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● CIPIC HRTF Database for HRIRs (45 subjects, 1250 orientations)

● Noisy sample synthesized from Microsoft DNS corpus
○ Speech recordings from speakers from multiple languages
○ Noise recording include both with biological origin and abiogenic
○ 30 second clip

● Consists of 500 hours (60K samples) in training and validation sets
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● Desired feature: high denoising performance from arbitrary orientations
● Problem: broad range of orientations confuses the network 

Want this 
perf

At this 
diversity

Key Takeaway: SNN success depends on the orientation of 
sound sources with respect to the network’s spatiotemporal 

receptive field.
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● Average spoken word length: ~400 msec [1]

● Average spoken phoneme length: ~80 msec [2]

● Each FFT frame to the network represents 8 msec window

[1] Tian, Ye & Ferguson, et al. (2016). Processing negation without context – why and when we represent the positive argument. Language, Cognition and Neuroscience. 31. 1-16. 10.1080/23273798.2016.1140214. 
[2] Ma, Guodong & Hu, et al. (2021). Leveraging Phone Mask Training for Phonetic-Reduction-Robust E2E Uyghur Speech Recognition. 10.21437/Interspeech.2021-964. 

Trial Set of Orientation Pairs {Speech} Final Validation 
SI-SNR (dB)

Mean Weight for 
L1 Axonal Delay

Resultant Context 
Window (msec)

1 {∅-Island} 13.79 3.25 26

4 {NEV, SEV} 14.93 4.30 34.4

8 {NEV, NWV, SEV, SWV, NED, NWD, SED, SWD} 12.08 2.90 23.2
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Key Takeaway: Pinna-enhanced SNNs only need sub-phoneme 
features for successful speech denoising.
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● Shallow SNN pipelines with improved biological fidelity are:

○ Efficient, both in model size and dataflow

○ Performant, able to achieve SOTA capabilities

○ Interpretable, may pose an alternative approach to mimicking and understanding the 
workings of the brain 

● Entire workflow is open source and cloud ready via github + Docker

● Future: binaural audio, pinna shape predictor, pitch/SSL/foundation 
model, GPU training optimizations, edge compute
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● Shallow SNN pipelines with improved biological fidelity are:

○ Efficient, both in model size and dataflow

○ Performant, able to achieve SOTA capabilities

○ Interpretable, may pose an alternative approach to mimicking and understanding the 
workings of the brain 

● Entire workflow is open source and cloud ready via github + Docker

● Future: binaural audio, pinna shape predictor, pitch/SSL/foundation 
model, GPU training optimizations, edge compute

Goal: Develop spatial audio tasks as killer 
applications for neuromorphic computing
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