 = v0

Eliminating the 2ndVertex

c 30
=

c40 =

v−1

v0

v3

v4

v1

c1−1

c10 c41

c31

c41 = c41 + c42c21

c31 = c32c21

v0 = x2

v1 = v−1v0

v3 = log v2

v2 = sin v1

v−1 = x1

v4 = v1 + v2

Tape

c10 = v−1

c32 = 1/v2
c41, c4,2 = 1

c21 = cos v1

c1−1 = v0

c3−1 =c3−1 = c31c1−1

c1−1
c31

c4−1 =
c4−1 = c41 c1−1c41

c40 = c41c10

c10

c 30
= c 31c 10

Lohoff & Neftci. Optimizing Automatic Differentiation with Deep
Reinforcement Learning. 38th Conference on Advances in Neural Information
Processing (NeurIPS) 2024. Spotlight Paper.

How to find good elimination orders?

And does it actually work?

Tensorized Vertex Elimination - Sparse AutoDif

Simple LIF Layer:

ut+1 = αut + W ⋅ zt

zt+1 = Θ(ut − ϑ)

Temporal Credit Assignment

xt

ht−1 ht ht+1 ht+2

xt+1 xt+2θ

L
ht = f(ht−1, xt, θ)

∂ht+2

∂ht+1

∂ht+1

∂ht

∂L
∂ht+2

∂L
∂ht+1

∂L
∂ht

dL
dθ

= ∑
t

dL
dht

∂ht

∂θ

Recurrent Neural Network:

Gradient:

dL
dht

=
∂L
∂ht

∂L
∂ht+1

∂ht+1

∂ht
+

∂L
∂ht+2

∂ht+2

∂ht+1
+

∂ht+1

∂ht

dL
dht

= (∂L
∂ht+2

∂ht+2

∂ht+1
+

∂L
∂ht+1

) ∂ht+1

∂ht
+

∂L
∂ht

BPTT:

ct = (ct+2Ht+1 + dt+1)Ht + dt

ct = ct+1Ht + dt

Compute Scaling:

Memory Scaling:

𝒪(n2T)

𝒪(nT)

∂L
∂ht

∂L
∂ht+2

∂ht+2

∂ht+1

∂ht+1

∂ht

∂L
∂ht+1

More Temporal Credit Assignment

xt

ht−1 ht ht+1 ht+2

xt+1 xt+2θ

L

∂ht+2

∂θ

∂ht+1

∂ht

∂ht+1

∂θ
∂ht

∂θ

dL
dθ

= ∑
t

∂L
∂ht

dht

dθ
Gradient:

dht+2

dθ
=

∂ht+2

∂θ
∂ht+1

∂θ
+

∂ht+2

∂ht+1

∂ht+1

∂ht

∂ht

∂θ
+

dht+2

dθ
=

∂ht+2

∂ht+1
(∂ht+1

∂ht

∂ht

∂θ
+

∂ht+1

∂θ) +
∂ht+2

∂θ

RTRL: Gt = HtGt−1 + Ft

Compute Scaling:

Memory Scaling:

𝒪(n4T)

𝒪(n3)

∂ht+2

∂ht+1

∂ht+2

∂ht+1

Gt+2 = Ht+2(Ht+1Gt) + Ft+1) + Ft+2

∂ht+2

∂ht+1

∂ht+1

∂θ
∂ht+2

∂θ
∂ht+1

∂ht

∂ht

∂θ

∂ht+2

∂ht+1

Gradient-based Synaptic Plasticity (again)

Zenke and Neftci. Brain-inspired learning on neuromorphic substrates.
Proceedings of the IEEE 109, Issue 5. 2021.

Bellec et al. A solution to the learning dilemma for recurrent networks
of spiking neurons. Nature Communications 11. 2020.

James M Murray Local online learning in recurrent networks with
random feedback. eLife 8:e43299. 2019.

Gt = HtGt−1 + FtRTRL Recurrence Relation: Scaling Laws:

ht = ut

Simple LIF Neuron: Examine closer: Ht :=
dht

dht−1
=

dut

dut−1
+

dut

dzt

dzt

dut−1

Neglect Explicit Recurrence!

becomes diagonal, so stays diagonal: Ht Gt

New Memory Scaling:

𝒪(n2T)New Compute Scaling:

𝒪(n2)

ut+1 = αut + W ⋅ zt
zt+1 = Θ(ut − ϑ)

Our Method in Action:

Outlook into the Future

• Generalize to multiple layers to enable large-scale training & meaningful applications

• Application to Dendritic Neural Networks to make them scalable (with Yiota Poirazis Group)

• Test more intricate neuron types, train SNNs on very long time-horizons

• Use Vertex Elimination formalism to find novel approximation methods (e.g. with RL)

• Include HW constraints in the search for good gradient-based Synaptic Plasticity

Kaiser et al. Synaptic Plasticity Dynamics for Deep Continuous Local
Learning (DECOLLE). Frontiers of Neuroscience 14. 2020.

Bohnstingl et al. Online spatiotemporal learning in deep neural networks.
IEEE TNNLS 34, Issue 11. 2023.

+ = Really Fast and Memory-
efficient SNN Training

+

Chavlis & Poirazi. Dendrites endow artificial neural networks with accurate,
robust and parameter-efficient learning. Arxiv:2404.03708. 2024.

Graphax

