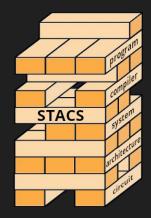


The Spatial Effect of the Pinna for Neuromorphic Speech Denoising

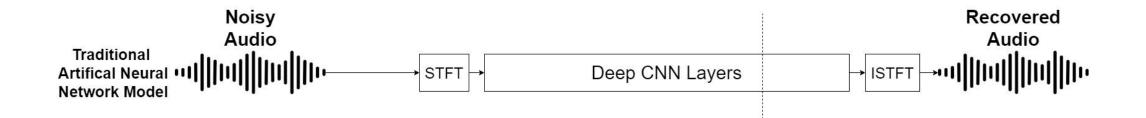
Neuro-Inspired Computational Elements March 2025 **Ranganath (Bujji) Selagamsetty**, Joshua San Miguel, Mikko Lipasti



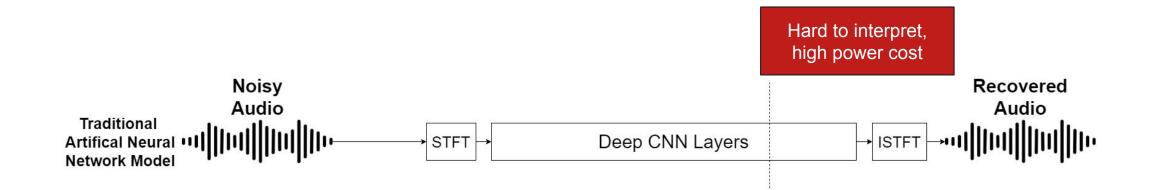
Outline

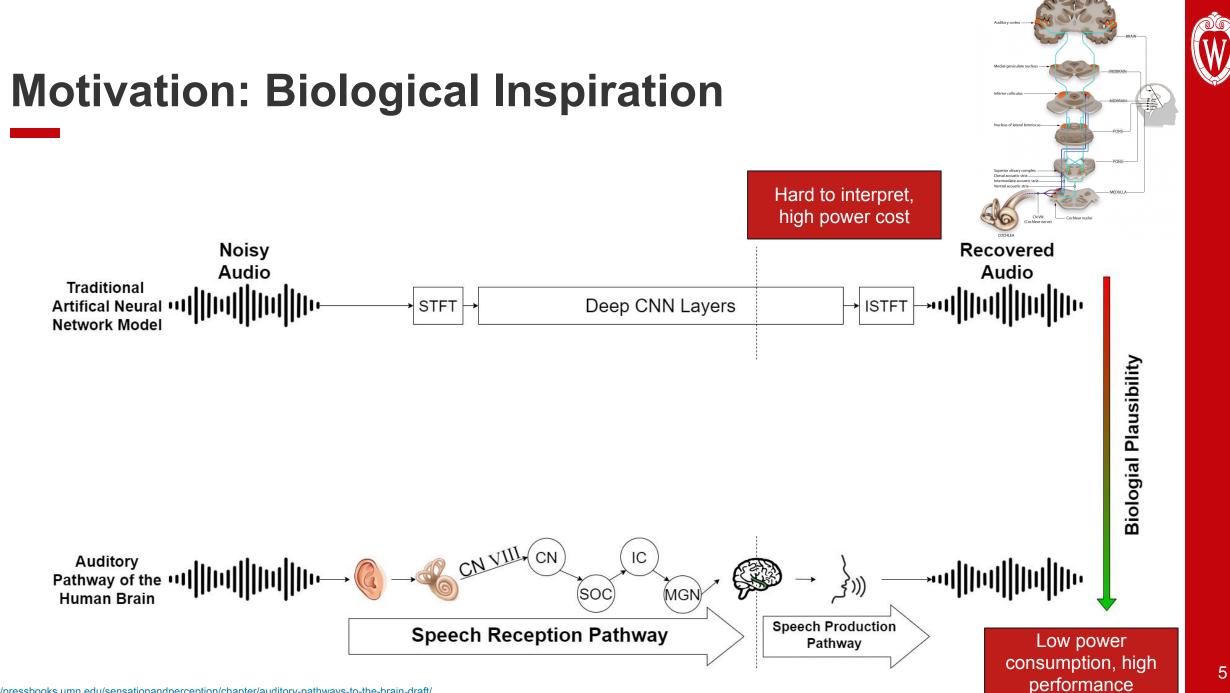
- Motivation
- Methodology
- Evaluation
- Conclusion & Future directions

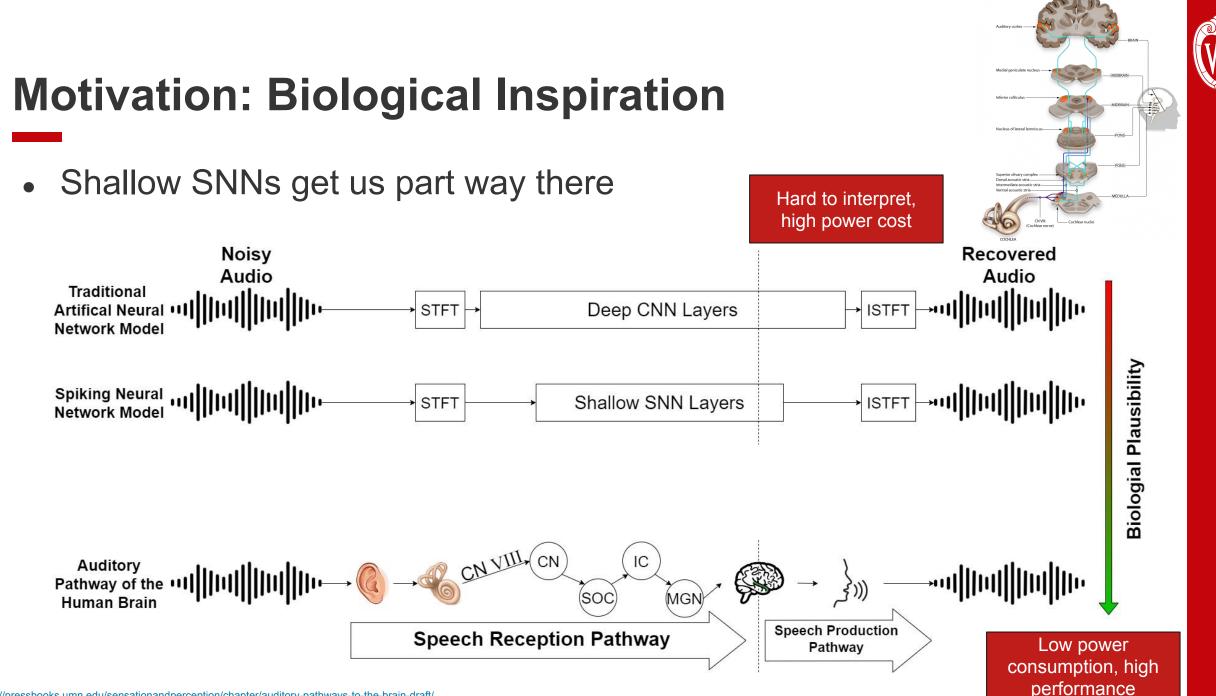
Motivation: Biological Inspiration

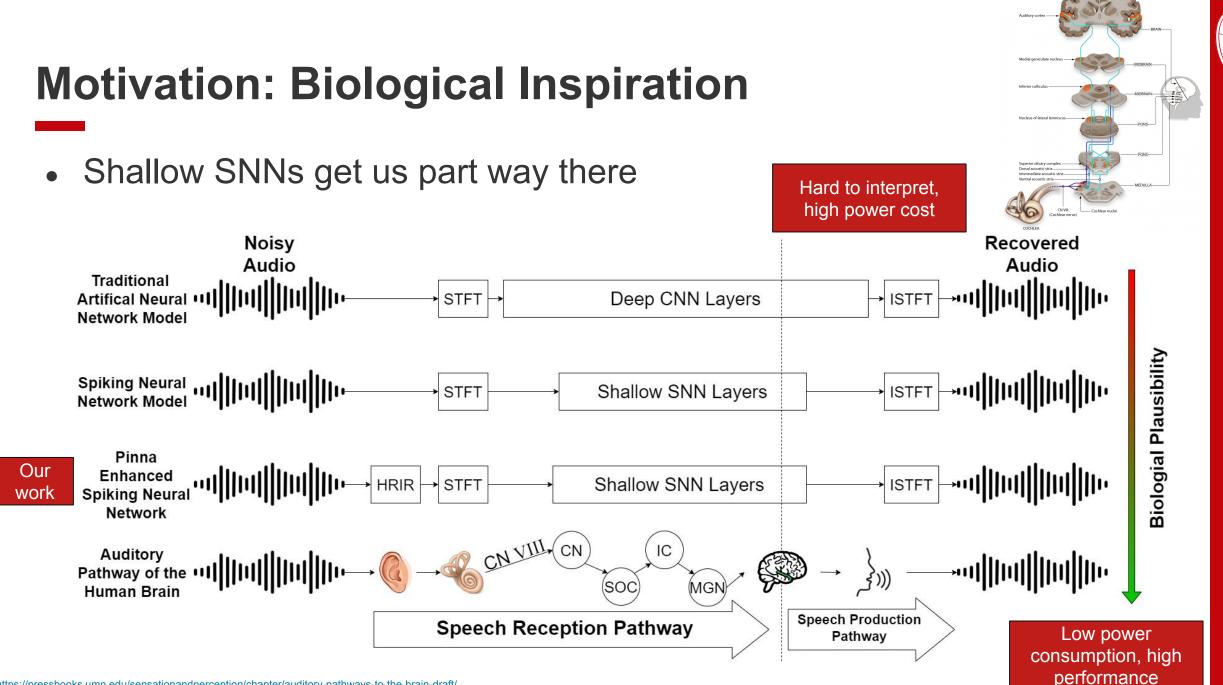


Motivation: Biological Inspiration







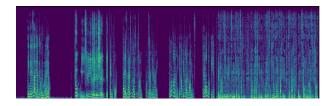


Methodology

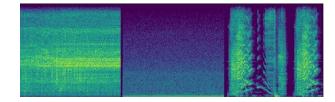
Methodology: Datasets

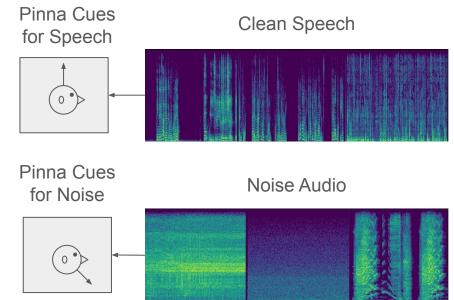
- CIPIC HRTF Database for HRIRs (45 subjects, 1250 orientations)
- Noisy sample synthesized from Microsoft DNS corpus
 - Speech recordings from speakers from multiple languages
 - Noise recording include both with biological origin and abiogenic
 - 30 second clip
- Consists of 500 hours (60K samples) in training and validation sets

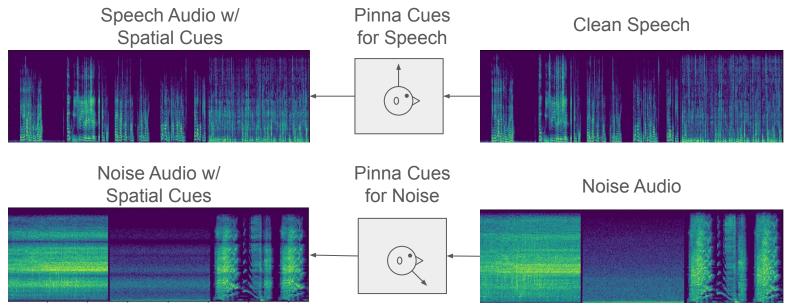
Clean Speech

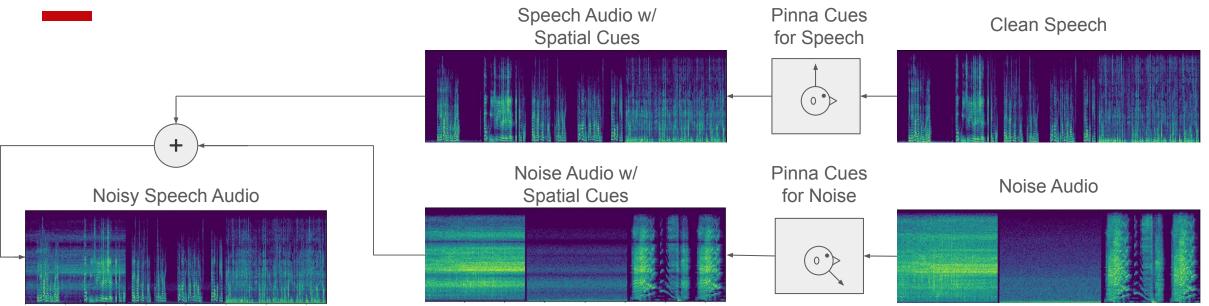


Noise Audio

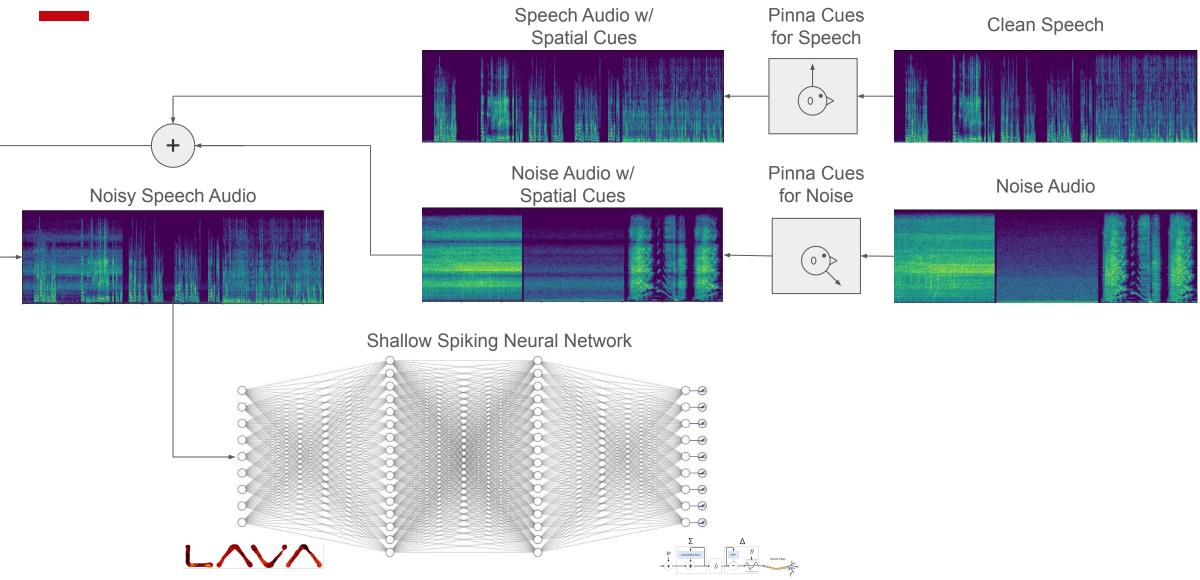




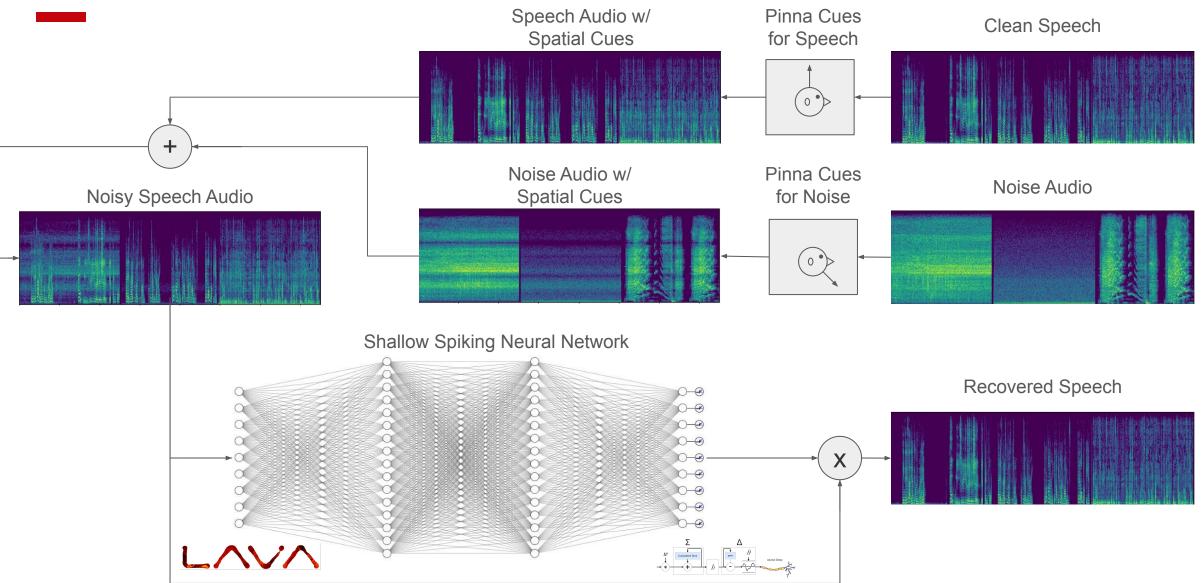




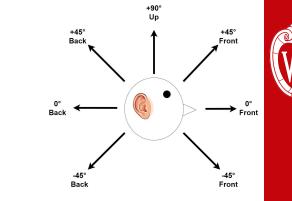
14

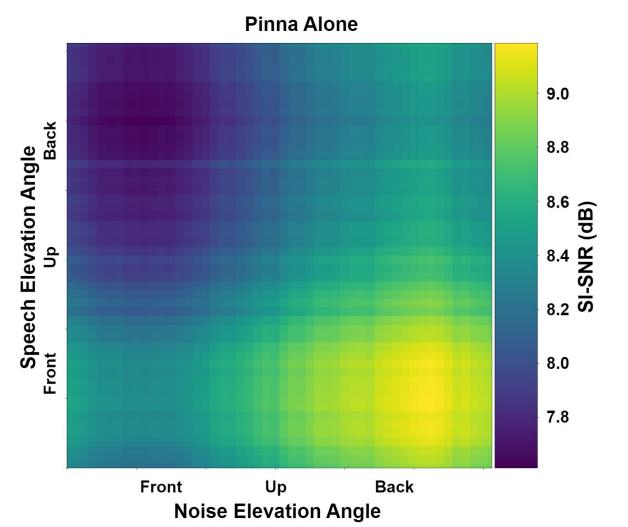


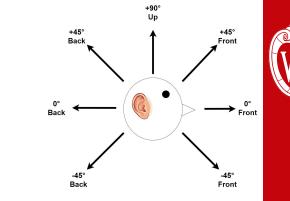
15

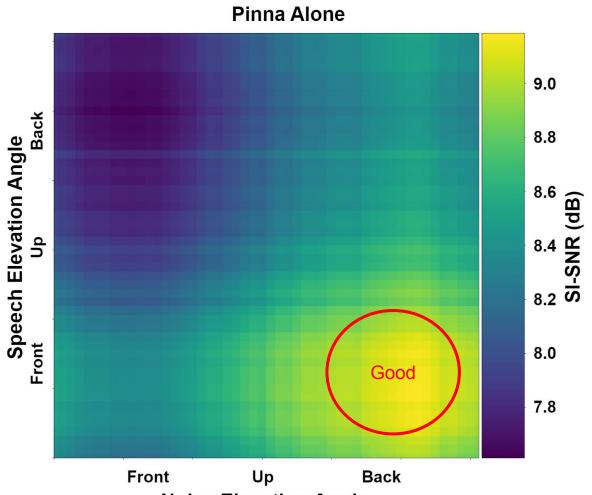


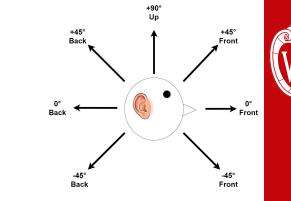
Evaluation

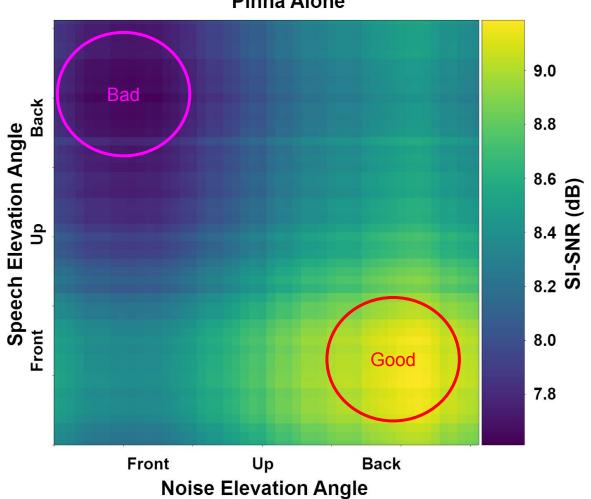




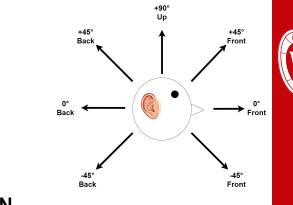


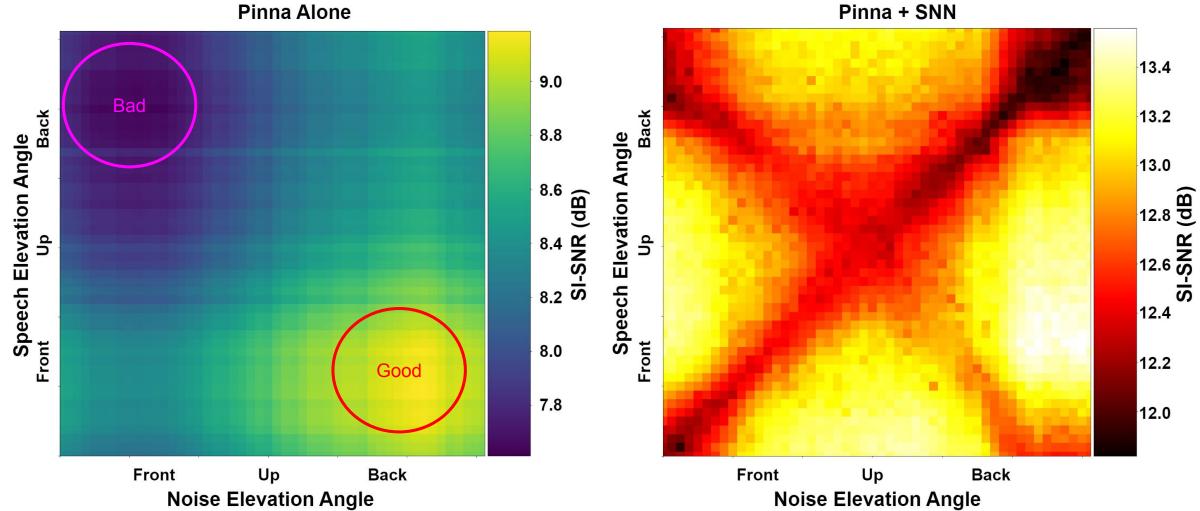


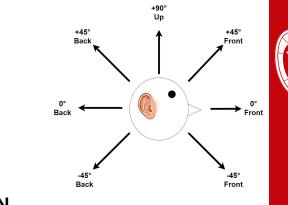


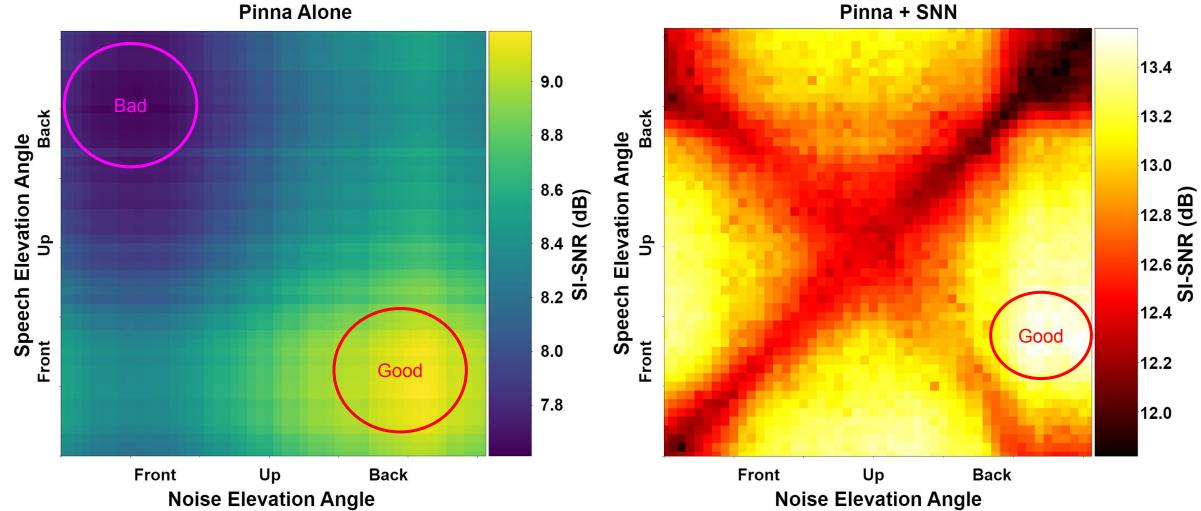


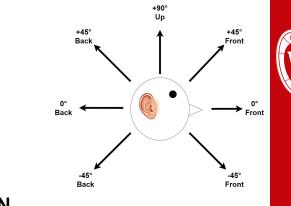
Pinna Alone

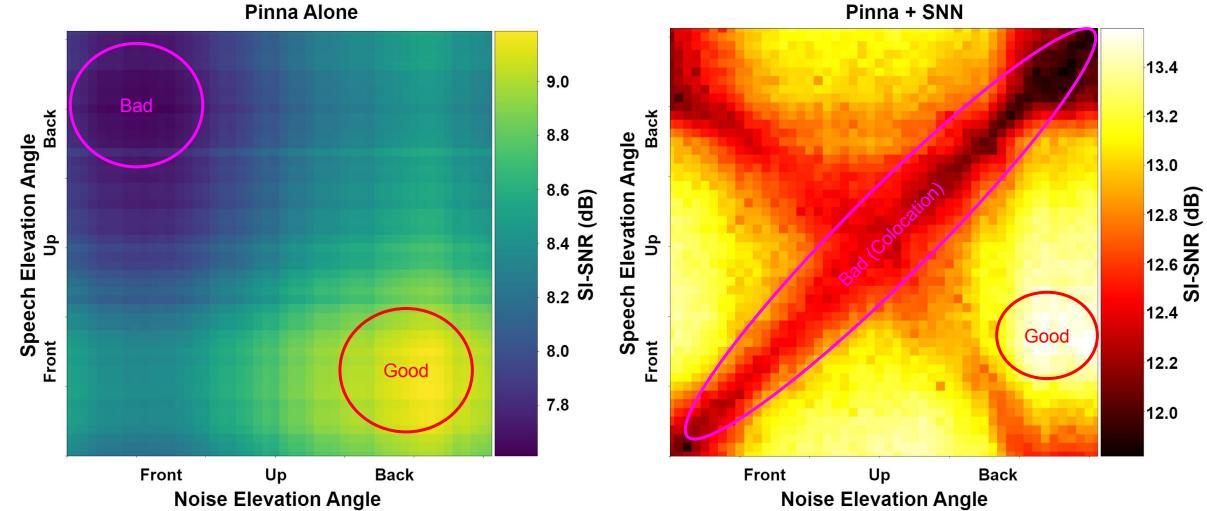




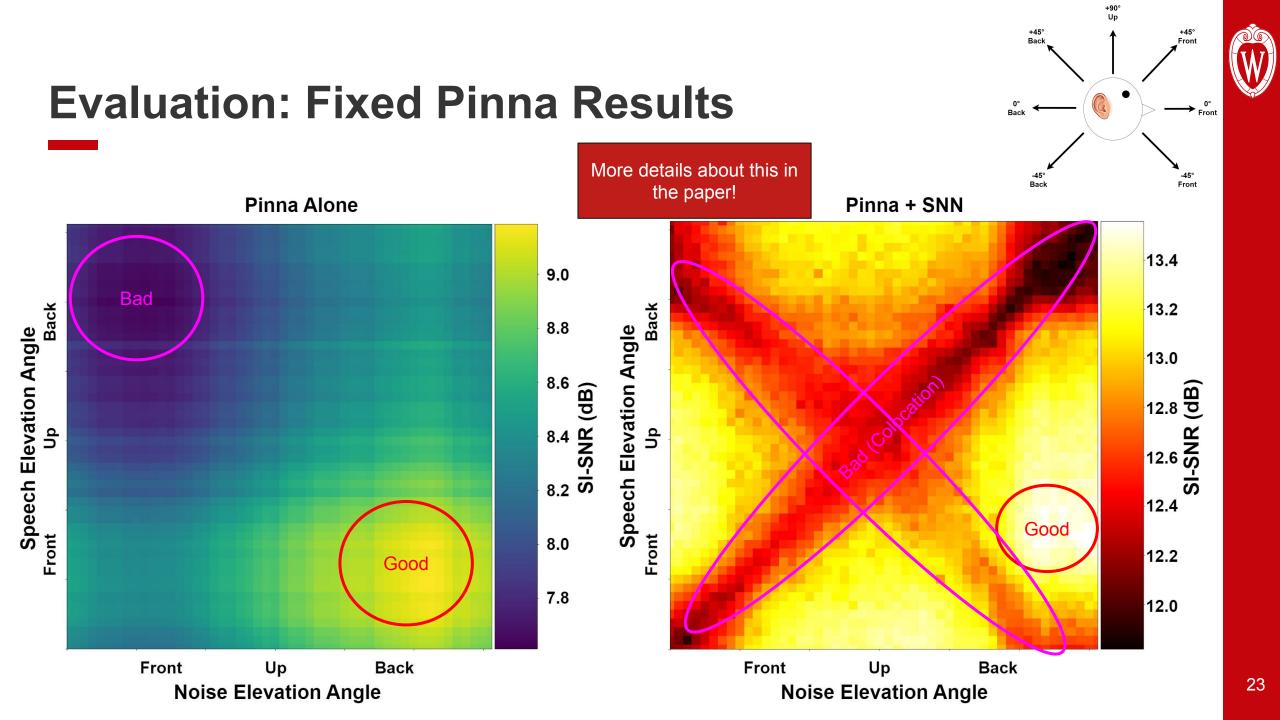






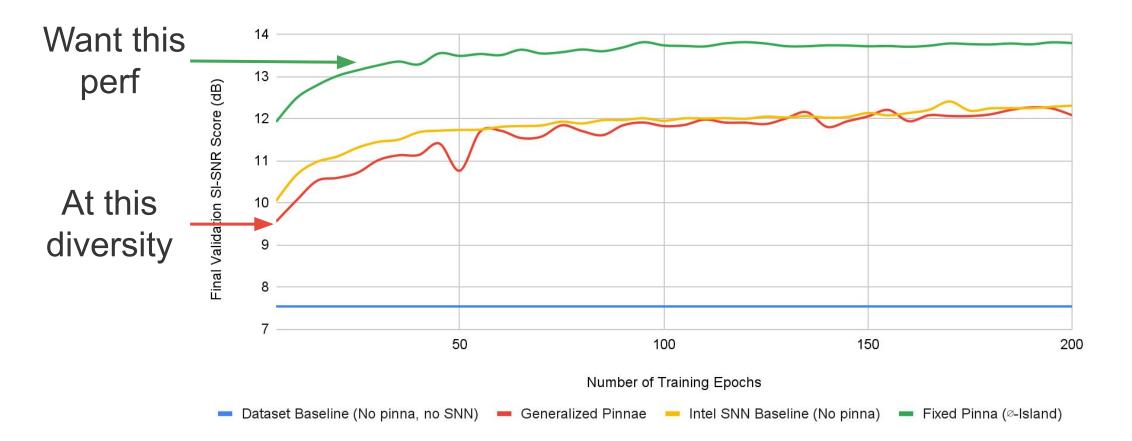


22



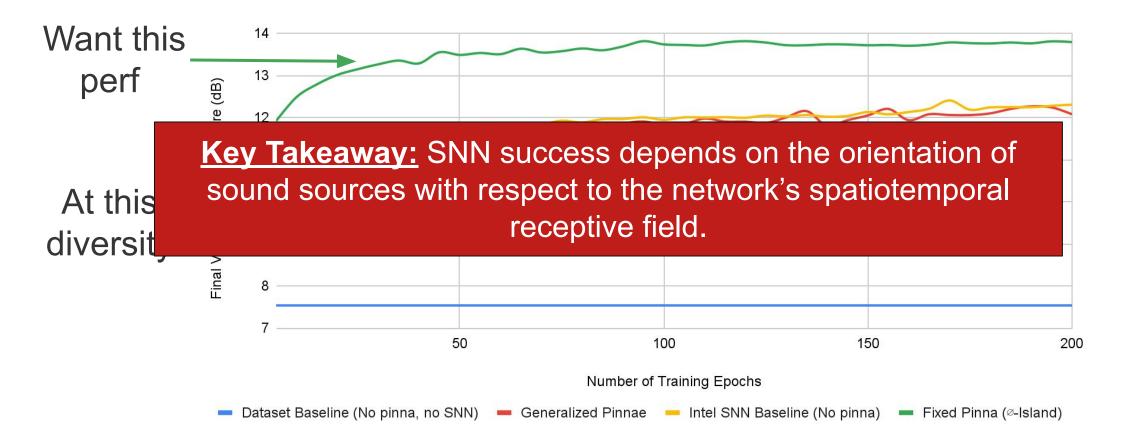
Evaluation: Towards a Generalized Pinna Model

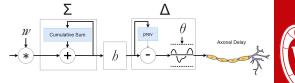
- Desired feature: high denoising performance from arbitrary orientations
- Problem: broad range of orientations confuses the network



Evaluation: Towards a Generalized Pinna Model

- Desired feature: high denoising performance from arbitrary orientations
- Problem: broad range of orientations confuses the network

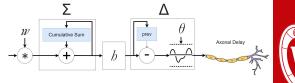




Evaluation: What helped the model learn?

- Average spoken word length: ~400 msec [1]
- Average spoken phoneme length: ~80 msec [2]
- Each FFT frame to the network represents 8 msec window

Trial	Set of Orientation Pairs {Speech}	Final Validation SI-SNR (dB)	Mean Weight for L1 Axonal Delay	Resultant Context Window (msec)
1	{∅-Island}	13.79	3.25	26
4	$\{NE_{V}, SE_{V}\}$	14.93	4.30	34.4
8	$\{NE_V, NW_V, SE_V, SW_V, NE_D, NW_D, SE_D, SW_B\}$	12.08	2.90	23.2



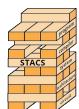
Evaluation: What helped the model learn?

- Average spoken word length: ~400 msec [1]
- Average spoken phoneme length: ~80 msec [2]
- Each FFT frame to the network represents 8 msec window

Trial	Key Takeaway: Pinna-enhanced SNNs only need sub-phoneme features for successful speech denoising.			
1				
4	{NE _V , SE _V }	14.93	4.30	34.4
8	${\rm \{NE_{v}, NW_{v}, SE_{v}, SW_{v}, NE_{D}, NW_{D}, SE_{D}, SW_{D}\}}$	12.08	2.90	23.2

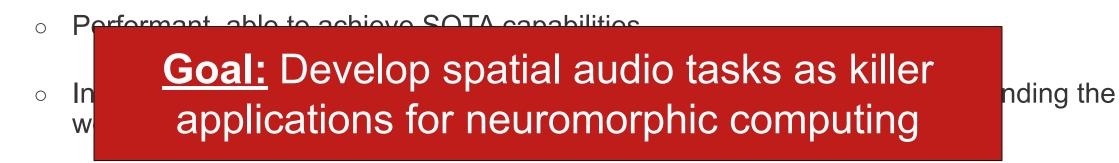
Conclusion

- Shallow SNN pipelines with improved biological fidelity are:
 - Efficient, both in model size and dataflow
 - Performant, able to achieve SOTA capabilities
 - Interpretable, may pose an alternative approach to mimicking and understanding the workings of the brain
- Entire workflow is open source and cloud ready via github + Docker
- Future: binaural audio, pinna shape predictor, pitch/SSL/foundation model, GPU training optimizations, edge compute



Conclusion

- Shallow SNN pipelines with improved biological fidelity are:
 - Efficient, both in model size and dataflow



- Entire workflow is open source and cloud ready via github + Docker
- Future: binaural audio, pinna shape predictor, pitch/SSL/foundation model, GPU training optimizations, edge compute

